CAS No.) Screening Justification Is Public Comment Now Open? CAS No

Total Page:16

File Type:pdf, Size:1020Kb

CAS No.) Screening Justification Is Public Comment Now Open? CAS No EGLE Air Quality Division (AQD) Air Toxics Screening Level Justifications (Numerically by CAS No.) Screening Justification Is Public Comment Now Open? CAS No. Chemical Name Level & Responses Info E-Mail AQD Deadline None ad acid View View Not Open for Public Comment None amyl acetate (mixture) View View Not Open for Public Comment None atlox 848 View View Not Open for Public Comment None biosam tp-1.5 View View Not Open for Public Comment None calcium chloride View View Not Open for Public Comment None epoxy resin solution View View Not Open for Public Comment None heptamethyl-1-vinyl-1,7-dichlorotetrasilazane View View Not Open for Public Comment None n-butylglucamine View View Not Open for Public Comment None n-chloro-2,6-difluorobenzamide View View Not Open for Public Comment None trichloroethylene View View Not Open for Public Comment None triethylammonium suleptanate View View Not Open for Public Comment 50-00-0 formaldehyde View View Not Open for Public Comment 50-03-3 hydrocortisone acetate View View Not Open for Public Comment 50-21-5 lactic acid View View Not Open for Public Comment 50-28-2 estradiol View View Not Open for Public Comment 50-29-3 ddt View View Not Open for Public Comment 50-32-8 benzo(a)pyrene View View Not Open for Public Comment 51-28-5 2,4-dinitrophenol View View Not Open for Public Comment 53-36-1 methyl predisolone acetate View View Not Open for Public Comment 53-70-3 dibenz(a,h)anthracene View View Not Open for Public Comment 56-23-5 carbon tetrachloride View View Not Open for Public Comment 56-49-5 3-methylcholanthrene View View Not Open for Public Comment 56-55-3 benz(a)anthracene View View Not Open for Public Comment 56-81-5 glycerol View View Not Open for Public Comment 57-11-4 stearic acid View View Not Open for Public Comment Revised Monday, September 27, 2021 Page 1 of 51 EGLE Air Quality Division (AQD) Air Toxics Screening Level Justifications (Numerically by CAS No.) Screening Justification Is Public Comment Now Open? CAS No. Chemical Name Level & Responses Info E-Mail AQD Deadline 57-12-5 cyanide View View Not Open for Public Comment 57-15-8 chlorobutanol View View Not Open for Public Comment 57-41-0 phenytoin View View Not Open for Public Comment 57-83-0 progesterone View View Not Open for Public Comment 57-97-6 7,12-dimethylbenz(a)anthracene View View Not Open for Public Comment 58-36-6 10,10'-oxybisphenoxarsine oxide View View Not Open for Public Comment 60-29-7 ethyl ether View View Not Open for Public Comment 60-34-4 methyl hydrazine View View Not Open for Public Comment 60-57-1 dieldrin View View Not Open for Public Comment 62-53-3 aniline View View Not Open for Public Comment 62-73-7 dichlorvos View View Not Open for Public Comment 62-75-9 n-nitrosodimethylamine View View Not Open for Public Comment 63-05-8 androstenedione View View Not Open for Public Comment 64-02-8 ethylenediamine tetra-acetic acid, tetrasodium salt View View Not Open for Public Comment 64-04-0 beta phenylethylamine View View Not Open for Public Comment 64-17-5 ethyl alcohol View View Not Open for Public Comment 64-18-6 formic acid View View Not Open for Public Comment 64-19-7 acetic acid View View Not Open for Public Comment 64-67-5 diethyl sulfate View View Not Open for Public Comment 65-85-0 benzoic acid View View Not Open for Public Comment 66-25-1 hexanaldehyde View View Not Open for Public Comment 67-56-1 methanol View View Not Open for Public Comment 67-63-0 isopropyl alcohol View View Not Open for Public Comment 67-64-1 acetone View View Not Open for Public Comment 67-66-3 chloroform View View Not Open for Public Comment Revised Monday, September 27, 2021 Page 2 of 51 EGLE Air Quality Division (AQD) Air Toxics Screening Level Justifications (Numerically by CAS No.) Screening Justification Is Public Comment Now Open? CAS No. Chemical Name Level & Responses Info E-Mail AQD Deadline 67-68-5 dimethylsulfoxide View View Not Open for Public Comment 67-72-1 hexachloroethane View View Not Open for Public Comment 68-12-2 N,N-dimethylformamide View View Not Open for Public Comment 71-23-8 n-propyl alcohol View View Not Open for Public Comment 71-36-3 n-butanol View View Not Open for Public Comment 71-41-0 amyl alcohol View View Not Open for Public Comment 71-43-2 benzene View View Not Open for Public Comment 71-55-6 methyl chloroform View View Not Open for Public Comment 72-54-8 DDD (TDE) View View Not Open for Public Comment 72-55-9 DDE, p,p'- View View Not Open for Public Comment 74-83-9 methyl bromide View View Not Open for Public Comment 74-85-1 ethylene View View Not Open for Public Comment 74-87-3 methyl chloride View View Not Open for Public Comment 74-88-4 methyl iodide View View Not Open for Public Comment 74-89-5 methylamine View View Not Open for Public Comment 74-93-1 methyl mercaptan View View Not Open for Public Comment 74-97-5 chlorobromomethane View View Not Open for Public Comment 74-99-7 methyl acetylene View View Not Open for Public Comment 75-00-3 ethyl chloride View View Not Open for Public Comment 75-01-4 vinyl chloride View View Not Open for Public Comment 75-04-7 ethylamine View View Not Open for Public Comment 75-05-8 acetonitrile View View Not Open for Public Comment 75-07-0 acetaldehyde View View Not Open for Public Comment 75-08-1 ethyl mercaptan View View Not Open for Public Comment 75-09-2 methylene chloride View View Not Open for Public Comment Revised Monday, September 27, 2021 Page 3 of 51 EGLE Air Quality Division (AQD) Air Toxics Screening Level Justifications (Numerically by CAS No.) Screening Justification Is Public Comment Now Open? CAS No. Chemical Name Level & Responses Info E-Mail AQD Deadline 75-12-7 formamide View View Not Open for Public Comment 75-15-0 carbon disulfide View View Not Open for Public Comment 75-18-3 dimethylsulfide View View Not Open for Public Comment 75-21-8 ethylene oxide View View Not Open for Public Comment 75-25-2 bromoform View View Not Open for Public Comment 75-27-4 bromodichloromethane View View Not Open for Public Comment 75-28-5 isobutane View View Not Open for Public Comment 75-29-6 2-chloropropane View View Not Open for Public Comment 75-31-0 isopropylamine View View Not Open for Public Comment 75-34-3 1,1-dichloroethane View View Not Open for Public Comment 75-35-4 vinylidene chloride (1,1-dichloroethylene) View View Not Open for Public Comment 75-36-5 acetyl chloride View View Not Open for Public Comment 75-37-6 1,1-difluoroethane View View Not Open for Public Comment 75-38-7 vinylidene fluoride View View Not Open for Public Comment 75-44-5 phosgene View View Not Open for Public Comment 75-45-6 chlorodifluoromethane View View Not Open for Public Comment 75-50-3 trimethylamine View View Not Open for Public Comment 75-52-5 nitromethane View View Not Open for Public Comment 75-54-7 methyldichlorosilane View View Not Open for Public Comment 75-55-8 1,2-propylenimine View View Not Open for Public Comment 75-56-9 propylene oxide View View Not Open for Public Comment 75-64-9 t-butylamine View View Not Open for Public Comment 75-65-0 t-butanol View View Not Open for Public Comment 75-68-3 1-chloro-1,1-difluoroethane View View Not Open for Public Comment 75-69-4 trichlorofluoromethane View View Not Open for Public Comment Revised Monday, September 27, 2021 Page 4 of 51 EGLE Air Quality Division (AQD) Air Toxics Screening Level Justifications (Numerically by CAS No.) Screening Justification Is Public Comment Now Open? CAS No. Chemical Name Level & Responses Info E-Mail AQD Deadline 75-71-8 dichlorodifluoromethane View View Not Open for Public Comment 75-75-2 methane sulfonic acid View View Not Open for Public Comment 75-76-3 tetramethylsilane View View Not Open for Public Comment 75-77-4 trimethylchlorosilane View View Not Open for Public Comment 75-78-5 dimethyldichlorosilane View View Not Open for Public Comment 75-79-6 methyltrichlorosilane View View Not Open for Public Comment 75-94-5 vinyltrichlorosilane View View Not Open for Public Comment 76-05-1 trifluoroacetic acid View View Not Open for Public Comment 76-13-1 1,1,2-trichloro-1,2,2-trifluoroethane View View Not Open for Public Comment 76-14-2 dichlorotetrafluoroethane View View Not Open for Public Comment 76-44-8 heptachlor View View Not Open for Public Comment 77-47-4 hexachlorocyclopentadiene View View Not Open for Public Comment 77-48-5 1,3-dibromo-5,5-dimethylhydantoin View View Not Open for Public Comment 77-58-7 dibutyl tin dilaurate View View Not Open for Public Comment 77-73-6 dicyclopentadiene View View Not Open for Public Comment 77-76-9 2,2-dimethoxypropane View View Not Open for Public Comment 77-78-1 dimethyl sulfate View View Not Open for Public Comment 77-93-0 triethyl citrate View View Not Open for Public Comment 78-07-9 ethyltriethoxysilane View View Not Open for Public Comment 78-10-4 ethyl silicate View View Not Open for Public Comment 78-59-1 isophorone View View Not Open for Public Comment 78-78-4 2-methyl butane View View Not Open for Public Comment 78-79-5 isoprene View View Not Open for Public Comment 78-83-1 isobutyl alcohol View View Not Open for Public Comment 78-84-2 isobutyraldehyde View View Not Open for Public Comment Revised Monday, September 27, 2021 Page 5 of 51 EGLE Air Quality Division (AQD) Air Toxics Screening Level Justifications (Numerically by CAS No.) Screening Justification Is Public Comment Now Open? CAS No.
Recommended publications
  • Inventory Size (Ml Or G) 103220 Dimethyl Sulfate 77-78-1 500 Ml
    Inventory Bottle Size Number Name CAS# (mL or g) Room # Location 103220 Dimethyl sulfate 77-78-1 500 ml 3222 A-1 Benzonitrile 100-47-0 100ml 3222 A-1 Tin(IV)chloride 1.0 M in DCM 7676-78-8 100ml 3222 A-1 103713 Acetic Anhydride 108-24-7 500ml 3222 A2 103714 Sulfuric acid, fuming 9014-95-7 500g 3222 A2 103723 Phosphorus tribromide 7789-60-8 100g 3222 A2 103724 Trifluoroacetic acid 76-05-1 100g 3222 A2 101342 Succinyl chloride 543-20-4 3222 A2 100069 Chloroacetyl chloride 79-04-9 100ml 3222 A2 10002 Chloroacetyl chloride 79-04-9 100ml 3222 A2 101134 Acetyl chloride 75-36-5 500g 3222 A2 103721 Ethyl chlorooxoacetate 4755-77-5 100g 3222 A2 100423 Titanium(IV) chloride solution 7550-45-0 100ml 3222 A2 103877 Acetic Anhydride 108-24-7 1L 3222 A3 103874 Polyphosphoric acid 8017-16-1 1kg 3222 A3 103695 Chlorosulfonic acid 7790-94-5 100g 3222 A3 103694 Chlorosulfonic acid 7790-94-5 100g 3222 A3 103880 Methanesulfonic acid 75-75-2 500ml 3222 A3 103883 Oxalyl chloride 79-37-8 100ml 3222 A3 103889 Thiodiglycolic acid 123-93-3 500g 3222 A3 103888 Tetrafluoroboric acid 50% 16872-11-0 1L 3222 A3 103886 Tetrafluoroboric acid 50% 16872-11-0 1L 3222 A3 102969 sulfuric acid 7664-93-9 500 mL 2428 A7 102970 hydrochloric acid (37%) 7647-01-0 500 mL 2428 A7 102971 hydrochloric acid (37%) 7647-01-0 500 mL 2428 A7 102973 formic acid (88%) 64-18-6 500 mL 2428 A7 102974 hydrofloric acid (49%) 7664-39-3 500 mL 2428 A7 103320 Ammonium Hydroxide conc.
    [Show full text]
  • Synthesis, Physicochemical Characterization and Study of the Antimicrobial Activity of Chlorobutanol H
    World Academy of Science, Engineering and Technology International Journal of Pharmacological and Pharmaceutical Sciences Vol:12, No:3, 2018 Synthesis, Physicochemical Characterization and Study of the Antimicrobial Activity of Chlorobutanol H. Nadia, G. Bahdja, S. Thili Malha, Y. Zahoua, D. Taoufik, B. Mourad, M. Marzouk, F. Z. Hadjadj Aoul, L. R. Mekacher I. INTRODUCTION Abstract—Introduction and objectives: Chlorobutanol is a raw XCIPIENTS play a vital role in the design, manufacture material, mainly used as an antiseptic and antimicrobial preservative and preservation of drugs. The addition of an in injectable and ophthalmic preparations. The main objective of our E study was the synthesis and evaluation of the antimicrobial activity of antimicrobial agents is of great interest in the case where the chlorobutanol hemihydrates. Material and methods: Chlorobutanol pharmaceutical preparations do not have adequate was synthesized according to the nucleophilic addition reaction of antimicrobial properties, (especially aqueous preparations), to chloroform to acetone, identified by an infrared absorption using prevent proliferation or limit microbial contamination [1], [2]. Spectrum One FTIR spectrometer, melting point, Scanning electron Chlorobutanol is a trihalogen alcohol with bacteriostatic and microscopy and colorimetric reactions. The dosage of Carvedilol fungistatic activity. The main objective of our work was to active substance was carried out by assaying the degradation products of chlorobutanol in a basic solution. The chlorobutanol obtained was obtain chlorobutanol hemihydrate by chemical synthesis, its subjected to bacteriological tests in order to study its antimicrobial purification and characterization as well as the study of its activity. The antibacterial activity was evaluated against strains such antimicrobial activity. as Escherichia coli (ATCC 25 922), Staphylococcus aureus (ATCC 25 923) and Pseudomonas aeroginosa (ATCC = American type II.
    [Show full text]
  • Material Safety Data Sheet
    Material Safety Data Sheet Antimony trichloride, reagent ACS, crystals, 99+% ACC# 00252 Section 1 - Chemical Product and Company Identification MSDS Name: Antimony trichloride, reagent ACS, crystals, 99+% Catalog Numbers: AC401370000, AC401370050, AC401371000, AC401375000 Synonyms: Trichlorostibine; Antimonous chloride; Antimony(III) chloride; Antimony trichloride. Company Identification: Acros Organics N.V. One Reagent Lane Fair Lawn, NJ 07410 For information in North America, call: 800-ACROS-01 For emergencies in the US, call CHEMTREC: 800-424-9300 Section 2 - Composition, Information on Ingredients CAS# Chemical Name Percent EINECS/ELINCS 10025-91-9 Antimony(III) chloride >99 233-047-2 Section 3 - Hazards Identification EMERGENCY OVERVIEW Appearance: white solid. Danger! Corrosive. Causes severe eye and skin burns. Causes severe digestive and respiratory tract burns. May be harmful if swallowed. Moisture sensitive. Hygroscopic (absorbs moisture from the air). Target Organs: Lungs, cardiovascular system, eyes, skin, mucous membranes. Potential Health Effects Eye: Causes eye burns. Skin: Causes skin burns. Ingestion: Causes gastrointestinal tract burns. May be harmful if swallowed. Inhalation: Causes chemical burns to the respiratory tract. May cause lung damage. May produce cardiovascular effects. Chronic: Chronic exposure may cause liver damage. Section 4 - First Aid Measures Eyes: In case of contact, immediately flush eyes with plenty of water for a t least 15 minutes. Get medical aid immediately. Skin: In case of contact, immediately flush skin with plenty of water for at least 15 minutes while removing contaminated clothing and shoes. Get medical aid immediately. Wash clothing before reuse. Ingestion: If swallowed, do NOT induce vomiting. Get medical aid immediately. If victim is fully conscious, give a cupful of water.
    [Show full text]
  • FSC-TPL-01-002 Application for a Derogation to Use a Highly Hazardous Pesticide
    FSC-TPL-01-002 Application for a derogation to use a highly hazardous pesticide. 2,4-D, 2-ethylhexyl ester Name and contact details of SCS certification body requesting Dave Wager derogation: [email protected] 510 251-7049 To be completed at the national level Active ingredient for which derogation requested: Geographical scope of All states of USA requested derogation: Is there an accredited or preliminarily accredited FSC FSC US standard Forest Stewardship Standard applicable to the territory concerned? Requested time period for derogation: 5 years (nb Derogations shall normally be issued for a five-year period. There will be a presumption against renewal of a derogation after the expiry of the five-year period). 1. Demonstrated need Need may be demonstrated where: - The pesticide is used for protecting native species and forests against damage caused by introduced species or for protecting human health against dangerous diseases, OR - Use of the pesticide is obligatory under national laws or regulations, OR - Use of the pesticide is the only economically, environmentally, socially and technically feasible way of controlling specific organisms which are causing severe damage in natural forests or plantations in the specified country (as indicated by consideration, assessments and preferably field-trials of alternative non- chemical or less toxic pest-management methods) Explain how the proposed use complies with the specified criteria for need, including the consideration of alternatives which do not require the use of pesticides on the FSC list of ‘highly hazardous pesticides’: Overview 2,4-D ester is a selective herbicide used to control broad leaved plants such as woody species and forbs.
    [Show full text]
  • Special Report 354 April 1972 Agricultural Experiment Station
    ORTMAL DO ;10T REMOVE 7.9 m FILE Special Report 354 April 1972 Agricultural Experiment Station Oregon State University, Corvallis I FIELD APPLICATION OF HERBICIDES--AVOIDING DANGER TO FISH Erland T. Juntunen Department of Fisheries and Wildlife Oregon State University Corvallis, Oregon and Logan A. Norris Pacific Northwest Forestry Sciences Laboratory and Range Experiment Station Forest Service, U. S. Department of Agriculture Corvallis, Oregon April, 1972 Trade names are used in this publication solely to provide specific information. No endorsement of products is intended nor is criticism implieLl to products mentioned or omitted. Recommendations are not made concerning safe use of products nor is any guarantee or warranty of results or effects of the products intended or implied. ii Chemical weed and brush control with herbicides is an important land management practice in modern agriculture and forestry. In some cases, herbicides are applied directly to bodies of water for aquatic weed control. More commonly, herbicides are applied to lands adjacent to waterways for general weed and brush control. The responsible applicator will avoid damage to fishery resources by being fully aware of a particular herbicides potential hazard to fish. Herbicide applications should be considered hazardous to fish when there is the probability fish will be exposed to herbicide concen- trations which are harmful. This bulletin offers information that will aid in selecting the particular herbicides and formulations of least hazard to fish considering the toxicity of the herbicide and the poten- tial for its entry into streams, lakes, or ponds. Entry of Herbicides into the Aquatic Environment In aquatic weed control, the effective concentration of herbicide in the water depends on the rate of application, the rate of the spread of the chemical, the size and chemical composition of the body of water, the rate of degradation or adsorption of the chemical on sediments, and the rate of mixing of treated water with untreated water.
    [Show full text]
  • )&F1y3x PHARMACEUTICAL APPENDIX to THE
    )&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ACTODIGIN 36983-69-4 ABANOQUIL 90402-40-7 ADAFENOXATE 82168-26-1 ABCIXIMAB 143653-53-6 ADAMEXINE 54785-02-3 ABECARNIL 111841-85-1 ADAPALENE 106685-40-9 ABITESARTAN 137882-98-5 ADAPROLOL 101479-70-3 ABLUKAST 96566-25-5 ADATANSERIN 127266-56-2 ABUNIDAZOLE 91017-58-2 ADEFOVIR 106941-25-7 ACADESINE 2627-69-2 ADELMIDROL 1675-66-7 ACAMPROSATE 77337-76-9 ADEMETIONINE 17176-17-9 ACAPRAZINE 55485-20-6 ADENOSINE PHOSPHATE 61-19-8 ACARBOSE 56180-94-0 ADIBENDAN 100510-33-6 ACEBROCHOL 514-50-1 ADICILLIN 525-94-0 ACEBURIC ACID 26976-72-7 ADIMOLOL 78459-19-5 ACEBUTOLOL 37517-30-9 ADINAZOLAM 37115-32-5 ACECAINIDE 32795-44-1 ADIPHENINE 64-95-9 ACECARBROMAL 77-66-7 ADIPIODONE 606-17-7 ACECLIDINE 827-61-2 ADITEREN 56066-19-4 ACECLOFENAC 89796-99-6 ADITOPRIM 56066-63-8 ACEDAPSONE 77-46-3 ADOSOPINE 88124-26-9 ACEDIASULFONE SODIUM 127-60-6 ADOZELESIN 110314-48-2 ACEDOBEN 556-08-1 ADRAFINIL 63547-13-7 ACEFLURANOL 80595-73-9 ADRENALONE
    [Show full text]
  • LIST of ANNEXURES SR. NO. NAME of ANNEXURE I List of Products
    LIST OF ANNEXURES SR. NO. NAME OF ANNEXURE I List of Products and Raw materials along with their Production Capacity II Layout Map of the Plant III Brief Manufacturing Process Description IV Details of water consumption & waste water generation V Details of Effluent Treatment Scheme VI Details of Hazardous Waste Generation and Disposal VII Details of Stacks and Vents, Fuel & Energy Requirements VIII Details of Hazardous Chemicals Storage & Handling IX Socio-economic Impacts X Proposed Terms of Reference XI GIDC Plot Allotment Letter XII ETL Membership Letter (M/s. ETL) XIII TSDF & CHWIF Membership Letter (M/s BEIL) XIV Toposheet XV Copy of existing CCA ANNEXURE-I _____________________________________________ _________________________ LIST OF PRODUCTS ALONG WITH THEIR PRODUCTION CAPACITY WITH RAW MATERIALS PRODUCTION CAPACITY (MT/MONTH) SR. PRODUCTS CAS NO NO EXISTING ADDITIONAL TOTAL QUANTITY QUANTITY PROPOSED QUANTITY EXISITING PRODUCTS 1 Optical Brightening Agent 13001-39-3 1.0 0 1.0 2 Ortho Toluene Nitrite 88-72-2 4.0 0 4.0 TOTAL (EXISITING PRODUCTS) 5.0 0 5.0 PROPOSED PRODUCTS 1 Darunavir 206361-99-1 5 5 2 Levosulpiride 23672-07-3 10 10 3 Montelukast Sodium 151767-02-1 5.5 5.5 4 Tramadol hydrochloride 36282-47-0 7 7 5 Nifedipine 21829-25-4 4.5 4.5 6 Quetiapinehemifumarate 111974-72-2 3 3 7 Furosemide 54-31-9 3.5 3.5 8 Risedronate Sodium 105462-24-6 4.5 4.5 66108-95- 0/60166-93- 9 Iohexol/Iopamidol/Iodixanol 0/92339-11- 2 6 6 10 Lauryl Pyridinium chloride 104-74-5 10 10 11 Vildagliptin 274901-16-5 4 4 12 Ambroxol Hydrochloride 23828-92-4
    [Show full text]
  • Recent Progress in Phosgene-Free Methods for Synthesis of Dimethyl Carbonate*
    Pure Appl. Chem., Vol. 84, No. 3, pp. 603–620, 2012. http://dx.doi.org/10.1351/PAC-CON-11-06-02 © 2011 IUPAC, Publication date (Web): 22 September 2011 Recent progress in phosgene-free methods for synthesis of dimethyl carbonate* Weicai Peng1, Ning Zhao1, Fukui Xiao1, Wei Wei1,‡, and Yuhan Sun1,2,‡ 1State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China; 2Low Carbon Conversion Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, China Abstract: Dimethyl carbonate (DMC) is considered as an environmentally benign chemical due to negligible ecotoxicity, low bioaccumulation, and low persistence. However, the tradi- tional process of DMC synthesis via phosgene and methanol is limited in industry owing to the toxic raw material involved. Thus, environmentally friendly phosgene-free processes for DMC production have been proposed and developed in the past decades. Until now, the alter- natives appear to be the oxidative carbonylation of methanol, the transesterification of pro - pylene or ethylene carbonate (PC or EC), the methanolysis of urea, and the direct synthesis of DMC from CO2 with methanol. In this review, we present some recent developments of these phosgene-free approaches and their prospects for industrialization. Keywords: carbon dioxide; dimethyl carbonate synthesis; oxidative carbonylation; phosgene- free; transesterification; urea. INTRODUCTION Along with the global spread of sustainable development strategy, the chemical synthesis processes and materials endangering humans and the environment would be gradually restricted. The “clean produc- tion process” and “green chemicals” will be the developmental direction for the modern chemical indus- try, and the production and chemical utilization of dimethyl carbonate (DMC) are closely concerted by this trend.
    [Show full text]
  • Reaction of Dialkyl Carbonates with Alcohols: Defining a Scale of the Best Leaving and Entering Groups*
    Pure Appl. Chem., Vol. 81, No. 11, pp. 1971–1979, 2009. doi:10.1351/PAC-CON-08-12-02 © 2009 IUPAC, Publication date (Web): 30 October 2009 Reaction of dialkyl carbonates with alcohols: Defining a scale of the best leaving and entering groups* Pietro Tundo1,2,‡, Fabio Aricò1,2, Anthony E. Rosamilia1, Maurizio Rigo1, Andrea Maranzana1,3, and Glauco Tonachini3 1Interuniversity Consortium “Chemistry for the Environment”, Via delle Industrie, 21/8 30175 Marghera, Venice, Italy; 2Department of Environmental Sciences, Ca’ Foscari University of Venice, Dorsoduro 2137-30123, Venice, Italy; 3Department of General Chemistry and Organic Chemistry, University of Torino, Corso Massimo D’Azeglio 48, I-10125 Torino, Italy Abstract: A series of dialkyl and methyl alkyl carbonates has been synthesized and their re- activity investigated. The behavior of preferential leaving and entering groups for the newly synthesized carbonates has been accurately investigated. Both experimental and computa- – – ≥ tional studies agreed that the scale of leaving groups follows the trend: PhCH2O , MeO – – – – – EtO , CH3(CH2)2O , CH3(CH2)7O > (CH3)2CHO > (CH3)3CO . Accordingly, the scale of the entering group has the same trend, with t-butoxide being the worst entering group. A preliminary attempt to rationalize the nucleofugality trends, lim- – – ited to the (CH3)3CO and CH3O groups, has indicated that a likely origin of the observed trends lies in the different entropic contributions and solvation effects. Keywords: computational studies; dimethyl carbonate; green chemistry; synthesis; theoreti- cal chemistry. INTRODUCTION Since the 1980s, when dimethyl carbonate (DMC) was synthesized for the first time using a green process [1], its exploitation both in industrial [2] and laboratory scale [3] has grown exponentially.
    [Show full text]
  • Literature Review of Controlling Aquatic Invasive Vegetation With
    Eurasian watermilfoil in Christmas Lake, 2011 Literature Review on Controlling Aquatic Invasive Vegetation with Aquatic Herbicides Compared to Other Control Methods: Effectiveness, Impacts, and Costs Prepared for: Prepared by: Minnehaha Creek Watershed District Steve McComas Blue Water Science St. Paul, MN 55116 September 2011 1 Literature Review on Controlling Aquatic Invasive Vegetation with Aquatic Herbicides Compared to Other Control Methods: Effectiveness, Impacts, and Costs Steve McComas, Blue Water Science Table of Contents page number Introduction .................................................................................................................................................................. 1 Use of Herbicides as an Aquatic Plant Control Technique ...................................................................................... 2 How Herbicides Work and Their Mode of Action ....................................................................................................... 3 Aquatic Herbicide Impacts on Humans and the Ecosystem ....................................................................................... 8 Where to Find Sources of Specific Information on herbicide Products and Their Active Ingredients ....................... 16 Harvesting, Drawdown, and Biocontrol as Aquatic Plant Control Techniques ................................................... 17 Summary of Control Techniques for Non-Native Curlyleaf Pondweed and Eurasian Watermilfoil ................... 25 Control Techniques for Other
    [Show full text]
  • Guide to Extractables in Effluents from Ultipor® N66 and Posidyne® Filter
    Validation Guide USTR 2521 Guide to Extractables in Effluents from Pall Ultipor ® N66 and Posidyne ® Filter Cartridges Contents 1. Introduction ........................................................................................................................3 2. Design and Manufacture of Pall N66 Pharmaceutical-rated (P-rated) Filters ................3 3. Principles of Extraction and the Non-Volatile Residue Test ............................................3 3.1 Factors Limiting Extraction ............................................................................................3 3.2 Defining Solvent Strength ..............................................................................................4 3.3 Materials of Construction of Ultipor N66 and Posidyne Filter Cartridges ........................5 3.4 Extractable Substances in Polymers Used in Pall Ultipor N66 and Posidyne Filter Cartridges ....................................................................................................5 4. Total Non-volatile Residues Extracted from Ultipor N66 and Posidyne Filters ..............6 4.1 Introduction ....................................................................................................................6 4.2 Summary of Method ......................................................................................................6 4.3 Results ..........................................................................................................................6 4.4 Conclusions ..................................................................................................................6
    [Show full text]
  • United States Patent Office Patented Aug
    2,760,990 United States Patent Office Patented Aug. 28, 1956 acid. If an acid group other than acetate is desired, mercury acetate and higher boiling carboxylic acid may 2,760,990 be intimately mixed together and the mixture is taken VNY TRANSETHERFICATION up with the starting vinyl ether. At this point the 5 mixture may be heated with stripping off of acetic acid. Warren H. Watanabe, Philadelphia, Pa., and Lawrence The reacting alcohol is then added and the mixture heated. E. Conlon, Moorestown, N.J., assignors to Rohm & Alternatively mercury acetate, carboxylic acid, vinyl Haas Company, Philadelphia, Pa., a corporation of ether, and alcohol are mixed and heated. Acetic acid Delaware may now be distilled off. The preparation of catalyst in No Drawing. Application August 15, 1952, O these ways, gives a highly active material, effective even Serial No. 304,648 at elevated temperatures. Another method of forming transetherifying catalysts 9 Claims. (C.260-614) is to mix together a common mercury salt of a strong acid, such as mercuric sulfate, and an alkali metal salt This invention concerns a process for preparing vinyl 5 of a desired carboxylic acid. Thus mercuric sulfate may ethers by transetherifying other vinyl ethers with alcohols be mixed with sodium oleate, or sodium benzoate, or in the presenec of soluble mercury salts of weak acids. It sodium ethylbutyrate. Such mixtures simulate the mer also deals with novel vinyl ethers, cury salts of weak acids, although they still give consid It has been proposed that volatile vinyl alkyl ethers erable acetal formation. in which the alkyl group is primary be reacted with pri 20 When alcohols are used which are acid sensitive, or mary or secondary monohydric alcohols: consisting of which are unstable to acid, or which decompose to give.
    [Show full text]