Recent Progress in Phosgene-Free Methods for Synthesis of Dimethyl Carbonate*
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Inventory Size (Ml Or G) 103220 Dimethyl Sulfate 77-78-1 500 Ml
Inventory Bottle Size Number Name CAS# (mL or g) Room # Location 103220 Dimethyl sulfate 77-78-1 500 ml 3222 A-1 Benzonitrile 100-47-0 100ml 3222 A-1 Tin(IV)chloride 1.0 M in DCM 7676-78-8 100ml 3222 A-1 103713 Acetic Anhydride 108-24-7 500ml 3222 A2 103714 Sulfuric acid, fuming 9014-95-7 500g 3222 A2 103723 Phosphorus tribromide 7789-60-8 100g 3222 A2 103724 Trifluoroacetic acid 76-05-1 100g 3222 A2 101342 Succinyl chloride 543-20-4 3222 A2 100069 Chloroacetyl chloride 79-04-9 100ml 3222 A2 10002 Chloroacetyl chloride 79-04-9 100ml 3222 A2 101134 Acetyl chloride 75-36-5 500g 3222 A2 103721 Ethyl chlorooxoacetate 4755-77-5 100g 3222 A2 100423 Titanium(IV) chloride solution 7550-45-0 100ml 3222 A2 103877 Acetic Anhydride 108-24-7 1L 3222 A3 103874 Polyphosphoric acid 8017-16-1 1kg 3222 A3 103695 Chlorosulfonic acid 7790-94-5 100g 3222 A3 103694 Chlorosulfonic acid 7790-94-5 100g 3222 A3 103880 Methanesulfonic acid 75-75-2 500ml 3222 A3 103883 Oxalyl chloride 79-37-8 100ml 3222 A3 103889 Thiodiglycolic acid 123-93-3 500g 3222 A3 103888 Tetrafluoroboric acid 50% 16872-11-0 1L 3222 A3 103886 Tetrafluoroboric acid 50% 16872-11-0 1L 3222 A3 102969 sulfuric acid 7664-93-9 500 mL 2428 A7 102970 hydrochloric acid (37%) 7647-01-0 500 mL 2428 A7 102971 hydrochloric acid (37%) 7647-01-0 500 mL 2428 A7 102973 formic acid (88%) 64-18-6 500 mL 2428 A7 102974 hydrofloric acid (49%) 7664-39-3 500 mL 2428 A7 103320 Ammonium Hydroxide conc. -
Kinetic Modeling and Mechanistic Investigations of Transesterification of Propylene Carbonate with Methanol Over Fe-Mn Double Metal Cyanide Catalyst
Reaction Chemistry & Engineering Kinetic Modeling and Mechanistic Investigations of Transesterification of Propylene Carbonate with Methanol over Fe-Mn Double Metal Cyanide Catalyst Journal: Reaction Chemistry & Engineering Manuscript ID RE-ART-09-2019-000372.R1 Article Type: Paper Date Submitted by the 21-Oct-2019 Author: Complete List of Authors: Song, Ziwei; Yanshan University, Subramaniam, Bala; University of Kansas, Center for Environmentally Beneficial Catalysis Chaudhari, Raghunath; University of Kansas, Chemical & Petroleum Engineering Page 1 of 23 Reaction Chemistry & Engineering Kinetic Modeling and Mechanistic Investigations of Transesterification of Propylene Carbonate with Methanol over Fe-Mn Double Metal Cyanide Catalyst Ziwei Song, a,b,c Bala Subramaniam, a,b and Raghunath V. Chaudhari* a,b aCenter for Environmentally Beneficial Catalysis, University of Kansas, 1501 Wakarusa Dr. Lawrence, KS 66047, United States bDepartment of Chemical & Petroleum Engineering, University of Kansas, 1503 W 15th St. Lawrence, KS 66045, United States cDepartment of Chemical Engineering, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China *Corresponding author: [email protected] KEYWORDS: double metal cyanide, transesterification, dimethyl carbonate, microkinetic modeling 1 Reaction Chemistry & Engineering Page 2 of 23 Abstract Kinetic modeling of transesterification of propylene carbonate with methanol using Fe-Mn double metal cyanide catalyst has been investigated based on experimental data obtained under kinetically controlled conditions in a batch slurry reactor in the 140-200 °C range. A simple two-step power law model was found to represent the experimental data well. In addition, a detailed kinetic model based on a molecular level description of the reaction mechanism is also evaluated to provide better insight into the reaction mechanism. -
Electrophilic Substitution. 11* Friedel-Crafts Type Nitration Using Acetone Cyanohydrin Nitrate
Aust. J. Chem., 1978, 31, 1839-40 Electrophilic Substitution. 11* Friedel-Crafts Type Nitration Using Acetone Cyanohydrin Nitrate Subhash C. Narang and Malcolm J. Thompson School of Physical Sciences, The Flinders University of South Australia, Bedford Park, S.A. 5042. Abstract Nitration of activated aromatic systems has been studied by using acetone cyanohydrin nitrate with boron trifluoride etherate in catalytic amounts. Products of typical electrophilic nitration were formed under non-oxidizing conditions. Although nitration of aromatics is a well studied reaction the conditions employed are usually strongly acidic. Nitric acid is used alone or as a solution in organic solvent or in strong acid such as sulfuric Nitrations with mixed anhydrides of nitric acid are also well d~cumented.~Relatively little attention has been paid to nitrations of the Friedel-Crafts type with nitrate esters. Olah et a1.3-5 have recently reported the use of methyl nitrate in conjunction with boron trifluoride for the selective nitration of various methylbenzenes.? Because acetone cyanohydrin nitrate (1-cyano-1-methylethyl nitrate) is more stable and more readily prepared7 than methyl nitrate we have investigated the system acetone cyanohydrin nitrate/boron trifluoride etherate for the nitration of some activated aromatics. In addition to this we have reduced the amount of boron trifluoride to catalytic quantities so that we obtain higher yields and cleaner products. The use of boron trifluoride etherate also provides a simpler and cheaper source of catalyst than the use of boron trifluoride gas. Table 1 summarizes the results. It will be noted that the product distribution is similar to that obtained with the more usual nitrating agents. -
Dimethyl Carbonate
SAN JOAQUIN VALLEY UNIFIED AIR POLLUTION CONTROL DISTRICT Appendix B: OEHHA Final Revised Assessment November 18, 2010 APPENDIX B OEHHA FINAL REVISED HEALTH ASSESSMENT FOR DIMETHYL CARBONATE November 18, 2010 Draft Staff Report with Appendices for Draft Amendments to Rule 1020 SAN JOAQUIN VALLEY UNIFIED AIR POLLUTION CONTROL DISTRICT Appendix B: OEHHA Final Revised Assessment November 18, 2010 This page intentionally blank. B-2 Draft Staff Report with Appendices for Draft Amendments to Rule 1020 Appendix B: OEHHA Assessment November 18, 2010 Office of Environmental Health Hazard Assessment Joan E. Denton, Ph.D., Director Headquarters ••• 1001 I Street ••• Sacramento, California 95814 Mailing Address: P.O. Box 4010 ••• Sacramento, California 95812-4010 Oakland Office ••• Mailing Address: 1515 Clay Street, 16th Floor ••• Oakland, California 94612 Linda S. Adams Arnold Schwarzenegger Secretary for Environmental Protectiony Governor M E M O R A N D U M TO: Richard Corey, Chief Research and Economic Studies Branch Research Division Air Resources Board FROM: Melanie A. Marty, Ph.D., Chief Air Toxicology and Epidemiology Branch DATE: December 8, 2009 SUBJECT: REVISED ASSESSMENT OF HEALTH EFFECTS OF EXPOSURE TO DIMETHYL CARBONATE, A CHEMICAL PETITIONED FOR EXEMPTION FROM VOC RULES Recently the Research Division sent the Office of Environmental Health Hazard Assessment (OEHHA) an application for VOC Exempt Status in the State of California for Dimethyl Carbonate. This was submitted by Kowa Corporation, who propose use of from 2 to possibly 5 million pounds of dimethyl carbonate per year as a niche solvent in California, if dimethyl carbonate is exempted from VOC regulations. In response to a request from the Division, OEHHA recently provided you a review of the health effects of dimethyl carbonate. -
Gas-Phase Synthesis of Dimethyl Carbonate from Methanol and Carbon Dioxide Over Co1.5PW12O40 Keggin-Type Heteropolyanion
Int. J. Mol. Sci. 2010, 11, 1343-1351; doi:10.3390/ijms11041343 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article Gas-Phase Synthesis of Dimethyl Carbonate from Methanol and Carbon Dioxide Over Co1.5PW12O40 Keggin-Type Heteropolyanion Ahmed Aouissi *, Zeid Abdullah Al-Othman and Amro Al-Amro Department of Chemistry, King Saud University, P.O. Box 2455, Riyadh-11451, Saudi Arabia * Author to whom correspondence should be addressed; E-Mail: [email protected]. Received: 22 January 2010; in revised form: 9 March 2010 / Accepted: 29 March 2010 / Published: 31 March 2010 Abstract: The reactivity of Co1.5PW12O40 in the direct synthesis of dimethyl carbonate (DMC) from CO2 and CH3OH was investigated. The synthesized catalyst has been characterized by means of FTIR, XRD, TG, and DTA and tested in gas phase under atmospheric pressure. The effects of the reaction temperature, time on stream, and methanol weight hourly space velocity (MWHSV) on the conversion and DMC selectivity were investigated. The highest conversion (7.6%) and highest DMC selectivity (86.5%) were obtained at the lowest temperature used (200 °C). Increasing the space velocity MWHSV increased the selectivity of DMC, but decreased the conversion. A gain of 18.4% of DMC selectivity was obtained when the MWHSV was increased from 0.65 h-1 to 3.2 h-1. Keywords: heteropolyanion; Keggin structure; methanol; dimethyl carbonate; direct synthesis; carbon dioxide 1. Introduction Dimethyl carbonate (DMC) has drawn much attention in recent years as an environmentally friendly versatile intermediate. It has been used as a good solvent [1], an alkylation agent [2], and a substitute for highly toxic phosgene and dimethyl sulfate in many chemical processes [3,4]. -
A Convenient and Safe O-Methylation of Flavonoids with Dimethyl Carbonate (DMC)
Molecules 2011, 16, 1418-1425; doi:10.3390/molecules16021418 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Article A Convenient and Safe O-Methylation of Flavonoids with Dimethyl Carbonate (DMC) Roberta Bernini *, Fernanda Crisante and Maria Cristina Ginnasi Dipartimento di Agrobiologia e Agrochimica, Università degli Studi della Tuscia, Via S. Camillo De Lellis, 01100 Viterbo, Italy * Author to whom correspondence should be addressed; E-Mail: [email protected]. Received: 16 November 2010; in revised form: 23 January 2011 / Accepted: 27 January 2011 / Published: 9 February 2011 Abstract: Dietary flavonoids exhibit beneficial health effects. Several epidemiological studies have focused on their biological activities, including antioxidant, antibacterial, antiviral, anti-inflammatory and cardiovascular properties. More recently, these compounds have shown to be promising cancer chemopreventive agents in cell culture studies. In particular, O-methylated flavonoids exhibited a superior anticancer activity than the corresponding hydroxylated derivatives being more resistant to the hepatic metabolism and showing a higher intestinal absorption. In this communication we describe a convenient and efficient procedure in order to prepare a large panel of mono- and dimethylated flavonoids by using dimethyl carbonate (DMC), an ecofriendly and non toxic chemical, which plays the role of both solvent and reagent. In order to promote the methylation reaction under mild and practical conditions, 1,8-diazabicyclo[5.4.0]undec-7- ene (DBU) was added in the solution; methylated flavonoids were isolated in high yields and with a high degree of purity. This methylation protocol avoids the use of hazardous and high toxic reagents (diazomethane, dimethyl sulfate, methyl iodide). Keywords: methylated flavonoids; ecofriendly methylation reaction; dimethyl carbonate (DMC); green chemistry 1. -
LIST of ANNEXURES SR. NO. NAME of ANNEXURE I List of Products
LIST OF ANNEXURES SR. NO. NAME OF ANNEXURE I List of Products and Raw materials along with their Production Capacity II Layout Map of the Plant III Brief Manufacturing Process Description IV Details of water consumption & waste water generation V Details of Effluent Treatment Scheme VI Details of Hazardous Waste Generation and Disposal VII Details of Stacks and Vents, Fuel & Energy Requirements VIII Details of Hazardous Chemicals Storage & Handling IX Socio-economic Impacts X Proposed Terms of Reference XI GIDC Plot Allotment Letter XII ETL Membership Letter (M/s. ETL) XIII TSDF & CHWIF Membership Letter (M/s BEIL) XIV Toposheet XV Copy of existing CCA ANNEXURE-I _____________________________________________ _________________________ LIST OF PRODUCTS ALONG WITH THEIR PRODUCTION CAPACITY WITH RAW MATERIALS PRODUCTION CAPACITY (MT/MONTH) SR. PRODUCTS CAS NO NO EXISTING ADDITIONAL TOTAL QUANTITY QUANTITY PROPOSED QUANTITY EXISITING PRODUCTS 1 Optical Brightening Agent 13001-39-3 1.0 0 1.0 2 Ortho Toluene Nitrite 88-72-2 4.0 0 4.0 TOTAL (EXISITING PRODUCTS) 5.0 0 5.0 PROPOSED PRODUCTS 1 Darunavir 206361-99-1 5 5 2 Levosulpiride 23672-07-3 10 10 3 Montelukast Sodium 151767-02-1 5.5 5.5 4 Tramadol hydrochloride 36282-47-0 7 7 5 Nifedipine 21829-25-4 4.5 4.5 6 Quetiapinehemifumarate 111974-72-2 3 3 7 Furosemide 54-31-9 3.5 3.5 8 Risedronate Sodium 105462-24-6 4.5 4.5 66108-95- 0/60166-93- 9 Iohexol/Iopamidol/Iodixanol 0/92339-11- 2 6 6 10 Lauryl Pyridinium chloride 104-74-5 10 10 11 Vildagliptin 274901-16-5 4 4 12 Ambroxol Hydrochloride 23828-92-4 -
Propionate Dihydrate
(19) & (11) EP 2 247 572 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C07C 241/02 (2006.01) C07C 243/40 (2006.01) 03.08.2011 Bulletin 2011/31 (86) International application number: (21) Application number: 09713008.2 PCT/EP2009/051996 (22) Date of filing: 19.02.2009 (87) International publication number: WO 2009/103773 (27.08.2009 Gazette 2009/35) (54) A ONE-POT PROCESS FOR PREPARING 3-(2,2,2-TRIMETHYLHYDRAZINIUM)PROPIONATE DIHYDRATE EIN-TOPF-VERFAHREN ZUR HERSTELLUNG VON 3-(2,2,2-TRIMETHYLHYDRAZINIUM) PROPIONAT-DIHYDRAT PROCÉDÉ DE PRÉPARATION EN ENCEINTE UNIQUE DE DIHYDRATE DE 3-(2,2,2- TRIMÉTHYLHYDRAZINIUM)-PROPIONATE (84) Designated Contracting States: • OSVALDS, Pugovics AT BE BG CH CY CZ DE DK EE ES FI FR GB GR LV-1004 Riga (LV) HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL • CERNOBROVIJS, Aleksandrs PT RO SE SI SK TR LV-2114 Olaine (LV) Designated Extension States: • IEVINA, Agnija AL BA RS LV-1004 Riga (LV) • LEBEDEVS, Antons (30) Priority: 19.02.2008 LV 080022 LV-3600 Ventspils (LV) 19.02.2008 LV 080023 (56) References cited: (43) Date of publication of application: WO-A-2005/012233 US-A- 4 481 218 10.11.2010 Bulletin 2010/45 • GILLER S.A. ET AL,.: CHEMISTRY OF (73) Proprietor: Grindeks, a joint stock company HETEROCYCLIC COMPOUNDS, vol. 11, no. 12, Riga 1057 (LV) 1975, pages 1378-1382, XP002534780 (72) Inventors: • KALVINS, Ivars LV-15052 Ikskile (LV) Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. -
CAS No.) Screening Justification Is Public Comment Now Open? CAS No
EGLE Air Quality Division (AQD) Air Toxics Screening Level Justifications (Numerically by CAS No.) Screening Justification Is Public Comment Now Open? CAS No. Chemical Name Level & Responses Info E-Mail AQD Deadline None ad acid View View Not Open for Public Comment None amyl acetate (mixture) View View Not Open for Public Comment None atlox 848 View View Not Open for Public Comment None biosam tp-1.5 View View Not Open for Public Comment None calcium chloride View View Not Open for Public Comment None epoxy resin solution View View Not Open for Public Comment None heptamethyl-1-vinyl-1,7-dichlorotetrasilazane View View Not Open for Public Comment None n-butylglucamine View View Not Open for Public Comment None n-chloro-2,6-difluorobenzamide View View Not Open for Public Comment None trichloroethylene View View Not Open for Public Comment None triethylammonium suleptanate View View Not Open for Public Comment 50-00-0 formaldehyde View View Not Open for Public Comment 50-03-3 hydrocortisone acetate View View Not Open for Public Comment 50-21-5 lactic acid View View Not Open for Public Comment 50-28-2 estradiol View View Not Open for Public Comment 50-29-3 ddt View View Not Open for Public Comment 50-32-8 benzo(a)pyrene View View Not Open for Public Comment 51-28-5 2,4-dinitrophenol View View Not Open for Public Comment 53-36-1 methyl predisolone acetate View View Not Open for Public Comment 53-70-3 dibenz(a,h)anthracene View View Not Open for Public Comment 56-23-5 carbon tetrachloride View View Not Open for Public Comment 56-49-5 3-methylcholanthrene View View Not Open for Public Comment 56-55-3 benz(a)anthracene View View Not Open for Public Comment 56-81-5 glycerol View View Not Open for Public Comment 57-11-4 stearic acid View View Not Open for Public Comment Revised Monday, September 27, 2021 Page 1 of 51 EGLE Air Quality Division (AQD) Air Toxics Screening Level Justifications (Numerically by CAS No.) Screening Justification Is Public Comment Now Open? CAS No. -
Reaction of Dialkyl Carbonates with Alcohols: Defining a Scale of the Best Leaving and Entering Groups*
Pure Appl. Chem., Vol. 81, No. 11, pp. 1971–1979, 2009. doi:10.1351/PAC-CON-08-12-02 © 2009 IUPAC, Publication date (Web): 30 October 2009 Reaction of dialkyl carbonates with alcohols: Defining a scale of the best leaving and entering groups* Pietro Tundo1,2,‡, Fabio Aricò1,2, Anthony E. Rosamilia1, Maurizio Rigo1, Andrea Maranzana1,3, and Glauco Tonachini3 1Interuniversity Consortium “Chemistry for the Environment”, Via delle Industrie, 21/8 30175 Marghera, Venice, Italy; 2Department of Environmental Sciences, Ca’ Foscari University of Venice, Dorsoduro 2137-30123, Venice, Italy; 3Department of General Chemistry and Organic Chemistry, University of Torino, Corso Massimo D’Azeglio 48, I-10125 Torino, Italy Abstract: A series of dialkyl and methyl alkyl carbonates has been synthesized and their re- activity investigated. The behavior of preferential leaving and entering groups for the newly synthesized carbonates has been accurately investigated. Both experimental and computa- – – ≥ tional studies agreed that the scale of leaving groups follows the trend: PhCH2O , MeO – – – – – EtO , CH3(CH2)2O , CH3(CH2)7O > (CH3)2CHO > (CH3)3CO . Accordingly, the scale of the entering group has the same trend, with t-butoxide being the worst entering group. A preliminary attempt to rationalize the nucleofugality trends, lim- – – ited to the (CH3)3CO and CH3O groups, has indicated that a likely origin of the observed trends lies in the different entropic contributions and solvation effects. Keywords: computational studies; dimethyl carbonate; green chemistry; synthesis; theoreti- cal chemistry. INTRODUCTION Since the 1980s, when dimethyl carbonate (DMC) was synthesized for the first time using a green process [1], its exploitation both in industrial [2] and laboratory scale [3] has grown exponentially. -
Dimethyl Carbonate Process Economics Program Report 301
` IHS CHEMICAL Dimethyl Carbonate Process Economics Program Report 301 October 2017 ihs.com PEP Report 301 Dimethyl Carbonate Syed Naqvi Director Research and Analysis Dipti Dave` Principal Research Analyst IHS Chemical | PEP Report 301 Dimethyl Carbonate PEP Report 301 Dimethyl Carbonate Syed Naqvi, Director Research and Analysis Dipti Dave`, Principal Research Analyst Abstract Dimethyl carbonate (DMC) is an important industrial chemical. It is used as an intermediate for making polycarbonate, which consumes roughly 50% of its production. Other notable areas of its use include solvents, pesticides, and pharmaceuticals. It is also used as a chemical reagent, particularly for methylation and methoxycarbonylation reactions. It is nontoxic to humans and does not negatively impact the environment, and is also quickly biodegradable, which makes it especially suitable for use as a chemical. DMC is considered and recommended by some environment and industry experts as a viable choice for use as an oxygenate in transportation fuels, primarily due to its favorable properties needed for fuels—it has about three times more oxygen than methyl tertiary butyl ether (MTBE), and its other plus points as a fuel additive include low vapor pressure, low toxicity, higher boiling point, nonhygroscopic nature, complete miscibility with fuels, and its overall attractive emissions characteristics as a fuel component. If DMC’s use as a fuel oxygenate is accepted officially, that would open an enormous market for it. In addition to being environmentally friendly, DMC can also be prepared from natural gas (methanol and CO) and oxygen (air). Hence, unlike MTBE or other solvents, it is not a petroleum derivative. Thus, DMC can potentially also reduce dependence on imported oil. -
Separation of Dimethyl Carbonate and Methanol Mixture by Pervaporation Using Hybsi Ceramic Membrane
Separation of dimethyl carbonate and methanol mixture by pervaporation using HybSi ceramic membrane Dissertation presented by Antoine GOFFINET for obtaining the master's degree in Chemical and Materials Engineering Supervisors Patricia LUIS ALCONERO Readers Iwona CYBULSKA, Denis DOCHAIN, Wenqi LI Academic year 2017-2018 Abstract In the current context of high biodiesel production, some by-products are created partic- ularly glycerol. Glycerol has a wide range of applications however its market is supersatu- rated as its production is very high. A solution found is the production of a value added com- ponent from glycerol. This value added component is the glycerol carbonate (GC) produced by transesterification reaction of glycerol with dimethyl carbonate (DMC). The reaction in- cludes four components: glycerol, DMC, GC and methanol. As methanol and DMC make up an azeotropic mixture, it is not possible to separate them by distillation. Pervaporation is a solution for this separation as it can break the azeotrope mixture and have other advantages especially energy saving. The pervaporation using polymeric membrane presents disadvan- tages as the low thermally and chemically resistance. Therefore another kind of membrane is needed. As ceramic membrane resistance is higher, the commercial HybSi ceramic is se- lected for this thesis experiments. This study aim to analyse the separation of DMC and methanol by pervaporation. The separation performance of HybSi membrane is evaluated at 40-50-60◦C with binary mixture of different concentrations. The permeation through the membrane is analysed by the solution-diffusion model. h kg i The results showed low permeate flux between 0 and 0.86 hm2 .