Empiricism and Rationalism in the Advancement of Astronomy

Total Page:16

File Type:pdf, Size:1020Kb

Empiricism and Rationalism in the Advancement of Astronomy Empiricism and Rationalism in the Advancement of Astronomy Odysseus Quarles Undergraduate Honors Thesis in Astrophysical and Planetary Sciences University of Colorado Boulder Thesis Defense Date: March 20, 2018 Advised by: Thesis Advisor: Asst. Prof. Dave Brain, Ph.D. Department of Astrophysical and Planetary Sciences Honors Council Representative: Asst. Prof. Ann-Marie Madigan Ph.D. Department of Astrophysical and Planetary Sciences Third Reader: Assoc. Prof. Dominic Bailey, Ph.D. Department of Philosophy Abstract Astronomy is advancing quickly, with resources being allocated to the cutting edge of our understanding of the universe while the more basic understanding and confirmation aspects of astronomy research are still underway. Research in both areas is conducted according to two differing philosophies of knowledge: empiricism, which holds observation and direct experiment as the most reliable source of information, and rationalism, which holds conclusions reached through pure reasoning from first principles above all others. This investigation seeks to explore how the empiricist and rationalist approaches each serve the pursuit and advancement of astronomy as a science. Using a thorough analysis of the existing literature on empiricism and rationalism in astronomy, as well as data from interviews of several practicing expert astronomers in and around the University of Colorado Boulder who take empiricist and rationalist approaches to astronomy research, this investigation finds that astronomy as a productive, growing field of research achieves its greatest successes when empiricists and rationalists can work in close proximity. Increased communication and collaboration between researchers of the two approaches, as well as a stronger understanding of the applications and implications of empiricist and rationalist thought, can help to maximize these advantages. Table of Contents Introduction ....................................................................................................................................1 Purpose .................................................................................................................................1 Definition of Terms..............................................................................................................2 Investigative Methodology ..................................................................................................3 Basic Background ................................................................................................................4 History .............................................................................................................................................7 Copernican Revolution: Birth of Scientific Astronomy ......................................................7 Philosophy..........................................................................................................................10 Modern Day Astronomy ..............................................................................................................15 Interviews ...........................................................................................................................16 Trends from Interviews ......................................................................................................22 Conclusions ...................................................................................................................................26 References .....................................................................................................................................29 Special Thanks to Interviewees...................................................................................................30 Appendix 1: Interview Response Summaries ............................................................................31 Quarles Empiricism and Rationalism in the Advancement of Astronomy 1 Introduction Purpose While scientific research is typically characterized as investigation into the nature of the world according to the scientific method, various incarnations of the scientific method have been used as tools for discovery and learning. Equipped with our senses, humanity has witnessed and recorded countless events and phenomena – yet observation is but one step of the process. Far more than our senses, the pursuit of science demands the use of our wits. In fact, parallel to the more commonly recognized school of empiricist science, which relies upon observation and experimentation to achieve results and draw conclusions, there is the school of rationalist science, governed only by reasoning and inferences made from prior knowledge. There is a longstanding debate in the philosophy of science regarding the merits and limitations of each. Of all the sciences, it is astronomy that is affected most profoundly by this debate. The nature of astronomy, with a subject matter so broad, so large, and so distant that direct experimentation akin to studies of chemistry or medicine is in essence impossible in many cases, dictates that an empiricist pursuit of astronomy is highly limited. At the same time, the vast majority of accepted physical models of the universe in the last few centuries have assumed a universe governed by laws that apply as well to the largest and most distant galaxies as they do to ten-kilogram projectiles fired off the back of fifty-kilogram carts in high school physics textbooks. This homogeneity greatly eases and enhances the scope of the discoveries, or at the very least the reasonable inferences, that can be made via rationalist thought. Quarles Empiricism and Rationalism in the Advancement of Astronomy 2 This investigation examines the extent to which astronomy as a scientific pursuit benefits from a rationalist approach as compared to an empiricist one. These two schools of thought are not necessarily mutually exclusive, but instead may be codependent and often build on one another. This paper is concerned with that particular interaction between rationalism and empiricism, as both are used extensively to expand the current body of knowledge in astronomy. In order to assess and compare the relative breadth and effectiveness of either approach, it is not sufficient to simply compare the results of each; it is instead necessary to examine their relative strengths and weaknesses, and apply those to the needs of astronomy today. This investigation hypothesizes that while empiricism provides a necessary step in the advancement of astronomy by confirming rationalist theory and providing new questions to be explored, the bulk of new advancements in astronomy comes from the rationalist approach. Definition of Terms In order to present a coherent and meaningful discussion of the merits of rationalism and empiricism in the context of astronomy, certain critical terms require definition. For the purposes of this paper, these definitions are as follows: Rationalism: Merriam-Webster defines rationalism as “a theory that reason is in itself a source of knowledge superior to and independent of sense perceptions.” In the context of astronomy, this denotes an approach to research that is built around known natural laws and the basic principles of mathematics. In a purely inductive epistemology, the basic principles of mathematics and a simple understanding of natural law are sufficient to predict and describe all possible natural phenomena, independent of any observations. An astronomer who practices rationalism is a rationalist. Quarles Empiricism and Rationalism in the Advancement of Astronomy 3 Empiricism: Again using the Merriam-Webster definition, empiricism is “the practice of relying on observation and experiment especially in the natural sciences.” In contrast to rationalism, empiricism holds observational data above inductive reasoning. Even if a hypothesis is mathematically proven beyond doubt, a strict interpretation of empiricism demands that conclusive observations be made. An astronomer who practices empiricism is an empiricist. Theory: A scientific theory is the generally accepted description or explanation of a natural phenomenon. The theory of a phenomenon can predate or be more in-depth than its observation. Theories in astronomy are typically heavily grounded in mathematics and computer models, and as such are associated with the rationalist school of thought. A theorist is an astronomer who manipulates and develops theory. Theorists are rationalists. Observation: Observation is the practice of collecting data on a natural phenomenon, typically for the purpose of better understanding it or similar phenomena. Observation can predate theory, though this is rarer than the reverse since theory is not subject to the same strict technological limits of observation. An astronomer who practices observation is an observer or an observationalist. Observers are empiricists. Investigative Methodology This investigation focuses on the potential for growth in the current body of knowledge, and as such takes into account recent advances and trends such as gravitational wave observations and the ongoing explosion of exoplanet research. However, as the present does not exist in a vacuum, certain critical results of the recent and historical past of astronomy research (primarily, the Copernican Revolution and the implications of 20th century space-time theories) Quarles Empiricism and Rationalism in the Advancement of Astronomy 4 are also considered. Initial and preliminary research
Recommended publications
  • Scientific Communities in the Developing World Scientific Communities in the Developing World
    Scientific Communities in the Developing World Scientific Communities in the Developing World Edited by jacques Caillard V.V. Krishna Roland Waast Sage Publications New Delhiflhousand Oaks/London Copyright @) Jacques Gaillard, V.V. Krishna and Roland Waast, 1997. All rights reserved. No part of this book may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage or retrieval system, without permission in writing from the publisher. First published in 1997 by Sage Publications India Pvt Ltd M-32, Greater Kailash Market I New Delhi 110 048 Sage Publications Inc Sage Publications Ltd 2455 Teller Road 6 Bonhill Street Thousand Oaks, California 91320 London EC2A 4PU Published by Tejeshwar Singh for Sage Publications India Pvt Ltd, phototypeset by Pagewell Photosetters, Pondicherry and printed at Chaman Enterprises, Delhi. Library of Congress Cataloging-in-Publication Data Scientific communities in the developing world I edited by Jacques Gaillard, V.V. Krishna, Roland Waast. p. cm. Includes bibliographical references and index. 1. Science-Developing countries--History. 2. Science-Social aspect- Developing countries--History. I. Gaillard, Jacques, 1951- . 11. Krishna, V.V. 111. Waast, Roland, 1940- . Q127.2.S44 306.4'5'091724--dc20 1996 9617807 ISBN: 81-7036565-1 (India-hb) &8039-9330-7 (US-hb) Sage Production Editor: Sumitra Srinivasan Contents List of Tables List of Figures Preface 1. Introduction: Scientific Communities in the Developing World Jacques Gaillard, V.V. Krishna and Roland Waast Part 1: Scientific Communities in Africa 2. Sisyphus or the Scientific Communities of Algeria Ali El Kenz and Roland Waast 3.
    [Show full text]
  • Against Logical Form
    Against logical form Zolta´n Gendler Szabo´ Conceptions of logical form are stranded between extremes. On one side are those who think the logical form of a sentence has little to do with logic; on the other, those who think it has little to do with the sentence. Most of us would prefer a conception that strikes a balance: logical form that is an objective feature of a sentence and captures its logical character. I will argue that we cannot get what we want. What are these extreme conceptions? In linguistics, logical form is typically con- ceived of as a level of representation where ambiguities have been resolved. According to one highly developed view—Chomsky’s minimalism—logical form is one of the outputs of the derivation of a sentence. The derivation begins with a set of lexical items and after initial mergers it splits into two: on one branch phonological operations are applied without semantic effect; on the other are semantic operations without phono- logical realization. At the end of the first branch is phonological form, the input to the articulatory–perceptual system; and at the end of the second is logical form, the input to the conceptual–intentional system.1 Thus conceived, logical form encompasses all and only information required for interpretation. But semantic and logical information do not fully overlap. The connectives “and” and “but” are surely not synonyms, but the difference in meaning probably does not concern logic. On the other hand, it is of utmost logical importance whether “finitely many” or “equinumerous” are logical constants even though it is hard to see how this information could be essential for their interpretation.
    [Show full text]
  • The Role of Social Context in the Production of Scientific Knowledge
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Supervised Undergraduate Student Research Chancellor’s Honors Program Projects and Creative Work 5-2015 The Role of Social Context in the Production of Scientific Knowledge Kristen Lynn Beard [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_chanhonoproj Part of the Philosophy of Science Commons Recommended Citation Beard, Kristen Lynn, "The Role of Social Context in the Production of Scientific nowledgeK " (2015). Chancellor’s Honors Program Projects. https://trace.tennessee.edu/utk_chanhonoproj/1852 This Dissertation/Thesis is brought to you for free and open access by the Supervised Undergraduate Student Research and Creative Work at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Chancellor’s Honors Program Projects by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. The Role of Social Context in the Production of Scientific Knowledge Kristen Lynn Beard The University of Tennessee, Knoxville Chancellor’s Honors Program Department of Philosophy Undergraduate Thesis Submitted December 8, 2014 Thesis Advisor: Dr. Nora Berenstain Beard 1 Model 1: The Influence of Social Context on the Scientific Method Beard 2 Introduction: Scientific Knowledge as Both Social and Rational A person may believe that a certain theory is true and explain that he does so, for instance, because it is the best explanation he has of the facts or because it gives him the most satisfying world picture. This does not make him irrational, but I take it to be part of empiricism to disdain such reasons.
    [Show full text]
  • Truth-Bearers and Truth Value*
    Truth-Bearers and Truth Value* I. Introduction The purpose of this document is to explain the following concepts and the relationships between them: statements, propositions, and truth value. In what follows each of these will be discussed in turn. II. Language and Truth-Bearers A. Statements 1. Introduction For present purposes, we will define the term “statement” as follows. Statement: A meaningful declarative sentence.1 It is useful to make sure that the definition of “statement” is clearly understood. 2. Sentences in General To begin with, a statement is a kind of sentence. Obviously, not every string of words is a sentence. Consider: “John store.” Here we have two nouns with a period after them—there is no verb. Grammatically, this is not a sentence—it is just a collection of words with a dot after them. Consider: “If I went to the store.” This isn’t a sentence either. “I went to the store.” is a sentence. However, using the word “if” transforms this string of words into a mere clause that requires another clause to complete it. For example, the following is a sentence: “If I went to the store, I would buy milk.” This issue is not merely one of conforming to arbitrary rules. Remember, a grammatically correct sentence expresses a complete thought.2 The construction “If I went to the store.” does not do this. One wants to By Dr. Robert Tierney. This document is being used by Dr. Tierney for teaching purposes and is not intended for use or publication in any other manner. 1 More precisely, a statement is a meaningful declarative sentence-type.
    [Show full text]
  • Bringing Science and Scientists to Life in Post-Secondary Science Education
    Sci & Educ DOI 10.1007/s11191-010-9310-7 The Story Behind the Science: Bringing Science and Scientists to Life in Post-Secondary Science Education Michael P. Clough Ó Springer Science+Business Media B.V. 2010 Abstract With funding from the United States National Science Foundation, 30 histor- ical short stories designed to teach science content and draw students’ attention to the nature of science (NOS) have been created for post-secondary introductory astronomy, biology, chemistry, geology, and physics courses. The project rationale, story development and structure, and freely available stories at the project website are presented. 1 Introduction The phrase ‘‘nature of science’’ (NOS) has been used for some time, particularly in the science education community, in referring to what science is, how science works, the epistemological and ontological foundations underlying science, the culture of science, and how society both influences and reacts to scientific activities (Clough 2006). Accurately understanding the NOS is crucial for science literacy (AAAS 1989; Matthews 1994; McComas and Olson 1998; NRC 1996) and can perhaps play an important role in enticing students to further their science education. Matthews (1994), McComas et al. (1998) and others have argued that knowledge of scientists and how science works will enhance students’ understanding of science as a human endeavor; increase interest in science and science classes; improve student learning of science content; and promote better social decision-making. Morris Shamos (1995) claimed that understanding the NOS is the most important component of scientific literacy because that knowledge, accurate or not, is what citizens use when assessing public issues involving science and technology.
    [Show full text]
  • How Science Works
    PB 1 How science works The Scientific Method is traditionally presented in the first chapter of science text- books as a simple recipe for performing scientific investigations. Though many use- ful points are embodied in this method, it can easily be misinterpreted as linear and “cookbook”: pull a problem off the shelf, throw in an observation, mix in a few ques- tions, sprinkle on a hypothesis, put the whole mixture into a 350° experiment—and voila, 50 minutes later you’ll be pulling a conclusion out of the oven! That might work if science were like Hamburger Helper®, but science is complex and cannot be re- duced to a single, prepackaged recipe. The linear, stepwise representation of the process of science is simplified, but it does get at least one thing right. It captures the core logic of science: testing ideas with evidence. However, this version of the scientific method is so simplified and rigid that it fails to accurately portray how real science works. It more accurately describes how science is summarized after the fact—in textbooks and journal articles—than how sci- ence is actually done. The simplified, linear scientific method implies that scientific studies follow an unvarying, linear recipe. But in reality, in their work, scientists engage in many different activities in many different sequences. Scientific investigations often involve repeating the same steps many times to account for new information and ideas. The simplified, linear scientific method implies that science is done by individual scientists working through these steps in isolation. But in reality, science depends on interactions within the scientific community.
    [Show full text]
  • PDF Download Starting with Science Strategies for Introducing Young Children to Inquiry 1St Edition Ebook
    STARTING WITH SCIENCE STRATEGIES FOR INTRODUCING YOUNG CHILDREN TO INQUIRY 1ST EDITION PDF, EPUB, EBOOK Marcia Talhelm Edson | 9781571108074 | | | | | Starting with Science Strategies for Introducing Young Children to Inquiry 1st edition PDF Book The presentation of the material is as good as the material utilizing star trek analogies, ancient wisdom and literature and so much more. Using Multivariate Statistics. Michael Gramling examines the impact of policy on practice in early childhood education. Part of a series on. Schauble and colleagues , for example, found that fifth grade students designed better experiments after instruction about the purpose of experimentation. For example, some suggest that learning about NoS enables children to understand the tentative and developmental NoS and science as a human activity, which makes science more interesting for children to learn Abd-El-Khalick a ; Driver et al. Research on teaching and learning of nature of science. The authors begin with theory in a cultural context as a foundation. What makes professional development effective? Frequently, the term NoS is utilised when considering matters about science. This book is a documentary account of a young intern who worked in the Reggio system in Italy and how she brought this pedagogy home to her school in St. Taking Science to School answers such questions as:. The content of the inquiries in science in the professional development programme was based on the different strands of the primary science curriculum, namely Living Things, Energy and Forces, Materials and Environmental Awareness and Care DES Exit interview. Begin to address the necessity of understanding other usually peer positions before they can discuss or comment on those positions.
    [Show full text]
  • Mobile Leapfrogging and Digital Divide Policy Assessing the Limitations of Mobile Internet Access
    New America Foundation Mobile Leapfrogging and Digital Divide Policy Assessing the limitations of mobile Internet access By Philip M. Napoli and Jonathan A. Obar1 April 2013 This paper examines the emerging global phenomenon of mobile leapfrogging in Internet access. Leapfrogging refers to the process in which new Internet users are obtaining access by mobile devices and are skipping the traditional means of access: personal computers. This leapfrogging of PC-based Internet access has been hailed in many quarters as an important means of rapidly and inexpensively reducing the gap in Internet access between developed and developing nations, thereby reducing the need for policy interventions to address this persistent digital divide. This paper offers a critical perspective on the process of mobile leapfrogging. Drawing upon data on Internet access and device penetration from 34 countries, this paper first shows that while greater access to mobile technologies suggests the possibility of a leapfrog effect, the lack of 3G adoption suggests that mobile phones are not yet acting as functionally equivalent substitutes for personal computers. Next, this paper puts forth a set of concerns regarding the limitations and potential shortcomings of mobile-based Internet access relative to traditional PC-based Internet access. This paper illustrates a number of important relative shortcomings in terms of memory and speed, content availability, network architecture, and patterns of information seeking and content creation amongst users. This paper concludes that policymakers should be cautions about promoting mobile access as a solution to the digital divide, and undertake policy reforms that ensure that communities that rely on mobile as their only gateway to the Internet do not get left further behind.
    [Show full text]
  • Leapfrogging: Look Before You Leap
    UNITED NATIONS CONFERENCE ON TRADE AND DEVELOPMENT No.71 DECEMBER 2018 LEAPFROGGING: LOOK BEFORE YOU LEAP New technologies, such as digital mobile communications, drones for precision agriculture and decentralized renewable energy systems that provide electricity in rural areas far from the grid, open up opportunities for leapfrogging. As developing countries have limited capabilities, opportunities for leapfrogging in these countries are presented primarily through the adoption of technologies. Innovation policies can help developing countries foster and facilitate the deployment of frontier technologies and their adaptation to meet their needs, to promote sustainable development.1 Frontier technologies and Potential for leapfrogging leapfrogging In large part, the experience of the ICT Discussions of the developmental dimension sector has brought increased attention to of frontier technologies, particularly digital leapfrogging. Rapid technological advances technologies, often highlight the possibility and cost reductions in ICT in recent decades have enabled some developing countries, POLICY BRIEF of “leapfrogging”, the concept of “bypassing intermediate stages of technology through notably in Africa and Asia, to skip the Key points which countries have historically passed development of landline infrastructure by 2 moving directly to mobile telecommunications. • Countries engage in during the development process”. The leapfrogging by bypassing traditional notion of “catch-up” refers For example, in the early 2000s, Cambodia, the imtermediate stages of to the narrowing of gaps in income and Côte d’Ivoire, Gambia, Ghana, Mali, Nepal technology in a development technological capabilities between a late- and Timor-Leste had less than three fixed- process. telephone subscriptions per 100 inhabitants, • Rapid technological advances developing country and a front-runner and cost reductions in country.
    [Show full text]
  • Sacred Rhetorical Invention in the String Theory Movement
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Communication Studies Theses, Dissertations, and Student Research Communication Studies, Department of Spring 4-12-2011 Secular Salvation: Sacred Rhetorical Invention in the String Theory Movement Brent Yergensen University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/commstuddiss Part of the Speech and Rhetorical Studies Commons Yergensen, Brent, "Secular Salvation: Sacred Rhetorical Invention in the String Theory Movement" (2011). Communication Studies Theses, Dissertations, and Student Research. 6. https://digitalcommons.unl.edu/commstuddiss/6 This Article is brought to you for free and open access by the Communication Studies, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Communication Studies Theses, Dissertations, and Student Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. SECULAR SALVATION: SACRED RHETORICAL INVENTION IN THE STRING THEORY MOVEMENT by Brent Yergensen A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy Major: Communication Studies Under the Supervision of Dr. Ronald Lee Lincoln, Nebraska April, 2011 ii SECULAR SALVATION: SACRED RHETORICAL INVENTION IN THE STRING THEORY MOVEMENT Brent Yergensen, Ph.D. University of Nebraska, 2011 Advisor: Ronald Lee String theory is argued by its proponents to be the Theory of Everything. It achieves this status in physics because it provides unification for contradictory laws of physics, namely quantum mechanics and general relativity. While based on advanced theoretical mathematics, its public discourse is growing in prevalence and its rhetorical power is leading to a scientific revolution, even among the public.
    [Show full text]
  • The Trajectory of the Anthropocene: the Great Acceleration
    ANR0010.1177/2053019614564785The Anthropocene ReviewSteffen et al. 564785research-article2015 Review The Anthropocene Review 1 –18 The trajectory of the © The Author(s) 2015 Reprints and permissions: Anthropocene: The Great sagepub.co.uk/journalsPermissions.nav DOI: 10.1177/2053019614564785 Acceleration anr.sagepub.com Will Steffen,1,2 Wendy Broadgate,3 Lisa Deutsch,1 Owen Gaffney3 and Cornelia Ludwig1 Abstract The ‘Great Acceleration’ graphs, originally published in 2004 to show socio-economic and Earth System trends from 1750 to 2000, have now been updated to 2010. In the graphs of socio-economic trends, where the data permit, the activity of the wealthy (OECD) countries, those countries with emerging economies, and the rest of the world have now been differentiated. The dominant feature of the socio-economic trends is that the economic activity of the human enterprise continues to grow at a rapid rate. However, the differentiated graphs clearly show that strong equity issues are masked by considering global aggregates only. Most of the population growth since 1950 has been in the non-OECD world but the world’s economy (GDP), and hence consumption, is still strongly dominated by the OECD world. The Earth System indicators, in general, continued their long-term, post-industrial rise, although a few, such as atmospheric methane concentration and stratospheric ozone loss, showed a slowing or apparent stabilisation over the past decade. The post-1950 acceleration in the Earth System indicators remains clear. Only beyond the mid-20th century is there clear evidence for fundamental shifts in the state and functioning of the Earth System that are beyond the range of variability of the Holocene and driven by human activities.
    [Show full text]
  • Leapfrogging Technology
    privateP UBLIC POLICY FORsector THE NOTE NUMBER 254 Leapfrogging Technology Masami Kojima FEBRUARY 2003 Masami Kojima is a lead Cost-Effective Solution for Pollution in Developing Countries? energy and environment specialist at the World Leapfrogging technology makes sense where technological advances Bank focusing on joint are driven by market demand, as in telecommunications and energy, environment, and transport policy issues, information technology. But technological advances driven by the especially fuel quality, need to deal with such externalities as pollution are more vehicle emission control, fuel pricing policy, and the complicated, for they do not inherently increase profitability or health impact of pollution. efficiency. Using air pollution by vehicles as an illustration, this Note She has worked on these issues in Bank programs examines the issues that need to be considered in deciding whether in Latin America, South leapfrogging technology is a cost-effective solution. Asia, Central Asia, and the Caucasus. The pace of technological advance in the past ernment budget, removing one of the potential few decades has opened new possibilities. obstacles to implementation. Consider the technology for controlling emis- sions from cars, buses, and trucks. Government Danger of considering technology-based regulations have driven this technology as much regulations in isolation as the technology has driven regulations, result- The argument is appealing. If all else remained ing in vehicle emission standards in industrial the same, imposing stringent standards that PRIVATE SECTOR AND INFRASTRUCTURE NETWORK countries that have become increasingly require the best available technology would stringent—far more so than those in developing indeed improve air quality, reduce illness, and countries.
    [Show full text]