Mongolia – a Reviewmongolia of the Agricultural Research System and Extension

Total Page:16

File Type:pdf, Size:1020Kb

Mongolia – a Reviewmongolia of the Agricultural Research System and Extension Mongolia – A review of the agricultural research and extension system research of the agricultural A review Mongolia A review of the agricultural research and extension system Please address comments and inquiries to: Investment Centre Division Food and Agriculture Organization of the United Nations (FAO) Viale delle Terme di Caracalla – 00153 Rome, Italy ISBN 978-92-5-109545-4 [email protected] Report No. 32 www.fao.org/support-to-investment 9789251 095454 Report No. 32 – January 2017 I6571EN/1/11.16 Mongolia A review of the agricultural research and extension system Delgermaa Chuluunbaatar Agricultural Extension Officer, FAO Charles Annor-Frempong Senior Rural Development Officer, World Bank Ganchimeg Gombodorj Mongolian University of Life Sciences COUNTRY HIGHLIGHTS FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2017 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. ISBN 978-92-5-109545-4 © FAO 2017 FAO encourages the use, reproduction and dissemination of material in this information product. Except where otherwise indicated, material may be copied, downloaded and printed for private study, research and teaching purposes, or for use in non-commercial products or services, provided that appropriate acknowledgement of FAO as the source and copyright holder is given and that FAO’s endorsement of users’ views, products or services is not implied in any way. All requests for translation and adaptation rights, and for resale and other commercial use rights should be made via www.fao.org/contact-us/licence-request or addressed to [email protected]. FAO information products are available on the FAO website (www.fao.org/publications) and can be purchased through [email protected]. Cover photo: @ FAO/Delgermaa Chuluunbaatar TABLE OF CONTENTS Foreword v Acknowledgements vii Acronyms and abbreviations ix Executive summary xi 1 Introduction 1 1.1. Objective 2 1.2. Methodology and data limitations 2 2 Mongolia’s agricultural research and extension system in the past 5 2.1. Research 5 2.2. Extension 8 2.3. Transition period 11 3 Current status of the research and extension system 15 3.1. Extension subsystem 16 3.2. Research subsystem 44 3.3. Coordination and linkages: agricultural research and extension system 62 4 Conclusion and recommendations 67 Bibliography 71 Annex 1 Organizations providing extension and research services 75 Annex 2 Major policies related to extension 81 Annex 3 Main policies for Mongolian science and technology 86 Annex 4 Projects with extension components 90 Annex 5 Ongoing international projects in the agriculture sector 93 Annex 6 Results from the stakeholder mapping exercise: key stakeholders of the Agricultural Innovation System 97 Annex 7 Comparison of agriculture production, current and desired level 99 FOREWORD The Government of Mongolia is committed to ensuring sustainable development of the food, agriculture and livestock sectors, serving both domestic and export markets. Agriculture, including livestock, accounts for the majority of the country’s rural labour force. Livestock activities in particular account for about 8.5 of every 10 jobs (Zoljargal, 2014). More than any other sector, the food and agriculture industry has the potential to reduce poverty and drive economic growth in rural areas. Mongolia’s poverty rate declined from 38.8 percent in 2010 to 21.6 percent in 2014, yet there is still much room for improvement. The World Bank1 advocates that sustainable and inclusive growth and poverty reduction in Mongolia will require strengthened governance and increased institutional capacities to manage public revenues efficiently. Modern, efficient food and agricultural systems can substantially increase production and competitiveness, resulting in improved rural livelihoods. Achieving Mongolia’s agricultural growth potential will require a significant increase in quality value addition and competitiveness within the agrifood market, particularly through the establishment of food preparation, processing, storage, transportation and sale systems,2 all of which require skilled and well informed farmers and other stakeholders. However, this can only be effective when the weakest link in the system has been addressed. For Mongolia, the weakest link since the transition from a centrally planned economy to a market economy has been between agricultural research and extension services and agricultural producers. To date, investment in research and extension remains very low. Free competition for information and technology and a demand for better production systems have arisen. At the same time, the number of inexperienced and less knowledgeable farmers has increased, and the linkages between researchers and farmers have weakened. To improve agricultural performance over time for a sustainable agrifood system, a continuous commitment to building and maintaining institutional and individual capacities in agricultural research and advisory services will be required. The role of effective advisory service systems must not be underestimated 1 http://www.worldbank.org/en/country/mongolia/projects/results 2 Part of the Government’s plan v in accelerating agricultural innovation, which is fundamental in achieving the 2030 Sustainable Development Goals. This report is the result of an in-depth review of the research and extension services within Mongolia between 2014 and 2015. It outlines the then status of the system and identifies key constraints to be addressed. The report was part of a larger sector review of Mongolian agriculture undertaken by the World Bank, beginning in 2014, to provide the Government with practical recommendations to use in its medium- and long-term strategies for agricultural development. The report was commissioned by the World Bank within the framework of its cooperative programme with the Food and Agriculture Organization of the United Nations (FAO), facilitated by FAO’s Investment Centre. For more information on FAO’s work to support agricultural and rural investments visit: www.fao.org/support-to-investment vi ACKNOWLEDGEMENTS This report was prepared as part of the Mongolian agriculture sector review, at the request of the Ministry of Food and Agriculture (MoFA). A World Bank team, led by Charles Annor-Frempong (senior rural development specialist, World Bank) and Delgermaa Chuluunbaatar (agricultural extension officer, FAO, and main author), carried out the review. The team is grateful to Dr Lkhasuren Choi-sh (Director-General) and his team at the Strategy Planning and Policy Department of the MoFA, as well as Khanimkhan Ivirai from the National Agricultural Extension Centre, for their support in organizing stakeholder meetings and workshops, and collecting data from the relevant institutions. Special thanks go to Ganchimeg Gombodorj from the Mongolian University of Life Sciences for her diligent efforts in liaising with key stakeholders, collecting data and information and providing logistical support. The authors would like to acknowledge Boldsaikhan Usukh (Director of ENSADA Company) and the staff of the National Association of Mongolian Agricultural Cooperatives for their participation and collaboration on this study. The authors would also like to thank Mark Lundell, Iain Shuker and Coralie Gevers (country manager, Mongolia) for their support on this study, and are especially grateful to Steven Jaffee (lead rural development specialist, World Bank) for providing guidance and useful comments that helped improve the quality of the report. Finally the authors would like to thank everyone else who contributed to this study and made this report feasible. vii ACRONYMS AND ABBREVIatIONS ABVSC Animal Breeding and Veterinary Service Centre ADB Asian Development Bank AEC Aimag extension centre AIS Agricultural Innovation System ATMA Agricultural Technology Management Agency CIDA Canadian International Development Agency CNIC Consejo Nacional de Innovación para la Competividad FAO Food and Agriculture Organization of the United Nations FIC Fondo de Innovación para la Competividad FIG Farmer interest group GDP Gross domestic product IFAD International Fund for Agricultural Development INIA Instituto Nacional de Investigación Agropecuaria ITTC Innovation and Technology Transfer Centre JICA Japan International Cooperation Agency MECS Ministry of Education, Culture and Science MFFA Mongolian Female Farmers’ Association MoFA Ministry of Food and Agriculture MoIT Ministry of Industry and Trade MSUA Mongolian State University of Agriculture MULS Mongolian University of Life Sciences NAEC National Agricultural Extension Centre NAMAC National Association of Mongolian Agricultural Cooperatives NCART National Committee for Agricultural Research and Technology NGO Non-governmental organization NPCD National Program for Cooperative Development NSO National Statistics
Recommended publications
  • Hay for Horses: Alfalfa Or Grass?
    HAY FOR HORSES: ALFALFA OR GRASS? Anne Rodiek1 ABSTRACT Alfalfa hay is an excellent source of energy, protein, calcium and some other nutrients for horses. Its concentrations of protein and calcium meet the nutrient needs of horses in high levels of production, such as growth and lactation, but exceed the nutrient requirements of horses in other life stages. Controversy exists over the best use of alfalfa in horse rations. Grass hays are also popular for horses because of their lower energy, protein and calcium concentrations. Grass hay meets more closely the nutrient requirements of the largest percentage of horses, the idle horse. Tradition plays a large role in the selection of feeds for horses. Hay producers can help educate horse people about what hays are most beneficial to horses in different life stages. Key Words: alfalfa hay, grass hay, horses, nutrient requirements INTRODUCTION Alfalfa hay has been both heralded and maligned as a feed for horses. Tradition holds that timothy hay and oats are the best feeds for horses, and that alfalfa and corn spell disaster. Alfalfa hay may not be the best feed for all horses in all situations, but it contains nutrients needed for many classes of horses. Grass hay falls short of meeting the nutrient requirements of high production life stages, but is an excellent filler for horses that require bulk in the diet. An understanding of the nutrient requirements of horses compared to the nutrient content of alfalfa hay or grass hay will help nutritionists, hay producers, and horse owners make informed decisions about what type of hay to feed to horses.
    [Show full text]
  • On Sustainable and Climate Change Adapted Land Use in the Mongolian Crop Sector
    STUDY ON SUSTAINABLE AND CLIMATE CHANGE ADAPTED LAND USE IN THE MONGOLIAN CROP SECTOR ULAANBAATAR 2020 STUDY ON SUSTAINABLE AND CLIMATE CHANGE ADAPTED LAND USE IN THE MONGOLIAN CROP SECTOR Implemented by THE GERMAN-MONGOLIAN COOPERATION PROJECT ON SUSTAINABLE AGRICULTURE STUDY ON SUSTAINABLE AND CLIMATE CHANGE ADAPTED LAND USE IN THE MONGOLIAN CROP SECTOR Disclaimer CONTENTS This study is published under the responsibility of German-Mongolian FOREWORDS ii Cooperation Project Sustainable Agriculture (MNG 19-01) and Subproject Expert dialogue on agriculture for climate change adaptation of the Mongolian LIST OF ABBREVIATIONS viii crop sector (MNG 19-02), which are funded by the German Federal Ministry of Food and Agriculture (BMEL). All views and results, conclusions, proposals or 1. THE EFFECTS OF CLIMATE CHANGE ON THE CROP FARMING recommendations stated therein are the property of the authors and do not SECTOR OF MONGOLIA necessarily reflect the opinion of the BMEL. Natsagdorj L., Erdenetsetseg B. 1 2. TECHNOLOGICAL SOLUTIONS FOR CLIMATE CHANGE ADAPTED FARMING Gantulga G., Odgerel B., Bayarmaa Kh., Ganbaatar B., Nyambayar B., Tsogtsaran B. 31 3. OPTIMIZING HUMUS, WATER, AND NUTRIENT MANAGEMENT IN MONGOLIA IN CHANGING CLIMATE CONDITIONS Guggenberger G. 75 4. SUSTAINABLE FARMING ALTERNATIVES IN MONGOLIA UNDER CHANGING CLIMATE CONDITIONS Meinel T. 114 5. ASSESSMENT OF CLIMATE CHANGE IMPACTS ON THE ARABLE FARMING SECTOR OF MONGOLIA Modelling of expected yield developments in spring wheat and potato production Noleppa S., Hackenberg I. 160 Edited by: Prof. Dr. G.Gantulga 6. INDEX-BASED CROP INSURANCE: INTERNATIONAL EXPERIENCE AND OPPORTUNITIES FOR MONGOLIA Dr. B.Erdenebolor Kuhn L., Bobojonov I. 222 7. MONGOLIA’S POLICIES AND INSTITUTIONAL APPROACHES FOR CLIMATE CHANGE ADAPTATION IN CROP FARMING Dagvadojr D.
    [Show full text]
  • What About Hay?
    Small Ruminant Series What About Hay? by Dr. Rick Machen Associate Professor & Extension Livestock Specialist Texas Agric ultural Exte nsio n Service, Uvalde Rumina nts ( goats, cattle, sheep, deer, ante lope, elk, bison, etc.) are, by desi gn, grazi ng animals. Their rumen, the largest gastrointestinal compartment, is an environment wherein bacteria anaerobically ferment (digest) forages. This unique digestive process converts solar energy captured by plants into higher quality, more nutrient dense foods like milk and meat. Compared to harvest by a grazing animal, hay production is an expensive process, involving fossi l fuel, mac hinery and man- hours. Haying als o involves si gnificant s oil nutri ent relocation when compared to grazing. Protein ( nitrogen) and minerals harveste d and hauled off the soil of a hay meadow or field must be replaced if optimal hay production is to be maintained. Grazing, on the other hand, is part of a natural cycle. A portion of the nitrogen and minerals from the consumed forage is returned to the soil with urine and feces. So, whether it s feeding beef cows on the open range or goats in a small paddock, hay is not a supplement - it is a substitute. A s ubstitute for the s tanding forage or browse that makes up the diet of a ruminant animal in their natural habitat. As shown in the Table 1, the typical diet of a foraging goat ranges from !S to ½ browse and ½ to !S grass, depending upon season and availability of the respective forages. Goats are opportunistic grazers and will select a diversity of plants to result in the highest attai nable diet quality.
    [Show full text]
  • What Hay Is Right for Your Livestock
    What Hay Is Right For Your Livestock Tom Gallagher Capital Area Agriculture Horticulture Program Livestock Specialist What Have We Learned So Far? • Renovate fields • Establish new stands • Maintain existing stands Harvesting • Haying equipment needed • Dry hay making large round & square bales • Making balage Storage • Round bales wrapped or stacked dry • Round bales wrapped or ensiled balage • Square bales in a barn • Knowing what you have Determining Forage Quality • Forage testing • Reading forage test results • Feed value terms Forage Quality • Determines feeding value and price • Determines Dry matter Intake (DMI) • Determines what livestock you will feed it to and when • Determines who you will sell it to or who will buy it Feeding Hay To Livestock • Horses • Cattle • Goats • Sheep • Alpacas Factors To Consider When Choosing A Hay To Feed • Clean hay • Nutrient value • Type of animal being fed • Maturity Clean Hay Free Of Mold And Dust Causes of Moldy or Dusty Hay • Rained on after it was cut • Baled too green (over 15% moisture) • Baled to dry • Improper storage • Weeds • Feeding on the ground • Floods How To Determine If Hay Is Moldy Or Dusty • See the mold on the outside of the bale • Smell the mold • See the mold or dust when feeding • The bale feels wet or hot • Heavy bales Nutrient Value Of Hay Legumes- – High in protein 15-20% – High in energy (ton) 48-55% – High in calcium 0.9-1.5% Grasses- – Protein 7-11% – Energy 42-50% – Calcium .3-.5% Why the wide ranges legume to legume or grass to grass. Matching Hay Type To The Horse Not all horses have the same nutrient needs • High nutrient requirements – Growing horses – Lactating mares – Working draft breeds – Racing horses Early-maturity alfalfa, alfalfa grass or grass hay are more palatable and higher in nutrients.
    [Show full text]
  • 1 Degradation in Mongolia's Gobi Desert: Not As Straight Forward As
    Degradation in Mongolia’s Gobi Desert: not as straight forward as assumed J. Addison A,B . M. Friedel A. C. Brown C. J. Davies A. S. Waldron A. A c /o CSIRO Ecosystem Sciences, PO Box 2111, Alice Springs, NT, 0871, Australia B Corresponding author: [email protected] C School of Agriculture and Food Science, University of Queensland, St Lucia, Qld, 4067, Australia Short title: How applicable are degradation assumptions to Mongolia’s Gobi Desert? Abstract Assumptions about the levels and causes of rangeland degradation in Mongolia have become embedded amongst a range of stakeholders. This paper explores the applicability of five such widely-held assumptions about rangeland degradation in Mongolia to the more specific case of the rangelands of the Gobi Desert. These assumptions are: i) there are too many animals; ii) goats have proportionally increased and this is causing desertification; iii) rainfall is declining; iv) there is less pasture now; and v) Mongolian rangelands are degraded. Biophysical and quantitative social data from the Dundgobi and Omnogobi desert-steppe areas suggest not all of these assumptions are supported mechanistically all of the time, and that the information upon which these assumptions are based is more complex than is commonly recognised. Caution in designing policy and programmes based on current understandings of rangeland condition is necessary. 1 Additional keywords : rangeland, Gobi Desert, livestock, goats, climate Introduction Rangeland theory and the understanding of causal mechanisms behind rangeland dynamics have changed significantly over the last century. The largely static ‘climax community’ of Clementsian succession (Clements 1916) has been replaced by ideas of more dynamic multiple stable and non-equilibrium states (Holling 1973; Noy-Meir 1975), thresholds (Friedel 1991), and states and transitions models (Westoby et al .
    [Show full text]
  • Soil Gaseous Emissions and Partial C and N Balances of Small-Scale Farmer Fields in a River Oasis of Western Mongolia
    sustainability Article Soil Gaseous Emissions and Partial C and N Balances of Small-Scale Farmer Fields in a River Oasis of Western Mongolia Greta Jordan 1, Sven Goenster-Jordan 1,* , Baigal Ulziisuren 2 and Andreas Buerkert 1 1 Organic Plant Production and Agroecosystems Research in the Tropics and Subtropics, Universität Kassel, Steinstr. 19, 37123 Witzenhausen, Germany; [email protected] (G.J.); [email protected] (A.B.) 2 Biology Department, School of Arts and Sciences, National University of Mongolia, Youth Str. 1, Baga toiruu, Ulaanbaatar 210646, Mongolia; [email protected] * Correspondence: [email protected] Received: 2 May 2019; Accepted: 13 June 2019; Published: 18 June 2019 Abstract: During the last decades, Mongolian river oases were subjected to an expansion of farmland. Such intensification triggers substantial gaseous carbon (C) and nitrogen (N) losses that may aggravate disequilibria in the soil surface balances of agricultural plots. This study aims to quantify such losses, and assess the implications of these emissions against the background of calculated partial C and N balances. To this end, CO2, NH3, and N2O soil emissions from carrot, hay, and rye plots were measured by a portable dynamic closed chamber system connected to a photoacoustic multi-gas analyzer in six farms of the Mongolian river oasis Bulgan sum center. Average C and N flux rates 1 1 1 1 1 1 1 1 (1313 g CO2-C ha− h− to 1774 g CO2-C ha− h− ; 2.4 g NH3-N ha− h− to 3.3 g NH3-N ha− h− ; 1 1 1 1 1 1 0.7 g N2O-N ha− h− to 1.1 g N2O-N ha− h− ) and cumulative emissions (3506 kg C ha− season− 1 1 1 1 1 1 to 4514 kg C ha− season− ; 7.4 kg N ha− season− to 10.9 kg N ha− season− ) were relatively low compared to those of other agroecosystems, but represented a substantial pathway of losses (86% of total C inputs; 21% of total N inputs).
    [Show full text]
  • Understanding Forage Quality
    Suggested retail price $3.50 Understanding forage quality Don Ball Mike Collins Garry Lacefield Neal Martin David Mertens Ken Olson Dan Putnam Dan Undersander Mike Wolf Contents Understanding forage quality 1 What is forage quality? 2 Factors affecting forage quality 3 Species differences 3 Temperature 3 Maturity stage 4 Leaf-to-stem ratio 4 Grass-legume mixtures 5 Fertilization 5 Daily fluctuations in forage quality 5 Variety effects 5 Harvesting and storage effects 6 Sensory evaluation of hay 7 Laboratory analysis of forage 8 Laboratory analytical techniques 8 Laboratory proficiency 10 Understanding laboratory reports 11 Matching forage quality to animal needs 12 Reproduction 12 Growth 13 Fattening 13 Lactation 13 Economic impacts of forage quality 14 Pasture forage quality 14 Hay quality 15 Other considerations 15 Key concepts to remember 15 Additional information 15 Glossary 16 Adequate animal nutrition is essential In recent years, advances in plant and Understanding for high rates of gain, ample milk pro- animal breeding, introduction of new duction, efficient reproduction, and products, and development of new forage quality adequate profits (see sidebar). management approaches have made orage quality is defined in various However, forage quality varies greatly it possible to increase animal perform- ways but is often poorly under- among and within forage crops, and ance. However, for this to be realized, Fstood. It represents a simple nutritional needs vary among and there must be additional focus on concept, yet encompasses much com- within animal species and classes. forage quality.The purpose of this plexity.Though important, forage Producing suitable quality forage for a publication is to provide information quality often receives far less consid- given situation requires knowing the about forage quality and forage eration than it deserves.
    [Show full text]
  • Switchgrass: a Bioenergy Crop Profile for West Virginia
    Switchgrass A Bioenergy Crop Profile for West Virginia What is Switchgrass (Panicum virgatum) is a hardy, tall-growing, deep-rooted perennial switchgrass? grass native to North America east of the Rocky Mountains. It is a warm sea- son grass, which means it grows in the warm months of the year until frost, and is dormant in winter and early spring. Warm season grasses typically take longer to establish than their cool-season counterparts, but once established, they tend to live much longer with less maintenance. As a perennial species, switchgrass can be harvested annually for approximately twenty years. What are the Switchgrass is a promising bioenergy crop for several reasons. Switchgrass uses of can be harvested as biomass annually and used as feedstock for biofuel produc- tion. It can be converted to ethanol for use as a transportation fuel, or it can switchgrass? be pelletized and burned for heat production. In addition, it can be used as livestock forage and wildlife cover. As switchgrass grows, it pulls carbon from the atmosphere for developing its deep and dense root structures. If properly measured and reported, this carbon sequestration can be traded as carbon credits to offset industrial carbon emissions. Is switchgrass West Virginia has up to 150,000 acres of reclaimed and soon-to-be reclaimed well suited to surface mine sites that are potentially available for conversion to production of bioenergy crops. High yields of switchgrass can be achieved with minimal fer- WV’s marginal tilizers or other agricultural inputs even on WV’s marginal soils like these re- soils and re- claimed mine lands.
    [Show full text]
  • Substituting Grain for Hay in Beef Cow Diets
    DIVISION OF AGRICULTURE R E S E A R C H & E X T E N S I O N University of Arkansas System Agriculture and Natural Resources FSA3036 Substituting High­Energy Grains and Byproduct Feeds for Hay in Beef Cow Diets Diets composed largely of • The animal’s daily nutritive Shane Gadberry roughages are commonly considered requirements. Associate Professor ­ to be most economical for beef cows. • The nutritive value of common Animal Science Substituting high­energy feeds (HEF, feeds. such as grains and certain byproduct • The substitution value of available feeds) for roughage may be economical feeds in relation to nutritive prop­ Paul Beck when hay and roughages are scarce erties and cost. Professor ­ and prices are high. Drought tends to Animal Science shift the economics toward feeding HEF as more energy can be trans­ Nutritive Requirements ported per ton of feed in this form Meeting the nutrient require­ Ken Coffey compared to hay. ments of the pregnant cow is the Professor ­ basic underlying objective. This can be done in a number of ways, and Animal Science Substituting HEF for low­energy feed such as hay becomes economical economics will normally dictate the when cattle can be maintained at feed combinations that should be con­ the same level of production but at sidered. However, another concern is a lower cost. Since HEFs usually cost that the nutrient availability matches more per pound than hay, a smaller the nutrient needs for the cow during amount must be fed to be economi­ the various phases of pregnancy cally substituted for hay in such and lactation.
    [Show full text]
  • AH Istory of L and U Se in M Ongolia
    A H istory of L and Use in Mongolia A H istory of L and Use in Mongolia The Thirteenth Century to the Present ELIZABETH ENDICOTT A HISTORY OF LAND USE IN MONGOLIA Copyright © Elizabeth Endicott, 2012. Softcover reprint of the hardcover 1st edition 2012 978-1-137-26965-2 All rights reserved. First published in 2012 by PALGRAVE MACMILLAN® in the United States— a division of St. Martin’s Press LLC, 175 Fifth Avenue, New York, NY 10010. Where this book is distributed in the UK, Europe and the rest of the world, this is by Palgrave Macmillan, a division of Macmillan Publishers Limited, registered in England, company number 785998, of Houndmills, Basingstoke, Hampshire RG21 6XS. Palgrave Macmillan is the global academic imprint of the above companies and has companies and representatives throughout the world. Palgrave® and Macmillan® are registered trademarks in the United States, the United Kingdom, Europe and other countries. I SBN 978-1-349-44403-8 ISBN 978-1-137-26966-9 (eBook) DOI 10.1057/9781137269669 Library of Congress Cataloging-in-Publication Data. Endicott, Elizabeth. A history of land use in Mongolia : the thirteenth century to the present / Elizabeth Endicott. p. cm. Includes bibliographical references and index. 1. Land use—Mongolia—History. 2. Land use, Rural—Mongolia— History. 3. Rangelands—Mongolia—History. 4. Herders—Mongolia— History. I. Title. HD920.8.E53 2012 333.73Ј1309517—dc23 2012016618 A catalogue record of the book is available from the British Library. Design by Newgen Imaging Systems (P) Ltd., Chennai, India. First
    [Show full text]
  • Minimizing Losses in Hay Storage and Feeding
    MINIMIZING LOSSES IN HAY STORAGE AND FEEDING MINIMIZING LOSSES IN HAY TYPES OF STORAGE LOSSES which climatic conditions have on hay) STORAGE AND FEEDING Hay storage losses vary greatly depend- is partially a physical process. Some of Each year more than 60 million acres ing upon several factors, but storage the dry matter loss which occurs of forage crops are harvested for hay in technique is of utmost importance. during outside storage is caused by the United States. Annual production Losses of dry hay stored inside a barn leaching, which refers to the dissolving from this acreage is over 150 million are usually of little concern. However, and removal of nutrients by the passage tons of hay valued at more than 12 even for barn stored hay, losses rise of rain water over the surface of, and billion dollars. Hay is the most widely sharply as moisture levels increase through, the bale. The more digestible grown mechanically-harvested agro- above 20%, and losses from round nutrients are, the more soluble they nomic crop in the United States. bales stored outside under adverse are, and thus the more likely they are As a source of nutrition for live- conditions can be much larger. to be removed by leaching. stock, hay offers numerous advantages. During storage, hay can be subject to The switch from small rectangular It can be made from many different dry matter losses as well as losses of bales to large round bales on most U.S. crops; when protected from the forage quality. farms has resulted in higher storage weather it can be stored indefinitely losses (in many cases, several times with little nutrient loss; package sizes Dry Matter Losses higher).
    [Show full text]
  • Hay Is for Horses
    Hay is for Horses BY KAREN E. DAVISON, PH .D. Record droughts or heavy rainfall, it seems like most of the country is experiencing one or the other. In some areas, it has been a year of record drought followed now by heavy rainfall. One major impact extreme weather may have on horse owners is availability and/or quality of hay and pasture. Since the bulk of a horse’s diet is hay or pasture, any change in the nutritional content of the forage affects the nutritional status of the horse. How do you evaluate the nutritional content of your hay? Good quality hay, regardless of variety, will have the following characteristics: 1) a high leaf to stem ratio, 2) small diameter stems, 3) a fresh smell, 4) free from weeds, dirt, mold and other trash, 5) bright color, 6) few seed heads (grasses) or blooms (alfalfa). In addition, hay should be fairly soft and pliable to touch. If stems are hard and stick into your hand when you grab a handful, then you might imagine how chewing that hay would feel. While visual appraisal of hay can provide an indication of quality, laboratory analysis is really the most accurate measure of the nutritive value. There is hay that looks pretty good but doesn’t test well and if you feed it the same as more nutrient dense hay, your horses will lose weight. If you buy several small quantities of hay through the year, testing may not be much help because you will probably feed most of the hay before the test results come back.
    [Show full text]