Breeding and Seed Production of Clown Fishes Under Captivity

Total Page:16

File Type:pdf, Size:1020Kb

Breeding and Seed Production of Clown Fishes Under Captivity View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CMFRI Digital Repository Breeding and seed production of Clown fishes under captivity Breeding and seed production of Clown fishes under captivity Rema Madhu*, K. Madhu and T. Retheesh Central Marine Fisheries Research Institute, Post Box No. 1603, Ernakulam North P.O, Cochin, Kerala, India *E-mail: [email protected] 201 Introduction fishes or sea anemone fishes” are long ranked as one of the most popular attractions all over the Ornamental fish production for the aquarium world because of their tiny size, hardiness, attrac- industry is a multimillion dollar industry in the tive colour features, peaceful nature, high adapt- world. Aquarium keeping is amongst the most ability to live in captivity, acceptability to artificial popular of hobbies with millions of enthusiasts diet and their fascinating display behavior and worldwide. Although most fish kept in aquariums symbiotic relationship with the sea anemones. are from freshwater, the acquisition of marine or- Clownfishes are the most longstanding and in- namental fish has greatly increased in recent years tensively cultured family of marine ornamentals and is also popularized through children’s movies and are the best ranked in marine aquarium trade. by starring charismatic colourful fishes and other They were the first reef fish species bred success- creatures. Recent advances in fish husbandry and fully in captivity. However, large scale culturing aquarium gadgets and technology have further fa- of clownfish has not always been successful tech- cilitated the hobby. In India, marine ornamental nically due to the lower larval survival which usu- fish trade is an emerging area during the last two ally go through one or many larval stages, start out decades and the industry is further advancing. at a very small size, and are extremely sensitive Along with it ancillary business such as aquarium to external factors. The clown fish species most making, aquarium plants and live feed produc- studied is A. ocellaris. The technique used for this tion, grow- out culture etc. are also flourishing. fish has been used for a long time to establish the India has about 200 varieties of marine orna- protocol or guidelines for the breeding of other mentals, of which more than 50 have export po- clownfish such as A. chrysopterus, A. clarkii, A. tential. Among these, the clown fishes or anem- percula, A. melanopus and Premnas biaculeatus. onefishes belonging to the family Pomacentridae, From the Indian waters 15 species in the gen- comprising of genera Amphiprion and Permnas era Amphiprion and the single species of the have always been the most popular and sought genus Premnas have been reported (Madhu and after group. Altogether 28 species of clown fishes Madhu 2000). Most of the traded marine orna- were reported from the different geographical lo- mental fishes are being collected from the wild cations of the world. The members of the family and hence there is a great concern regarding the Pomacentridae commonly known as damselfishes depletion of the stocks due to over exploitation as and anemonefishes are a diverse group of marine well as the destruction of reef habitat and damag- fishes found in tropical seas, also have very high ing collection methods all over the world. Recent demand in marine ornamental fish trade. The fam- studies shown that captive bred clownfish are ily comprises 29 genera and 350 species inhab- generally hardier, disease free, and are better ad- iting in the coral reef ecosystems. Pomacentrids justed to life in aquaria than their wild-collected have been divided into four subfamilies: Amphi- specimens, and as a result the demand for the prioninae, Chrominae, Lepidozyginae and Poma- captive bred fishes are increasing. For the breed- centrinae. Under the genera Amphiprion, 29 ing of clown fishes under captive conditions, few species and a single species, the maroon clown important steps are to be followed. These include Premnas biaculeatus have been reported under selection of suitable broodstock, setting up the the genus Premnas. tank, broodstock feeding, maintenance of high Anemone fishes or clown fishes water quality, provision of suitable environmental parameters, creating suitable condition for spawn- The genera Amphiprion and Premnas belong- ing and system for raising the larvae and juveniles. ing to the family Pomacentridae and sub fam- ily Amphiprioninae commonly known as “clown Transportation of broodstock 203 CMFRI Manuel Customized training Book For the captive mass production of clown fish- of the pair dies. If the female dies first, the larg- es, the basic requirement is to have a sufficient est male rapidly changes sex into a female and number of broodstocks or breeding pairs which the second largest or dominant juvenile becomes can either be collected form the coral reef habitat an active male and that pairs up with the newly or can be purchased from the pet shop depending transformed female. By utilizing this adaptation, upon the availability. In the wild, the clown fishes pairs of clown fishes can be developed under cap- generally occupy in social groups centered in a tive condition by creating social systems. After a host sea anemone with a sexually active pair of period of 3 to 4 months of rearing for pair forma- adults and one to three juvenile or sub adult fish tion, in each tank one pair grew ahead of others and the female is larger than the male. The clown and becomes the spawning pair. As the newly fishes naturally exhibit monogamous pair forma- formed pairs will be very aggressive and spending tion and these pairs are to be collected for brood- time for fleeing the other subordinates rather than stock development and breeding programme. reproductive activity, it is very essential to stock In case such mated pairs are not available, fish each breeding pairs in separate tanks. of different size groups can be collected and al- lowed to form pair under captive conditions. In Tank set-up for broodstock order to make breeding pairs form the juveniles A clownfish broodstock/ spawning tank should groups, many social groups of clown fishes can be of 250 to 500 L capacity with a single healthy be collected from the wild and transported to the pair and host sea anemone. An ideal tank would laboratory. During transportation, the fish and the be a 3 ft x 2 ft x 2 ft with a layer of coral sand sea anemones should be kept in separate trans- at the bottom, few live rocks, bright lighting and portation containers. good filtration, preferably with an efficient protein skimmer to reduce the ammonia and organic ma- Pair formation terials in the system. A trickle filter could be used For pair formation, five fishes of each sex of with regular water changes to keep the nitrates different size groups need to be stocked together low enough for the anemone to do well. Since the along with a host anemone in a 500 L FRP tanks gonad development and spawning of clown fishes fitted with biological filter to reduce the aggres- are influenced by moon phases, the broodstock/ sion. Pair formation tanks have to be maintained spawning tanks should be kept at a place where in the hatchery with a light intensity of 2500 to the fish receive regular day/ night light cycle 3000 lux as the anemones require light for sur- (moon phase). Anemone is generally not required vival under laboratory conditions. The fish and to breed clownfish under captive condition. But anemones should be fed twice a day with wet generally the clown fish select a nest site adjacent feeds like shrimp, mussel and clam meat at the to the sea anemone for deposition of eggs. Moreo- rate of 15% of their body weight and live feeds ver an added benefit of having an anemone is that like Brachionus plicatilis, artemia nauplii and it may release compounds that help to protect the adult artemia. Environmental parameters such as eggs or even chemically induce immunity that temperature (26 to 29ºC), salinity (33 to 35 ppt), clownish have with the anemone. dissolved oxygen (4.6 to 6.2 ml/L) and pH (8.1 to 8.4) are to be maintained in all rearing tanks. Broodstock development and maintenance After the pairs are formed, they are transferred Sex change and pairing to glass aquaria for broodstock development. De- As the clown fishes are protandrous (male first) pending upon the production capacity and seed sequential hermaphrodites, a pecking order is es- demand, several pairs can be maintained in com- tablished in which the female is dominant, the mercial hatcheries. The broodstock are fed with male is subordinate to the female, and all the oth- meat of green mussel, shrimp, clam and fish egg, er juveniles are subordinate to the adult male and along with supplemental formulated feeds en- female. Thus generally all clown fish individuals riched with vitamins, minerals and algal powder start out as males and change into females when at the rate of 10% of their body weight and fed they reach larger sizes or under the situation of during day time at an interval of 3 h. Apart from loss of mate. The male and female form a mo- these, the broodstock are also fed with enriched nogamous pair bond that lasts until one member rotifer 800 to 1000 nos/ml and artemia nauplii 204 Breeding and seed production of Clown fishes under captivity (200-400 nos/ml) and adult artemia (3 to 5 nos/ of the water should be exchanged to avoid stress ml) every day. like a rapid increase in plasma corticol concentra- tion, depression of gonadal streroidogenesis, and Enrichment of rotifer and artemia subsequent development of gonadal atresia.
Recommended publications
  • Literature Review
    Literature Review: SEAGRASS AND MANGROVE HABITATS AS REEF FISH NURSERY HABITATS AND CUMULATIVE IMPACTS FROM COASTAL CONSTRUCTION IN FLORIDA, USA (CONTRACT ORDER #: GA133F06SE5828) FINAL Submitted to: Jocelyn Karazsia National Marine Fisheries Service 400 North Congress Ave, Suite 120 West Palm Beach, Florida 33401 561-616-8880 x207 [email protected] Submitted by: Stephanie Williams 22E Calle Muñoz Rivera PO BOX 360 Rincón, Puerto Rico 00677-0360 March 2007 INTRODUCTION: The 1996 amendments to the Magnuson-Stevens Fishery Conservation and Management Act set forth a new mandate for the National Marine Fisheries Service (NMFS), regional fishery management councils, and other Federal agencies to identify and protect important marine and anadromous fish habitat, such as mangroves, seagrasses, coral reefs, hard bottom reefs, and wetlands. The purpose of this project is to complete a literature review of references, including university theses and dissertations, scientific studies, reports, books, and gray literature, regarding the role of seagrasses and mangroves in coral reef ecology and reef fish productivity; and the impacts of coastal construction to reef fish nursery habitats, fish stocks, and the implications of these impacts for the fisheries of Florida, USA. Coastal construction includes beach nourishment, dredging, dock and marina construction, shoreline hardening, and the construction of other structures that result in the elimination or degradation of mangrove and seagrass habitats. This project supports local efforts to implement coastal construction best management practices and to provide information on cumulative impacts on coral reef fish nursery habitats in Florida, USA. References were compiled in the form of an annotated bibliography containing the complete citation of the work, a summarized abstract, the reference location, and keywords.
    [Show full text]
  • Understanding Transformative Forces of Aquaculture in the Marine Aquarium Trade
    The University of Maine DigitalCommons@UMaine Electronic Theses and Dissertations Fogler Library Summer 8-22-2020 Senders, Receivers, and Spillover Dynamics: Understanding Transformative Forces of Aquaculture in the Marine Aquarium Trade Bryce Risley University of Maine, [email protected] Follow this and additional works at: https://digitalcommons.library.umaine.edu/etd Part of the Marine Biology Commons Recommended Citation Risley, Bryce, "Senders, Receivers, and Spillover Dynamics: Understanding Transformative Forces of Aquaculture in the Marine Aquarium Trade" (2020). Electronic Theses and Dissertations. 3314. https://digitalcommons.library.umaine.edu/etd/3314 This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. SENDERS, RECEIVERS, AND SPILLOVER DYNAMICS: UNDERSTANDING TRANSFORMATIVE FORCES OF AQUACULTURE IN THE MARINE AQUARIUM TRADE By Bryce Risley B.S. University of New Mexico, 2014 A THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science (in Marine Policy and Marine Biology) The Graduate School The University of Maine May 2020 Advisory Committee: Joshua Stoll, Assistant Professor of Marine Policy, Co-advisor Nishad Jayasundara, Assistant Professor of Marine Biology, Co-advisor Aaron Strong, Assistant Professor of Environmental Studies (Hamilton College) Christine Beitl, Associate Professor of Anthropology Douglas Rasher, Senior Research Scientist of Marine Ecology (Bigelow Laboratory) Heather Hamlin, Associate Professor of Marine Biology No photograph in this thesis may be used in another work without written permission from the photographer.
    [Show full text]
  • Phylogeny of the Damselfishes (Pomacentridae) and Patterns of Asymmetrical Diversification in Body Size and Feeding Ecology
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.07.430149; this version posted February 8, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Phylogeny of the damselfishes (Pomacentridae) and patterns of asymmetrical diversification in body size and feeding ecology Charlene L. McCord a, W. James Cooper b, Chloe M. Nash c, d & Mark W. Westneat c, d a California State University Dominguez Hills, College of Natural and Behavioral Sciences, 1000 E. Victoria Street, Carson, CA 90747 b Western Washington University, Department of Biology and Program in Marine and Coastal Science, 516 High Street, Bellingham, WA 98225 c University of Chicago, Department of Organismal Biology and Anatomy, and Committee on Evolutionary Biology, 1027 E. 57th St, Chicago IL, 60637, USA d Field Museum of Natural History, Division of Fishes, 1400 S. Lake Shore Dr., Chicago, IL 60605 Corresponding author: Mark W. Westneat [email protected] Journal: PLoS One Keywords: Pomacentridae, phylogenetics, body size, diversification, evolution, ecotype Abstract The damselfishes (family Pomacentridae) inhabit near-shore communities in tropical and temperature oceans as one of the major lineages with ecological and economic importance for coral reef fish assemblages. Our understanding of their evolutionary ecology, morphology and function has often been advanced by increasingly detailed and accurate molecular phylogenies. Here we present the next stage of multi-locus, molecular phylogenetics for the group based on analysis of 12 nuclear and mitochondrial gene sequences from 330 of the 422 damselfish species.
    [Show full text]
  • Thesis and Paper II
    Adaptation of anemonefish to their host anemones: From Genetics to Physiology Nguyen Thi Hai Thanh Thesis for the degree of Philosophiae Doctor (PhD) University of Bergen, Norway 2020 Adaptation of anemonefish to their host anemones: From Genetics to Physiology Nguyen Thi Hai Thanh ThesisAvhandling for the for degree graden of philosophiaePhilosophiae doctorDoctor (ph.d (PhD). ) atved the Universitetet University of i BergenBergen Date of defense:2017 21.02.2020 Dato for disputas: 1111 © Copyright Nguyen Thi Hai Thanh The material in this publication is covered by the provisions of the Copyright Act. Year: 2020 Title: Adaptation of anemonefish to their host anemones: From Genetics to Physiology Name: Nguyen Thi Hai Thanh Print: Skipnes Kommunikasjon / University of Bergen Scientific environment i Scientific environment The work of this doctoral thesis was financed by the Norwegian Agency for Development Cooperation through the project “Incorporating Climate Change into Ecosystem Approaches to Fisheries and Aquaculture Management” (SRV-13/0010) The experiments were carried out at the Center for Aquaculture Animal Health and Breeding Studies (CAAHBS) and Institute of Biotechnology and Environment, Nha Trang University (NTU), Vietnam from 2015 to 2017 under the supervision of Dr Dang T. Binh, Dr Ha L.T.Loc and Assoc. Professor Ngo D. Nghia. The study was continued at the Department of Biology, University of Bergen under the supervision of Professor Audrey J. Geffen. Acknowledgements ii Acknowledgements During these years of my journey, there are so many people I would like to thank for their support in the completion of my PhD. I would like to express my gratitude to my principle supervisor Audrey J.
    [Show full text]
  • Embryonic Development of Percula Clownfish, Amphiprion Percula (Lacepede, 1802)
    Middle-East Journal of Scientific Research 4 (2): 84-89, 2009 ISSN 1990-9233 © IDOSI Publications, 2009 Embryonic Development of Percula Clownfish, Amphiprion percula (Lacepede, 1802) 11K.V. Dhaneesh, T.T. Ajith Kumar and 2T. Shunmugaraj 1Centre of Advanced Study in Marine Biology, Annamalai University Parangipettai-608 502, Tamilnadu, India 2Centre for Marine Living Resources and Ecology, Ministry of Earth Sciences, Cochin, Kerala, India Abstract: The Percula clownfish, Amphiprion percula (Lacepede, 1802) were reared in marine ornamental fish hatchery by using estuarine water to study their spawning behaviour, egg deposition and embryonic development. The spawning was recorded year round with the reproductive cycle between 14-21 days. The eggs were adhesive type, capsule shaped and bright orange in colour measuring 2.0-2.3 mm length and 1.0-1.2 mm width containing fat globules. The process of embryonic development was divided into 26 stages based on the morphological characteristics of the developing embryo. The time elapsed for each embryonic developmental stage was recorded. Hatching took place 151-152 hours after fertilization. Key words: Percula clownfish Captive condition Morphology Embryonic development INTRODUCTION transported to the hatchery at Centre of Advanced Study in Marine Biology, Annamalai University, Parangipettai, The anemonefish, Amphiprion percula is a tropical Tamil Nadu, India. For the better health and survival, the coral reef fish belonging to the family Pomacentridae fishes and anemones were packed in individual polythene and sub family Amphiprioninae and they are one of the bags filled with sufficient oxygen. After transportation, most popular attractions in the marine ornamental fish the fishes and anemones were accommodated in a trade.
    [Show full text]
  • (Actinopterygii: Pomacentridae) from Micronesia, with Comments on Its Phylogenetic Relationships Shang-Yin Vanson Liu1,2*†, Hsuan-Ching Hans Ho3† and Chang-Feng Dai1
    Liu et al. Zoological Studies 2013, 52:6 http://www.zoologicalstudies.com/content/52/1/6 RESEARCH Open Access A new species of Pomacentrus (Actinopterygii: Pomacentridae) from Micronesia, with comments on its phylogenetic relationships Shang-Yin Vanson Liu1,2*†, Hsuan-Ching Hans Ho3† and Chang-Feng Dai1 Abstract Background: Many widely distributed coral reef fishes exhibit cryptic lineages across their distribution. Previous study revealed a cryptic lineage of Pomacentrus coelestis mainly distributed in the area of Micronesia. Herein, we attempted to use molecular and morphological approaches to descript a new species of Pomacentrus. Results: The morphological comparisons have been conducted between cryptic species and P. coelestis. Pomacentrus micronesicus sp. nov. is characterized by 13 to 16 (typically 15) anal fin rays (vs. 13 to 15, typically 14 rays in P. coelestis) and 15 or 16 rakers on the lower limb of the first gill arch (vs. 13 or 14 rakers in P. coelestis). Divergence in cytochrome oxidase subunit I sequences of 4.3% is also indicative of species-level separation of P. micronesicus and P. coelestis. Conclusions: P. micronesicus sp.nov.isdescribedfromtheMarshallIslands, Micronesia on the basis of 21 specimens. Both morphological and genetic evidences support its distinction as a separate species from P. coelestis. Keywords: Cryptic species; Pomacentrus micronesicus; Speciation Background Japan and is widely distributed in the Indo-Pacific region Marine organisms that are morphologically undistinguish- (Allen 1991). Liu et al. (2012) conducted a phylogeographic able but genetically distinct are known as ‘cryptic species’ study of P. coelestis across its distribution using both (Knowlton 2000). In the past decade, DNA sequencing the mtDNA control region and microsatellite loci as has provided an independent means of testing the validity genetic markers and revealed two deeply divergent clades; of existing taxonomic units, revealing cases of inappropriate the first clade was shown to encompass the ‘true’ P.
    [Show full text]
  • Abudefduf Taurus (Night Sergeant)
    UWI The Online Guide to the Animals of Trinidad and Tobago Ecology Abudefduf taurus (Night Sergeant) Family: Pomacentridae (Damselfish and Clownfish) Order: Perciformes (Perch and Allied Fish) Class: Actinopterygii (Ray-finned Fish) Fig. 1. Night sergeant, Abudefduf taurus. [http://biogeodb.stri.si.edu/caribbean/en/gallery/family/1604, downloaded 18 February 2017] TRAITS. The night sergeant is also called the pilotfish or dovetail, and was formerly known as Glyphidodon taurus (IUCN, 2017). This fish can be identified by its tawny yellow coloured nape of the neck, with 5-6 dark irregular bars along the body from the nape to the peduncle (narrow part of the body that attaches the tail), and a black spot that is sometimes seen on the upper base of the pectoral fin (fin behind the operculum) (Fig. 1). It is heavy-bodied; compressed, oblong, fairly deep, robust and heavily scaled body; single row of teeth with flat or notched tips; bluntly forked caudal fin, a total of 13 dorsal spines and 11-12 soft dorsal rays in a single continuous dorsal fin, 2 anal spines and 10 anal soft rays. The night sergeant can have a maximum body length of 25cm, with a common length of 20cm, and is the largest species in the Pomacentridae family (Robins and Ray, 1986). UWI The Online Guide to the Animals of Trinidad and Tobago Ecology DISTRIBUTION. Night sergeants are widely distributed in the tropical and subtropical eastern and western Atlantic Ocean (Fig. 2). In the western Atlantic this includes southern Florida down the coast of the United States of America and the Caribbean Sea.
    [Show full text]
  • Molecular Evolution of Ultraviolet Visual Opsins and Spectral Tuning Of
    bioRxiv preprint doi: https://doi.org/10.1101/2020.06.09.139766; this version posted June 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Seeing Nemo: molecular evolution of ultraviolet visual opsins and spectral tuning of photoreceptors in anemonefishes (Amphiprioninae) Laurie J. Mitchell 1, Karen L. Cheney 1, Wen-Sung Chung 2, N. Justin Marshall 2, Kyle Michie 2, 3, Fabio Cortesi 2 1 School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia 2 Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia 3 King’s College, Cambridge, CB2 1ST, UK *Corresponding authors: [email protected], [email protected] Keywords: Visual opsins, spectral tuning, reef fish vision, anemonefishes, ultraviolet, gene duplication Abstract Many animals can see short-wavelength or ultraviolet (UV) light (shorter than 400 nm) undetectable to human vision. UV vision may have functional importance in many taxa including for foraging and communication in birds, reptiles, insects and teleost fishes. Shallow coral reefs transmit a broad spectrum of light and are rich in UV; driving the evolution of diverse spectral sensitivities in teleost reef fishes, including UV-sensitivity. However, the identities and sites of the specific visual genes that underly vision in reef fishes remain elusive and are useful in determining how molecular evolution has tuned vision to meet the ecological demands of life on the reef.
    [Show full text]
  • Pomacentridae): Structural and Expression Variation in Opsin Genes
    Molecular Ecology (2017) 26, 1323–1342 doi: 10.1111/mec.13968 Why UV vision and red vision are important for damselfish (Pomacentridae): structural and expression variation in opsin genes SARA M. STIEB,*† FABIO CORTESI,*† LORENZ SUEESS,* KAREN L. CARLETON,‡ WALTER SALZBURGER† and N. J. MARSHALL* *Sensory Neurobiology Group, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia, †Zoological Institute, University of Basel, Basel 4051, Switzerland, ‡Department of Biology, The University of Maryland, College Park, MD 20742, USA Abstract Coral reefs belong to the most diverse ecosystems on our planet. The diversity in col- oration and lifestyles of coral reef fishes makes them a particularly promising system to study the role of visual communication and adaptation. Here, we investigated the evolution of visual pigment genes (opsins) in damselfish (Pomacentridae) and exam- ined whether structural and expression variation of opsins can be linked to ecology. Using DNA sequence data of a phylogenetically representative set of 31 damselfish species, we show that all but one visual opsin are evolving under positive selection. In addition, selection on opsin tuning sites, including cases of divergent, parallel, conver- gent and reversed evolution, has been strong throughout the radiation of damselfish, emphasizing the importance of visual tuning for this group. The highest functional variation in opsin protein sequences was observed in the short- followed by the long- wavelength end of the visual spectrum. Comparative gene expression analyses of a subset of the same species revealed that with SWS1, RH2B and RH2A always being expressed, damselfish use an overall short-wavelength shifted expression profile. Inter- estingly, not only did all species express SWS1 – a UV-sensitive opsin – and possess UV-transmitting lenses, most species also feature UV-reflective body parts.
    [Show full text]
  • Orange Clownfish (Amphiprion Percula)
    NOAA Technical Memorandum NMFS-PIFSC-52 April 2016 doi:10.7289/V5J10152 Status Review Report: Orange Clownfish (Amphiprion percula) Kimberly A. Maison and Krista S. Graham Pacific Islands Fisheries Science Center National Marine Fisheries Service National Oceanic and Atmospheric Administration U.S. Department of Commerce About this document The mission of the National Oceanic and Atmospheric Administration (NOAA) is to understand and predict changes in the Earth’s environment and to conserve and manage coastal and oceanic marine resources and habitats to help meet our Nation’s economic, social, and environmental needs. As a branch of NOAA, the National Marine Fisheries Service (NMFS) conducts or sponsors research and monitoring programs to improve the scientific basis for conservation and management decisions. NMFS strives to make information about the purpose, methods, and results of its scientific studies widely available. NMFS’ Pacific Islands Fisheries Science Center (PIFSC) uses the NOAA Technical Memorandum NMFS series to achieve timely dissemination of scientific and technical information that is of high quality but inappropriate for publication in the formal peer- reviewed literature. The contents are of broad scope, including technical workshop proceedings, large data compilations, status reports and reviews, lengthy scientific or statistical monographs, and more. NOAA Technical Memoranda published by the PIFSC, although informal, are subjected to extensive review and editing and reflect sound professional work. Accordingly, they may be referenced in the formal scientific and technical literature. A NOAA Technical Memorandum NMFS issued by the PIFSC may be cited using the following format: Maison, K. A., and K. S. Graham. 2016. Status Review Report: Orange Clownfish (Amphiprion percula).
    [Show full text]
  • Seed Production and Culture of Marine Ornamental Fishes G
    Course Manual Seed Production and Culture of Marine Ornamental Fishes G. Gopakumar, A. K. Abdul Nazar and R. Jayakumar Mandapam Regional Centre of CMFRI Mandapam Camp - 623 520, Tamil Nadu, India Introduction The marine ornamental fish trade has been expanding in recent years and has grown into a multimillion dollar enterprise. The ornamental animals are the highest valued products that are mostly harvested from coral reef environments. The global marine ornamental trade is estimated at US$ 200-330 million. The trade is operated throughout the tropics. Philippines, Indonesia, Solomon Islands, Sri Lanka, Australia, Fiji, Maldives and Palau supplied more than 98% of the total number of marine ornamental fish exported in recent years. It is a multi-stakeholder industry ranging from specimen collectors, culturists, wholesalers, transhippers, retailers, and hobbyists to researchers, government resource managers and conservators and hence involves a series of issues to be addressed and policies to be formulated for developing and expanding a sustainable trade. It is well understood that a long term sustainable trade of marine ornamental fishes can be developed only through the development and commercialization of hatchery production technologies for the species which are in high demand in the trade. Global scenario In recent years it has been reported that nearly 1500 species of marine ornamental fishes are traded globally and most of these are associated with coral reefs. Nearly 98% of the marine ornamental fishes marketed are wild collected from coral reefs of tropical countries. Among the most commercially traded families of reef fishes, family Pomacentridae dominate, accounting for nearly 43% of all fish traded.
    [Show full text]
  • Patterns of Evolution in Gobies (Teleostei: Gobiidae): a Multi-Scale Phylogenetic Investigation
    PATTERNS OF EVOLUTION IN GOBIES (TELEOSTEI: GOBIIDAE): A MULTI-SCALE PHYLOGENETIC INVESTIGATION A Dissertation by LUKE MICHAEL TORNABENE BS, Hofstra University, 2007 MS, Texas A&M University-Corpus Christi, 2010 Submitted in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY in MARINE BIOLOGY Texas A&M University-Corpus Christi Corpus Christi, Texas December 2014 © Luke Michael Tornabene All Rights Reserved December 2014 PATTERNS OF EVOLUTION IN GOBIES (TELEOSTEI: GOBIIDAE): A MULTI-SCALE PHYLOGENETIC INVESTIGATION A Dissertation by LUKE MICHAEL TORNABENE This dissertation meets the standards for scope and quality of Texas A&M University-Corpus Christi and is hereby approved. Frank L. Pezold, PhD Chris Bird, PhD Chair Committee Member Kevin W. Conway, PhD James D. Hogan, PhD Committee Member Committee Member Lea-Der Chen, PhD Graduate Faculty Representative December 2014 ABSTRACT The family of fishes commonly known as gobies (Teleostei: Gobiidae) is one of the most diverse lineages of vertebrates in the world. With more than 1700 species of gobies spread among more than 200 genera, gobies are the most species-rich family of marine fishes. Gobies can be found in nearly every aquatic habitat on earth, and are often the most diverse and numerically abundant fishes in tropical and subtropical habitats, especially coral reefs. Their remarkable taxonomic, morphological and ecological diversity make them an ideal model group for studying the processes driving taxonomic and phenotypic diversification in aquatic vertebrates. Unfortunately the phylogenetic relationships of many groups of gobies are poorly resolved, obscuring our understanding of the evolution of their ecological diversity. This dissertation is a multi-scale phylogenetic study that aims to clarify phylogenetic relationships across the Gobiidae and demonstrate the utility of this family for studies of macroevolution and speciation at multiple evolutionary timescales.
    [Show full text]