Orange Clownfish (Amphiprion Percula)

Total Page:16

File Type:pdf, Size:1020Kb

Orange Clownfish (Amphiprion Percula) NOAA Technical Memorandum NMFS-PIFSC-52 April 2016 doi:10.7289/V5J10152 Status Review Report: Orange Clownfish (Amphiprion percula) Kimberly A. Maison and Krista S. Graham Pacific Islands Fisheries Science Center National Marine Fisheries Service National Oceanic and Atmospheric Administration U.S. Department of Commerce About this document The mission of the National Oceanic and Atmospheric Administration (NOAA) is to understand and predict changes in the Earth’s environment and to conserve and manage coastal and oceanic marine resources and habitats to help meet our Nation’s economic, social, and environmental needs. As a branch of NOAA, the National Marine Fisheries Service (NMFS) conducts or sponsors research and monitoring programs to improve the scientific basis for conservation and management decisions. NMFS strives to make information about the purpose, methods, and results of its scientific studies widely available. NMFS’ Pacific Islands Fisheries Science Center (PIFSC) uses the NOAA Technical Memorandum NMFS series to achieve timely dissemination of scientific and technical information that is of high quality but inappropriate for publication in the formal peer- reviewed literature. The contents are of broad scope, including technical workshop proceedings, large data compilations, status reports and reviews, lengthy scientific or statistical monographs, and more. NOAA Technical Memoranda published by the PIFSC, although informal, are subjected to extensive review and editing and reflect sound professional work. Accordingly, they may be referenced in the formal scientific and technical literature. A NOAA Technical Memorandum NMFS issued by the PIFSC may be cited using the following format: Maison, K. A., and K. S. Graham. 2016. Status Review Report: Orange Clownfish (Amphiprion percula). U.S. Dep. Commer., NOAA Tech. Memo., NOAA-TM-NMFS-PIFSC-52, 69p. doi:10.7289/V5J10152 __________________________ For further information direct inquiries to Director, Science Operations Division Pacific Islands Fisheries Science Center National Marine Fisheries Service National Oceanic and Atmospheric Administration U.S. Department of Commerce 1845 Wasp Boulevard Honolulu, Hawaii 96818-5007 Phone: 808-725-5331 Fax: 808-725-5532 ___________________________________________________________ Cover: Photograph courtesy of ©Margaret Paton Walsh. Pacific Islands Fisheries Science Center National Marine Fisheries Service National Oceanic and Atmospheric Administration U.S. Department of Commerce Status Review Report: Orange Clownfish (Amphiprion percula) Kimberly A. Maison1 Krista S. Graham1 1Pacific Islands Regional Office National Marine Fisheries Service 1845 Wasp Boulevard Building 176 Honolulu, Hawaii 96818 NOAA Technical Memorandum NMFS-PIFSC-52 April 2016 doi:10.7289/V5J10152 iv ABSTRACT This report was produced in response to a petition received from the Center for Biological Diversity on September 14, 2012, to list eight species of pomacentrid reef fish as endangered or threatened under the Endangered Species Act (ESA) and to designate critical habitat for these species concurrent with the listing. The National Marine Fisheries Service (NMFS) evaluated the petition to determine whether the petitioner provided substantial information as required by the ESA to determine that listing these species may be warranted. On September 3, 2014, the NMFS Pacific Islands Regional Office (PIRO) announced in the Federal Register that the petition presented substantial information that listing may be warranted for the orange clownfish (Amphiprion percula), and NMFS requested information on this species from the public (79 FR 52276). Subsequently, NMFS initiated a status review of this species, which we document in this report. This report summarizes the best available scientific and commercial information on the orange clownfish, and presents an evaluation of the species’ status and extinction risk. On September 3, 2014, NMFS PIRO also announced a negative 90-day finding for the six Indo- Pacific damselfishes: Hawaiian dascyllus (Dascyllus albisella), blue-eyed damselfish (Plectroglyphidodon johnstonianus), black-axil chromis (Chromis atripectoralis), blue-green damselfish (Chromis viridis), reticulated damselfish (Dascyllus reticulatus), and blackbar devil or Dick’s damselfish (Plectroglyphidodon dickii). The NMFS Southeast Regional Office led the response to the petition to list the yellowtail damselfish (Microspathodon chrysurus) and announced a negative 90-day finding (80 FR 8619) for that species on February 18, 2015. In assessing four demographic risks for A. percula -- abundance, growth rate/productivity, spatial structure, and diversity -- we determined that the likelihood of these risks individually contributing to the extinction risk for the species is low or unknown. We also assessed current and predicted threats to the species and determined that the likelihood of these individual threats contributing to the extinction risk of the species throughout its range varies between very low and low-to-medium. We acknowledge that uncertainties exist regarding how these demographic risks and current and predicted threats may affect the species at both the individual and population levels. Of the 12 identified current and predicted threats, our greatest concern relates to the species’ susceptibility and exposure to sedimentation and nutrients, as well as the inadequacy of regulatory mechanisms to address this threat, especially since juveniles and adults occur in shallow water and are non-migratory once they have settled into a host anemone. Therefore, we conservatively assigned a low-to-medium likelihood that both this threat and the inadequate regulatory mechanisms to address this threat may significantly contribute to the extinction risk for A. percula. The range of the species across heterogeneous habitats, the conservatively estimated abundance of 13-18 million individuals, the spatial and temporal variation in threats, coupled with resiliency and potential for trans-generational adaptive capabilities to future impacts all contribute to a low overall vulnerability of the species to the collective threats we have identified. We have determined that the overall extinction risk to A. percula is low, both now and in the foreseeable future. v vi CONTENTS Abstract ............................................................................................................................................v Introduction and Background ..........................................................................................................1 Scope and Intent of this Document ............................................................................................1 Questions and Information Considered in ESA Evaluations .....................................................1 Life History and Ecology .................................................................................................................2 Classification and Distinctive Characteristics ...........................................................................2 Habitat ........................................................................................................................................4 Diet, Feeding, and Growth .........................................................................................................6 Reproduction and Development ................................................................................................7 Settlement and Recruitment .......................................................................................................8 Longevity and Resilience ...........................................................................................................9 Geographic Range ....................................................................................................................10 Distribution and Connectivity ..................................................................................................11 Estimated Abundance ..............................................................................................................14 Assessment of Extinction Risk ......................................................................................................15 Approach to Evaluating Extinction Risk .................................................................................15 Foreseeable Future ...................................................................................................................16 Demographic Risks ..................................................................................................................17 Abundance ...............................................................................................................................17 Population Growth Rate/Productivity ......................................................................................18 Spatial Structure/Connectivity .................................................................................................18 Diversity ...................................................................................................................................19 Analysis of the ESA Section 4(A)(1) Factors ..........................................................................20 Factor A: Present or Threatened Destruction, Modification or Curtailment of Habitat or Range ................................................................................................................21
Recommended publications
  • Petition to List Eight Species of Pomacentrid Reef Fish, Including the Orange Clownfish and Seven Damselfish, As Threatened Or Endangered Under the U.S
    BEFORE THE SECRETARY OF COMMERCE PETITION TO LIST EIGHT SPECIES OF POMACENTRID REEF FISH, INCLUDING THE ORANGE CLOWNFISH AND SEVEN DAMSELFISH, AS THREATENED OR ENDANGERED UNDER THE U.S. ENDANGERED SPECIES ACT Orange Clownfish (Amphiprion percula) photo by flickr user Jan Messersmith CENTER FOR BIOLOGICAL DIVERSITY SUBMITTED SEPTEMBER 13, 2012 Notice of Petition Rebecca M. Blank Acting Secretary of Commerce U.S. Department of Commerce 1401 Constitution Ave, NW Washington, D.C. 20230 Email: [email protected] Samuel Rauch Acting Assistant Administrator for Fisheries NOAA Fisheries National Oceanographic and Atmospheric Administration 1315 East-West Highway Silver Springs, MD 20910 E-mail: [email protected] PETITIONER Center for Biological Diversity 351 California Street, Suite 600 San Francisco, CA 94104 Tel: (415) 436-9682 _____________________ Date: September 13, 2012 Shaye Wolf, Ph.D. Miyoko Sakashita Center for Biological Diversity Pursuant to Section 4(b) of the Endangered Species Act (“ESA”), 16 U.S.C. § 1533(b), Section 553(3) of the Administrative Procedures Act, 5 U.S.C. § 553(e), and 50 C.F.R.§ 424.14(a), the Center for Biological Diversity hereby petitions the Secretary of Commerce and the National Oceanographic and Atmospheric Administration (“NOAA”), through the National Marine Fisheries Service (“NMFS” or “NOAA Fisheries”), to list eight pomacentrid reef fish and to designate critical habitat to ensure their survival. The Center for Biological Diversity (“Center”) is a non-profit, public interest environmental organization dedicated to the protection of imperiled species and their habitats through science, policy, and environmental law. The Center has more than 350,000 members and online activists throughout the United States.
    [Show full text]
  • Anthopleura and the Phylogeny of Actinioidea (Cnidaria: Anthozoa: Actiniaria)
    Org Divers Evol (2017) 17:545–564 DOI 10.1007/s13127-017-0326-6 ORIGINAL ARTICLE Anthopleura and the phylogeny of Actinioidea (Cnidaria: Anthozoa: Actiniaria) M. Daly1 & L. M. Crowley2 & P. Larson1 & E. Rodríguez2 & E. Heestand Saucier1,3 & D. G. Fautin4 Received: 29 November 2016 /Accepted: 2 March 2017 /Published online: 27 April 2017 # Gesellschaft für Biologische Systematik 2017 Abstract Members of the sea anemone genus Anthopleura by the discovery that acrorhagi and verrucae are are familiar constituents of rocky intertidal communities. pleisiomorphic for the subset of Actinioidea studied. Despite its familiarity and the number of studies that use its members to understand ecological or biological phe- Keywords Anthopleura . Actinioidea . Cnidaria . Verrucae . nomena, the diversity and phylogeny of this group are poor- Acrorhagi . Pseudoacrorhagi . Atomized coding ly understood. Many of the taxonomic and phylogenetic problems stem from problems with the documentation and interpretation of acrorhagi and verrucae, the two features Anthopleura Duchassaing de Fonbressin and Michelotti, 1860 that are used to recognize members of Anthopleura.These (Cnidaria: Anthozoa: Actiniaria: Actiniidae) is one of the most anatomical features have a broad distribution within the familiar and well-known genera of sea anemones. Its members superfamily Actinioidea, and their occurrence and exclu- are found in both temperate and tropical rocky intertidal hab- sivity are not clear. We use DNA sequences from the nu- itats and are abundant and species-rich when present (e.g., cleus and mitochondrion and cladistic analysis of verrucae Stephenson 1935; Stephenson and Stephenson 1972; and acrorhagi to test the monophyly of Anthopleura and to England 1992; Pearse and Francis 2000).
    [Show full text]
  • Marine Animal Behaviour in a High CO2 Ocean
    Vol. 536: 259–279, 2015 MARINE ECOLOGY PROGRESS SERIES Published September 29 doi: 10.3354/meps11426 Mar Ecol Prog Ser REVIEW Marine animal behaviour in a high CO2 ocean Jeff C. Clements*, Heather L. Hunt Department of Biology, University of New Brunswick Saint John Campus, 100 Tucker Park Road, Saint John E2L 4L5, NB, Canada ABSTRACT: Recently, the effects of ocean acidification (OA) on marine animal behaviour have garnered considerable attention, as they can impact biological interactions and, in turn, ecosystem structure and functioning. We reviewed current published literature on OA and marine behaviour and synthesize current understanding of how a high CO2 ocean may impact animal behaviour, elucidate critical unknowns, and provide suggestions for future research. Although studies have focused equally on vertebrates and invertebrates, vertebrate studies have primarily focused on coral reef fishes, in contrast to the broader diversity of invertebrate taxa studied. A quantitative synthesis of the direction and magnitude of change in behaviours from current conditions under OA scenarios suggests primarily negative impacts that vary depending on species, ecosystem, and behaviour. The interactive effects of co-occurring environmental parameters with increasing CO2 elicit effects different from those observed under elevated CO2 alone. Although 12% of studies have incorporated multiple factors, only one study has examined the effects of carbonate system variability on the behaviour of a marine animal. Altered GABAA receptor functioning under elevated CO2 appears responsible for many behavioural responses; however, this mechanism is unlikely to be universal. We recommend a new focus on determining the effects of elevated CO2 on marine animal behaviour in the context of multiple environmental drivers and future carbonate system variability, and the mechanisms governing the association between acid-base regulation and GABAA receptor functioning.
    [Show full text]
  • Literature Review
    Literature Review: SEAGRASS AND MANGROVE HABITATS AS REEF FISH NURSERY HABITATS AND CUMULATIVE IMPACTS FROM COASTAL CONSTRUCTION IN FLORIDA, USA (CONTRACT ORDER #: GA133F06SE5828) FINAL Submitted to: Jocelyn Karazsia National Marine Fisheries Service 400 North Congress Ave, Suite 120 West Palm Beach, Florida 33401 561-616-8880 x207 [email protected] Submitted by: Stephanie Williams 22E Calle Muñoz Rivera PO BOX 360 Rincón, Puerto Rico 00677-0360 March 2007 INTRODUCTION: The 1996 amendments to the Magnuson-Stevens Fishery Conservation and Management Act set forth a new mandate for the National Marine Fisheries Service (NMFS), regional fishery management councils, and other Federal agencies to identify and protect important marine and anadromous fish habitat, such as mangroves, seagrasses, coral reefs, hard bottom reefs, and wetlands. The purpose of this project is to complete a literature review of references, including university theses and dissertations, scientific studies, reports, books, and gray literature, regarding the role of seagrasses and mangroves in coral reef ecology and reef fish productivity; and the impacts of coastal construction to reef fish nursery habitats, fish stocks, and the implications of these impacts for the fisheries of Florida, USA. Coastal construction includes beach nourishment, dredging, dock and marina construction, shoreline hardening, and the construction of other structures that result in the elimination or degradation of mangrove and seagrass habitats. This project supports local efforts to implement coastal construction best management practices and to provide information on cumulative impacts on coral reef fish nursery habitats in Florida, USA. References were compiled in the form of an annotated bibliography containing the complete citation of the work, a summarized abstract, the reference location, and keywords.
    [Show full text]
  • Understanding Transformative Forces of Aquaculture in the Marine Aquarium Trade
    The University of Maine DigitalCommons@UMaine Electronic Theses and Dissertations Fogler Library Summer 8-22-2020 Senders, Receivers, and Spillover Dynamics: Understanding Transformative Forces of Aquaculture in the Marine Aquarium Trade Bryce Risley University of Maine, [email protected] Follow this and additional works at: https://digitalcommons.library.umaine.edu/etd Part of the Marine Biology Commons Recommended Citation Risley, Bryce, "Senders, Receivers, and Spillover Dynamics: Understanding Transformative Forces of Aquaculture in the Marine Aquarium Trade" (2020). Electronic Theses and Dissertations. 3314. https://digitalcommons.library.umaine.edu/etd/3314 This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. SENDERS, RECEIVERS, AND SPILLOVER DYNAMICS: UNDERSTANDING TRANSFORMATIVE FORCES OF AQUACULTURE IN THE MARINE AQUARIUM TRADE By Bryce Risley B.S. University of New Mexico, 2014 A THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science (in Marine Policy and Marine Biology) The Graduate School The University of Maine May 2020 Advisory Committee: Joshua Stoll, Assistant Professor of Marine Policy, Co-advisor Nishad Jayasundara, Assistant Professor of Marine Biology, Co-advisor Aaron Strong, Assistant Professor of Environmental Studies (Hamilton College) Christine Beitl, Associate Professor of Anthropology Douglas Rasher, Senior Research Scientist of Marine Ecology (Bigelow Laboratory) Heather Hamlin, Associate Professor of Marine Biology No photograph in this thesis may be used in another work without written permission from the photographer.
    [Show full text]
  • Phylogeny of the Damselfishes (Pomacentridae) and Patterns of Asymmetrical Diversification in Body Size and Feeding Ecology
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.07.430149; this version posted February 8, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Phylogeny of the damselfishes (Pomacentridae) and patterns of asymmetrical diversification in body size and feeding ecology Charlene L. McCord a, W. James Cooper b, Chloe M. Nash c, d & Mark W. Westneat c, d a California State University Dominguez Hills, College of Natural and Behavioral Sciences, 1000 E. Victoria Street, Carson, CA 90747 b Western Washington University, Department of Biology and Program in Marine and Coastal Science, 516 High Street, Bellingham, WA 98225 c University of Chicago, Department of Organismal Biology and Anatomy, and Committee on Evolutionary Biology, 1027 E. 57th St, Chicago IL, 60637, USA d Field Museum of Natural History, Division of Fishes, 1400 S. Lake Shore Dr., Chicago, IL 60605 Corresponding author: Mark W. Westneat [email protected] Journal: PLoS One Keywords: Pomacentridae, phylogenetics, body size, diversification, evolution, ecotype Abstract The damselfishes (family Pomacentridae) inhabit near-shore communities in tropical and temperature oceans as one of the major lineages with ecological and economic importance for coral reef fish assemblages. Our understanding of their evolutionary ecology, morphology and function has often been advanced by increasingly detailed and accurate molecular phylogenies. Here we present the next stage of multi-locus, molecular phylogenetics for the group based on analysis of 12 nuclear and mitochondrial gene sequences from 330 of the 422 damselfish species.
    [Show full text]
  • Thesis and Paper II
    Adaptation of anemonefish to their host anemones: From Genetics to Physiology Nguyen Thi Hai Thanh Thesis for the degree of Philosophiae Doctor (PhD) University of Bergen, Norway 2020 Adaptation of anemonefish to their host anemones: From Genetics to Physiology Nguyen Thi Hai Thanh ThesisAvhandling for the for degree graden of philosophiaePhilosophiae doctorDoctor (ph.d (PhD). ) atved the Universitetet University of i BergenBergen Date of defense:2017 21.02.2020 Dato for disputas: 1111 © Copyright Nguyen Thi Hai Thanh The material in this publication is covered by the provisions of the Copyright Act. Year: 2020 Title: Adaptation of anemonefish to their host anemones: From Genetics to Physiology Name: Nguyen Thi Hai Thanh Print: Skipnes Kommunikasjon / University of Bergen Scientific environment i Scientific environment The work of this doctoral thesis was financed by the Norwegian Agency for Development Cooperation through the project “Incorporating Climate Change into Ecosystem Approaches to Fisheries and Aquaculture Management” (SRV-13/0010) The experiments were carried out at the Center for Aquaculture Animal Health and Breeding Studies (CAAHBS) and Institute of Biotechnology and Environment, Nha Trang University (NTU), Vietnam from 2015 to 2017 under the supervision of Dr Dang T. Binh, Dr Ha L.T.Loc and Assoc. Professor Ngo D. Nghia. The study was continued at the Department of Biology, University of Bergen under the supervision of Professor Audrey J. Geffen. Acknowledgements ii Acknowledgements During these years of my journey, there are so many people I would like to thank for their support in the completion of my PhD. I would like to express my gratitude to my principle supervisor Audrey J.
    [Show full text]
  • Embryonic Development of Percula Clownfish, Amphiprion Percula (Lacepede, 1802)
    Middle-East Journal of Scientific Research 4 (2): 84-89, 2009 ISSN 1990-9233 © IDOSI Publications, 2009 Embryonic Development of Percula Clownfish, Amphiprion percula (Lacepede, 1802) 11K.V. Dhaneesh, T.T. Ajith Kumar and 2T. Shunmugaraj 1Centre of Advanced Study in Marine Biology, Annamalai University Parangipettai-608 502, Tamilnadu, India 2Centre for Marine Living Resources and Ecology, Ministry of Earth Sciences, Cochin, Kerala, India Abstract: The Percula clownfish, Amphiprion percula (Lacepede, 1802) were reared in marine ornamental fish hatchery by using estuarine water to study their spawning behaviour, egg deposition and embryonic development. The spawning was recorded year round with the reproductive cycle between 14-21 days. The eggs were adhesive type, capsule shaped and bright orange in colour measuring 2.0-2.3 mm length and 1.0-1.2 mm width containing fat globules. The process of embryonic development was divided into 26 stages based on the morphological characteristics of the developing embryo. The time elapsed for each embryonic developmental stage was recorded. Hatching took place 151-152 hours after fertilization. Key words: Percula clownfish Captive condition Morphology Embryonic development INTRODUCTION transported to the hatchery at Centre of Advanced Study in Marine Biology, Annamalai University, Parangipettai, The anemonefish, Amphiprion percula is a tropical Tamil Nadu, India. For the better health and survival, the coral reef fish belonging to the family Pomacentridae fishes and anemones were packed in individual polythene and sub family Amphiprioninae and they are one of the bags filled with sufficient oxygen. After transportation, most popular attractions in the marine ornamental fish the fishes and anemones were accommodated in a trade.
    [Show full text]
  • Poisoned Waters
    POISONED WATERS How Cyanide Fishing and the Aquarium Trade Are Devastating Coral Reefs and Tropical Fish Center for Biological Diversity For the Fishes June 2016 Royal blue tang fish / H. Krisp Executive Summary mollusks, and other invertebrates are killed in the vicinity of the cyanide that’s squirted on the reefs to he release of Disney/Pixar’s Finding Dory stun fish so they can be captured for the pet trade. An is likely to fuel a rapid increase in sales of estimated square meter of corals dies for each fish Ttropical reef fish, including royal blue tangs, captured using cyanide.” the stars of this widely promoted new film. It is also Reef poisoning and destruction are expected to likely to drive a destructive increase in the illegal use become more severe and widespread following of cyanide to catch aquarium fish. Finding Dory. Previous movies such as Finding Nemo The problem is already widespread: A new Center and 101 Dalmatians triggered a demonstrable increase for Biological Diversity analysis finds that, on in consumer purchases of animals featured in those average, 6 million tropical marine fish imported films (orange clownfish and Dalmatians respectively). into the United States each year have been exposed In this report we detail the status of cyanide fishing to cyanide poisoning in places like the Philippines for the saltwater aquarium industry and its existing and Indonesia. An additional 14 million fish likely impacts on fish, coral and other reef inhabitants. We died after being poisoned in order to bring those also provide a series of recommendations, including 6 million fish to market, and even the survivors reiterating a call to the National Marine Fisheries are likely to die early because of their exposure to Service, U.S.
    [Show full text]
  • (Actinopterygii: Pomacentridae) from Micronesia, with Comments on Its Phylogenetic Relationships Shang-Yin Vanson Liu1,2*†, Hsuan-Ching Hans Ho3† and Chang-Feng Dai1
    Liu et al. Zoological Studies 2013, 52:6 http://www.zoologicalstudies.com/content/52/1/6 RESEARCH Open Access A new species of Pomacentrus (Actinopterygii: Pomacentridae) from Micronesia, with comments on its phylogenetic relationships Shang-Yin Vanson Liu1,2*†, Hsuan-Ching Hans Ho3† and Chang-Feng Dai1 Abstract Background: Many widely distributed coral reef fishes exhibit cryptic lineages across their distribution. Previous study revealed a cryptic lineage of Pomacentrus coelestis mainly distributed in the area of Micronesia. Herein, we attempted to use molecular and morphological approaches to descript a new species of Pomacentrus. Results: The morphological comparisons have been conducted between cryptic species and P. coelestis. Pomacentrus micronesicus sp. nov. is characterized by 13 to 16 (typically 15) anal fin rays (vs. 13 to 15, typically 14 rays in P. coelestis) and 15 or 16 rakers on the lower limb of the first gill arch (vs. 13 or 14 rakers in P. coelestis). Divergence in cytochrome oxidase subunit I sequences of 4.3% is also indicative of species-level separation of P. micronesicus and P. coelestis. Conclusions: P. micronesicus sp.nov.isdescribedfromtheMarshallIslands, Micronesia on the basis of 21 specimens. Both morphological and genetic evidences support its distinction as a separate species from P. coelestis. Keywords: Cryptic species; Pomacentrus micronesicus; Speciation Background Japan and is widely distributed in the Indo-Pacific region Marine organisms that are morphologically undistinguish- (Allen 1991). Liu et al. (2012) conducted a phylogeographic able but genetically distinct are known as ‘cryptic species’ study of P. coelestis across its distribution using both (Knowlton 2000). In the past decade, DNA sequencing the mtDNA control region and microsatellite loci as has provided an independent means of testing the validity genetic markers and revealed two deeply divergent clades; of existing taxonomic units, revealing cases of inappropriate the first clade was shown to encompass the ‘true’ P.
    [Show full text]
  • Molecular Evolution of Ultraviolet Visual Opsins and Spectral Tuning Of
    bioRxiv preprint doi: https://doi.org/10.1101/2020.06.09.139766; this version posted June 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Seeing Nemo: molecular evolution of ultraviolet visual opsins and spectral tuning of photoreceptors in anemonefishes (Amphiprioninae) Laurie J. Mitchell 1, Karen L. Cheney 1, Wen-Sung Chung 2, N. Justin Marshall 2, Kyle Michie 2, 3, Fabio Cortesi 2 1 School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia 2 Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia 3 King’s College, Cambridge, CB2 1ST, UK *Corresponding authors: [email protected], [email protected] Keywords: Visual opsins, spectral tuning, reef fish vision, anemonefishes, ultraviolet, gene duplication Abstract Many animals can see short-wavelength or ultraviolet (UV) light (shorter than 400 nm) undetectable to human vision. UV vision may have functional importance in many taxa including for foraging and communication in birds, reptiles, insects and teleost fishes. Shallow coral reefs transmit a broad spectrum of light and are rich in UV; driving the evolution of diverse spectral sensitivities in teleost reef fishes, including UV-sensitivity. However, the identities and sites of the specific visual genes that underly vision in reef fishes remain elusive and are useful in determining how molecular evolution has tuned vision to meet the ecological demands of life on the reef.
    [Show full text]
  • Disneynature DOLPHIN REEF Educator's Guide
    Educator’s Guide Grades 2-6 n DOLPHIN REEF, Disneynature dives under the sea Ito frolic with some of the planet’s most engaging animals: dolphins. Echo is a young bottlenose dolphin who can’t quite decide if it’s time to grow up and take on new responsibilities—or give in to his silly side and just have fun. Dolphin society is tricky, and the coral reef that Echo and his family call home depends on all of its inhabitants to keep it healthy. But with humpback whales, orcas, sea turtles and cuttlefish seemingly begging for his attention, Echo has a tough time resisting all that the ocean has to offer. The Disneynature DOLPHIN REEF Educator’s Guide includes multiple standards-aligned lessons and activities targeted to grades 2 through 6. The guide introduces students to a variety of topics, including: • Animal Behavior • Biodiversity • Culture and the Arts and Natural History • Earth’s Systems • Making a Positive Difference • Habitat and Ecosystems for Wildlife Worldwide Educator’s Guide Objectives 3 Increase students’ 3 Enhance students’ viewing 3 Promote life-long 3 Empower you and your knowledge of the of the Disneynature film conservation values students to create positive amazing animals and DOLPHIN REEF and and STEAM-based skills changes for wildlife in habitats of Earth’s oceans inspire an appreciation through outdoor natural your school, community through interactive, for the wildlife and wild exploration and discovery. and world. interdisciplinary and places featured in the film. inquiry-based lessons. Disney.com/nature 2 Content provided by education experts at Disney’s Animals, Science and Environment © 2019 Disney Enterprises, Inc.
    [Show full text]