C-Type Natriuretic Peptide/Natriuretic Peptide Receptor 2 Is Involved in Cell Proliferation and Testosterone Production in Mouse Leydig Cells

Total Page:16

File Type:pdf, Size:1020Kb

C-Type Natriuretic Peptide/Natriuretic Peptide Receptor 2 Is Involved in Cell Proliferation and Testosterone Production in Mouse Leydig Cells Original Article pISSN: 2287-4208 / eISSN: 2287-4690 World J Mens Health Published online Oct 23, 2018 https://doi.org/10.5534/wjmh.180041 C-Type Natriuretic Peptide/Natriuretic Peptide Receptor 2 Is Involved in Cell Proliferation and Testosterone Production in Mouse Leydig Cells Lei Yang1,3 , Lanjie Lei2 , Qihan Zhao1 , Ying Gong1,3 , Gaopeng Guan2,3 , Shaoxin Huang1 1College of Basic Medical Science, 2Clinical Skills Center, Affiliated Hospital of Jiujiang University, 3Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, China Purpose: This study investigated the role of natriuretic peptide receptor 2 (NPR2) on cell proliferation and testosterone secre- tion in mouse Leydig cells. Materials and Methods: Mouse testis of different postnatal stages was isolated to detect the expression C-type natriuretic peptide (CNP) and its receptor NPR2 by quantitative reverse transcription polymerase chain reaction (RT-qPCR). Leydig cells isolated from mouse testis were cultured and treated with shNPR2 lentiviruses or CNP. And then the cyclic guanosine mono- phosphate production, testosterone secretion, cell proliferation, cell cycle and cell apoptosis in mouse Leydig cells were ana- lyzed by ELISA, RT-qPCR, Cell Counting Kit-8, and flow cytometry. Moreover, the expression of NPR2, cell cycle, apoptosis proliferation and cell cycle related gene were detected by RT-qPCR and Western blot. Results: Knockdown of NPR2 by RNAi resulted in S phase cell cycle arrest, cell apoptosis, and decreased testosterone secre- tion in mouse Leydig cells. Conclusions: Our study provides more evidences to better understand the function of CNP/NPR2 pathway in male reproduc- tion, which may help us to treat male infertility. Keywords: Germ cells; Leydig cells; Testicular diseases; Testosterone This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. INTRODUCTION Each of them is configured with a different location and has specific functions: Germ cells produce sperm Testes, as a critical component of the male reproduc- and are located in the seminiferous tubules; Leydig tive and endocrine tract, the primary functions is to cells produce sex hormones and are distributed in the produce sperm and androgens. Mammalian testes con- connective tissue of the convoluted seminiferous tu- sists of several well-defined cell types, including germ bules; Sertoli cells form the basement membrane of the cells of different stages, Sertoli cells and Leydig cells. seminiferous tubules and offer the environment neces- Received: May 21, 2018 Revised: Sep 10, 2018 Accepted: Sep 10, 2018 Published online Oct 23, 2018 Correspondence to: Lei Yang https://orcid.org/0000-0001-8859-9692 College of Basic Medical Science, Jiujiang University, 17 Lufeng Rd, Xunyang Qu, Jiujiang Shi, Jiangxi Sheng 332000, China. Tel: +86-0792-8570043, Fax: +86-0792-8577050, E-mail: [email protected] Correspondence to: Shaoxin Huang https://orcid.org/0000-0001-9801-4133 College of Basic Medical Science, Jiujiang University, 17 Lufeng Rd, Xunyang Qu, Jiujiang Shi, Jiangxi Sheng 332000, China. Tel: +86-0792-8570043, Fax: +86-0792-8577050, E-mail: [email protected] Copyright © 2018 Korean Society for Sexual Medicine and Andrology https://doi.org/10.5534/wjmh.180041 sary for the differentiation and maturation of germ 3β-hydroxysteroid dehydrogenase (3β-HSD) staining cells [1]. The importance of Leydig cells in male repro- using the modified Wiebe method. Simply, Leydig cells duction is exemplified by the fact that loss of func- were fixed in 1% paraformaldehyde for 20 minutes tion of gene such as the luteinizing hormone receptor and then washed with phosphate buffer saline (PBS) (LHR) [2], insulin-like factor 3 (Insl3) [3], and enzymes for three times. After washed the cells were incubated involved in testosterone biosynthesis [4]. with 1 mL PBS containing 1 mg bovine serum albumin, C-type natriuretic peptide (CNP) and its receptor 1.5 mg nicotinamide adenine dinucleotide, 0.2 mg nitro- (natriuretic peptide receptor 2, NPR2) play a role as blue tetrazolium and 0.25 mg dehydroepiandrosterone an oocyte maturation inhibitor in mammalian [5]. Re- for 2 hours at 37°C in the dark. Then the cells were cent studies suggested that CNP can improve oocyte gently rinsed with PBS and observed microscopically. maturation and developmental competence in vitro [6]. During all the culture, the cells were cultured with Compared with numerous studies about CNP/NPR2 on Dulbecco’s modified Eagle’s medium/F-12 containing female reproduction, there is little research about CNP/ 10% fetal bovine serum with or without CNP (CNP NPR2 in male reproduction. Previous studies reported were used to active CNP/NPR2 signaling pathway), that CNP regulates blood-testis barrier dynamics and is unless otherwise stated. related with spermatogenesis [7]. Sogawa et al [8] inves- tigated phenotype of NPR2-defcient short-limbed-dwarfs 3. Transfection of cells with shRNA- mice, and found that the developmental onset and ac- natriuretic peptide receptor 2 lentiviral quisition of spermatogenic function is delayed in NPR2 shRNA-NPR2 and shRNA-negative lentiviral vec- mutant mice. Subsequently, two studies reported that tor were purchased from Genechem (Shanghai, China). CNP/NPR2 is related with sperm motility, acrosome The mouse Leydig cells were seeded into 6-well plates, reaction and induces sperm attraction for fertilization, which were cultured to 30% to 40% confluence and in- thus regulating the reproductive function of males [9,10]. fected by addition of 1×108 TU/mL lentivirus, 5 µg/mL However, the function of CNP/NPR2 in male repro- polybrene and complete medium. After 12 hours, the duction remains largely unknown. In this study, we lentivirus solution was replaced by complete culture aimed to study the role of CNP/NPR2 on cell prolif- medium and cultured for 36 hours. And the cells were eration, testosterone secretion and related regulatory observed under a fluorescence microscope to evaluate mechanisms in mouse Leydig cells. the transfection efficiency. The efficiency and specific- ity of siRNA mediated knockdown were examined by MATERIALS AND METHODS Western blot and quantitative reverse transcription polymerase chain reaction (RT-qPCR). After determine 1. Chemicals and mice the NPR2 knockdown efficiency, the cells were cul- All chemicals were purchased from Sigma-Aldrich tured for subsequent experiments. (St. Louis, MO, USA) unless otherwise stated. Male Kunming mice were purchased from the Laboratory 4. Cell proliferation assay Animal Central of Jiujiang University. All mice were After culturing with CNP for 24 hours, Cell Count- fed a typical diet of lab chow and housed in a single ing Kit-8 (CCK8) was added to the cells (10 µL/well). room under conditions of constant temperature (25°C– Then the cells were incubated for 1 hour at 37°C and 28°C), humidity (55%±5%) and lighting (12 hours light, measured at 450 nm by a Microplate Reader (Bio-Rad 12 hours dark cycle) [11]. All procedures were approved 680, Hercules, CA, USA). The experiments were per- by the Committee for the Ethics on Animal Care and formed in triplicate. Experiments of Jiujiang University (approval No. SYXK(GAN)2017-0001). 5. Cyclic guanosine monophosphate measurement 2. Isolation and cultures of Leydig cells After 30 minutes of treatment, the cells were col- Leydig cells were isolated from the testes of 42- to lected to measure the cyclic guanosine monophosphate 49-day-old Kunming mice and cultured as previous (cGMP). The cGMP measurement was according to the report [12]. The purity of Leydig cells was assessed by procedure described as our previous report [6]. The lev- 2 www.wjmh.org Lei Yang, et al: CNP/NPR2 Promotes Testosterone Production els of cGMP were determined using cGMP-EIA kits ob- 10. Immunohistochemistry tained from Cayman Chemicals (Ann Arbor, MI, USA). Testes of 42- to 49-day-old Kunming mice were fixed Each sample was measured in triplicate. in 4% paraformaldehyde in PBS for one week, dehy- drated through a graded ethanol series, and embed- 6. Testosterone measurement ded in paraffin. Sections 7 mm thick were mounted After 24 hours of treatment, mouse Leydig cells onto glass slides precoated with Poly-L-Lysine Solution were counted. The concentration of testosterone in the and incubated overnight at 37°C. After dehydrating, culture supernatants (100,000 cell/mL culture superna- samples were placed in citrate buffer (pH=6.0). Antigen tant) was measured with ELISA kits (Ji Yin Mei; Co. retrieval was performed by treating samples in a mi- Ltd., Wuhan, China) according to the manufacturer’s crowave oven at 92°C for 15 minutes; slides were cooled instructions. Each sample was measured in triplicate. and then washed in PBS. The sections were pretreated with 3% (vol/vol) H2O2 in methanol to quench endog- 7. Cell cycle analysis enous peroxidase activity. After being washed with Mouse Leydig cells of the respective experimental PBS, sections were incubated with 10% goat serum for groups were collected and fixed in ice-cold 70% etha- 30 minutes at 37°C. After blocking, sections were incu- nol overnight at 4°C after the cells were treatment bated overnight at 4°C with rabbit polyclonal antibody and count. Then, the cells were washed with PBS and against NPR2 (Sigma-Aldrich; 1:50 dilutions) in a hu- stained with propidium iodide (PI) solution for 20 midified chamber. After washing, followed by incuba- minutes at 25°C in the dark. Finally, the cells were tion with biotinylated anti-rabbit immunoglobulin G analyzed by flow cytometry using a BD FACS Calibur antibody (Beijing 4A Biotech Co., Ltd, Beijing, China) at system and Mod Fit LT for MacV3.0 software. For each 37°C for 1 hour, and then sections were incubated with analysis, a minimum of 10,000 cells were analyzed.
Recommended publications
  • NPR1 Paralogs of Arabidopsis and Their Role in Salicylic Acid Perception
    RESEARCH ARTICLE NPR1 paralogs of Arabidopsis and their role in salicylic acid perception ☯ ¤a☯ ¤b MarõÂa Jose Castello , Laura Medina-PucheID , JuliaÂn Lamilla , Pablo TorneroID* Instituto de BiologõÂa Molecular y Celular de Plantas, Universitat Politècnica de València -Consejo Superior de Investigaciones CientõÂficas, Valencia, SPAIN ☯ These authors contributed equally to this work. ¤a Current address: Shanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China a1111111111 ¤b Current address: Laboratorio de BiotecnologõÂa Vegetal, Facultad de Ciencias BaÂsicas y Aplicadas, a1111111111 Universidad Militar "Nueva Granada", Costado Oriental, Colombia a1111111111 * [email protected] a1111111111 a1111111111 Abstract Salicylic acid (SA) is responsible for certain plant defence responses and NON EXPRESSER OF PATHOGENESIS RELATED 1 (NPR1) is the master regulator of SA perception. In Arabi- OPEN ACCESS dopsis thaliana there are five paralogs of NPR1. In this work we tested the role of these para- Citation: Castello MJ, Medina-Puche L, Lamilla J, logs in SA perception by generating combinations of mutants and transgenics. NPR2 was Tornero P (2018) NPR1 paralogs of Arabidopsis and their role in salicylic acid perception. PLoS the only paralog able to partially complement an npr1 mutant. The null npr2 reduces SA per- ONE 13(12): e0209835. https://doi.org/10.1371/ ception in combination with npr1 or other paralogs. NPR2 and NPR1 interacted in all the con- journal.pone.0209835 ditions tested, and NPR2 also interacted with other SA-related proteins as NPR1 does. The Editor: Hua Lu, University of Maryland Baltimore remaining paralogs behaved differently in SA perception, depending on the genetic back- County, UNITED STATES ground, and the expression of some of the genes induced by SA in an npr1 background was Received: April 26, 2018 affected by the presence of the paralogs.
    [Show full text]
  • A Novel Variant of FGFR3 Causes Proportionate Short Stature
    S G Kant and others FGFR3 and proportionate short 172:6 763–770 Clinical Study stature A novel variant of FGFR3 causes proportionate short stature Sarina G Kant1, Iveta Cervenkova2, Lukas Balek2, Lukas Trantirek3, Gijs W E Santen1, Martine C de Vries4, Hermine A van Duyvenvoorde1, Michiel J R van der Wielen1, Annemieke J M H Verkerk5, Andre´ G Uitterlinden5, Sabine E Hannema4, Jan M Wit4, Wilma Oostdijk4, Pavel Krejci2,6,* and Monique Losekoot1,* 1Department of Clinical Genetics, Leiden University Medical Center, PO Box 9600, 2300RC, Leiden, The Netherlands, 2Department of Biology, Faculty of Medicine and 3Central European Institute of Technology, Masaryk University, Brno, Czech Republic, 4Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands, Correspondence 5Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands and 6Department of should be addressed Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA to S G Kant *(P Krejci and M Losekoot contributed equally to this work) Email [email protected] Abstract Objective: Mutations of the fibroblast growth factor receptor 3 (FGFR3) cause various forms of short stature, of which the least severe phenotype is hypochondroplasia, mainly characterized by disproportionate short stature. Testing for an FGFR3 mutation is currently not part of routine diagnostic testing in children with short stature without disproportion. Design: A three-generation family A with dominantly transmitted proportionate short stature was studied by whole-exome sequencing to identify the causal gene mutation. Functional studies and protein modeling studies were performed to confirm the pathogenicity of the mutation found in FGFR3. We performed Sanger sequencing in a second family B with dominant proportionate short stature and identified a rare variant in FGFR3.
    [Show full text]
  • Mutations in C-Natriuretic Peptide (NPPC): a Novel Cause of Autosomal Dominant Short Stature
    © American College of Medical Genetics and Genomics ORIGINAL RESEARCH ARTICLE Mutations in C-natriuretic peptide (NPPC): a novel cause of autosomal dominant short stature Alfonso Hisado-Oliva, PhD1,2,3, Alba Ruzafa-Martin, MSc1, Lucia Sentchordi, MD, MSc1,3,4, Mariana F.A. Funari, MSc5, Carolina Bezanilla-López, MD6, Marta Alonso-Bernáldez, MSc1, Jimena Barraza-García, MD, MSc1,2,3, Maria Rodriguez-Zabala, MSc1, Antonio M. Lerario, MD, PhD7,8, Sara Benito-Sanz, PhD1,2,3, Miriam Aza-Carmona, PhD1,2,3, Angel Campos-Barros, PhD1,2, Alexander A.L. Jorge, MD, PhD5,7 and Karen E. Heath, PhD1,2,3 Purpose: C-type natriuretic peptide (CNP) and its principal receptor, reductions in cyclic guanosine monophosphate synthesis, confirming natriuretic peptide receptor B (NPR-B), have been shown to be their pathogenicity. Interestingly,onehasbeenpreviouslylinkedto important in skeletal development. CNP and NPR-B are encoded by skeletal abnormalities in the spontaneous Nppc mouse long-bone natriuretic peptide precursor-C (NPPC) and natriuretic peptide receptor abnormality (lbab)mutant. NPR2 NPR2 2( ) genes, respectively. While mutations have been Conclusions: Our results demonstrate, for the first time, that NPPC describedinpatientswithskeletaldysplasias and idiopathic short stature mutations cause autosomal dominant short stature in humans. The (ISS), and several Npr2 and Nppc skeletal dysplasia mouse models exist, NPPC NPPC mutations cosegregated with a short stature and small hands no mutations in have been described in patients to date. phenotype. A CNP analog, which is currently in clinical trials for the Methods: NPPC was screened in 668 patients (357 with dispro- treatment of achondroplasia, seems a promising therapeutic approach, portionate short stature and 311 with autosomal dominant ISS) and 29 since it directly replaces the defective protein.
    [Show full text]
  • Cldn19 Clic2 Clmp Cln3
    NewbornDx™ Advanced Sequencing Evaluation When time to diagnosis matters, the NewbornDx™ Advanced Sequencing Evaluation from Athena Diagnostics delivers rapid, 5- to 7-day results on a targeted 1,722-genes. A2ML1 ALAD ATM CAV1 CLDN19 CTNS DOCK7 ETFB FOXC2 GLUL HOXC13 JAK3 AAAS ALAS2 ATP1A2 CBL CLIC2 CTRC DOCK8 ETFDH FOXE1 GLYCTK HOXD13 JUP AARS2 ALDH18A1 ATP1A3 CBS CLMP CTSA DOK7 ETHE1 FOXE3 GM2A HPD KANK1 AASS ALDH1A2 ATP2B3 CC2D2A CLN3 CTSD DOLK EVC FOXF1 GMPPA HPGD K ANSL1 ABAT ALDH3A2 ATP5A1 CCDC103 CLN5 CTSK DPAGT1 EVC2 FOXG1 GMPPB HPRT1 KAT6B ABCA12 ALDH4A1 ATP5E CCDC114 CLN6 CUBN DPM1 EXOC4 FOXH1 GNA11 HPSE2 KCNA2 ABCA3 ALDH5A1 ATP6AP2 CCDC151 CLN8 CUL4B DPM2 EXOSC3 FOXI1 GNAI3 HRAS KCNB1 ABCA4 ALDH7A1 ATP6V0A2 CCDC22 CLP1 CUL7 DPM3 EXPH5 FOXL2 GNAO1 HSD17B10 KCND2 ABCB11 ALDOA ATP6V1B1 CCDC39 CLPB CXCR4 DPP6 EYA1 FOXP1 GNAS HSD17B4 KCNE1 ABCB4 ALDOB ATP7A CCDC40 CLPP CYB5R3 DPYD EZH2 FOXP2 GNE HSD3B2 KCNE2 ABCB6 ALG1 ATP8A2 CCDC65 CNNM2 CYC1 DPYS F10 FOXP3 GNMT HSD3B7 KCNH2 ABCB7 ALG11 ATP8B1 CCDC78 CNTN1 CYP11B1 DRC1 F11 FOXRED1 GNPAT HSPD1 KCNH5 ABCC2 ALG12 ATPAF2 CCDC8 CNTNAP1 CYP11B2 DSC2 F13A1 FRAS1 GNPTAB HSPG2 KCNJ10 ABCC8 ALG13 ATR CCDC88C CNTNAP2 CYP17A1 DSG1 F13B FREM1 GNPTG HUWE1 KCNJ11 ABCC9 ALG14 ATRX CCND2 COA5 CYP1B1 DSP F2 FREM2 GNS HYDIN KCNJ13 ABCD3 ALG2 AUH CCNO COG1 CYP24A1 DST F5 FRMD7 GORAB HYLS1 KCNJ2 ABCD4 ALG3 B3GALNT2 CCS COG4 CYP26C1 DSTYK F7 FTCD GP1BA IBA57 KCNJ5 ABHD5 ALG6 B3GAT3 CCT5 COG5 CYP27A1 DTNA F8 FTO GP1BB ICK KCNJ8 ACAD8 ALG8 B3GLCT CD151 COG6 CYP27B1 DUOX2 F9 FUCA1 GP6 ICOS KCNK3 ACAD9 ALG9
    [Show full text]
  • Regulation of the Natriuretic Peptide Receptor 2 (Npr2) by Phosphorylation of Juxtamembrane Serine and Threonine Residues Is
    This Accepted Manuscript has not been copyedited and formatted. The final version may differ from this version. Research Articles: Development/Plasticity/Repair Regulation of the natriuretic peptide receptor 2 (Npr2) by phosphorylation of juxtamembrane serine and threonine residues is essential for bifurcation of sensory axons Hannes Schmidt1,2, Deborah M. Dickey3, Alexandre Dumoulin1,4, Marie Octave2, Jerid W. Robinson3, Ralf Kühn1, Robert Feil2, Lincoln R. Potter3 and Fritz G. Rathjen1 1Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany 2Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany 3Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Medical School, 6-155 Jackson Hall, 321 Church St., Minneapolis, MN 55455, USA 4Berlin Institute of Health, Anna-Louisa-Karsch-Str. 2, 10178 Berlin, Germany DOI: 10.1523/JNEUROSCI.0495-18.2018 Received: 8 February 2018 Revised: 28 August 2018 Accepted: 18 September 2018 Published: 24 September 2018 Author contributions: H.S., D.M.D., R.K., R.F., L.P., and F.G.R. designed research; H.S., D.M.D., A.D., M.O., J.R., R.K., and F.G.R. performed research; H.S., D.M.D., A.D., M.O., J.R., R.K., R.F., L.P., and F.G.R. analyzed data; H.S., R.F., L.P., and F.G.R. edited the paper; H.S. and F.G.R. wrote the paper; L.P. and F.G.R. wrote the first draft of the paper. Conflict of Interest: The authors declare no competing financial interests.
    [Show full text]
  • Dephosphorylation of the NPR2 Guanylyl Cyclase Contributes to Inhibition of Bone Growth by Fibroblast Growth Factor
    bioRxiv preprint first posted online Sep. 25, 2017; doi: http://dx.doi.org/10.1101/193847. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. Dephosphorylation of the NPR2 guanylyl cyclase contributes to inhibition of bone growth by fibroblast growth factor Leia C. Shuhaibar1*, Jerid W. Robinson2, Ninna P. Shuhaibar1, Jeremy R. Egbert1, Giulia Vigone1, Valentina Baena1, Deborah Kaback1, Siu-Pok Yee1, Robert Feil3, Melanie C. Fisher4, Caroline N. Dealy4, Lincoln R. Potter2*, Laurinda A. Jaffe1* 1Department of Cell Biology and 4Center for Regenerative Medicine and Skeletal Development, University of Connecticut Health Center, Farmington CT USA, 2Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis MN USA, and 3Interfakultäres Institut für Biochemie, University of Tübingen, 72076 Tübingen, Germany *For correspondence: [email protected] (LCS); [email protected] (LRP); [email protected] (LAJ) Abstract Activating mutations in fibroblast growth factor (FGF) receptor 3 and inactivating mutations in the NPR2 guanylyl cyclase cause similar forms of dwarfism, but how these two signaling systems interact to regulate bone growth is poorly understood. Here, by use of a mouse model in which NPR2 cannot be dephosphorylated, we show that bone elongation is opposed when NPR2 is dephosphorylated and thus produces less cyclic GMP. By developing an in vivo imaging system to measure cyclic GMP levels in intact tibia, we show that FGF-induced dephosphorylation of NPR2 decreases its guanylyl cyclase activity in growth plate chondrocytes in living bone. Thus FGF signaling lowers cyclic GMP in the growth plate, which counteracts bone elongation.
    [Show full text]
  • Regulation of the Natriuretic Peptide Receptor 2 (Npr2) By
    9768 • The Journal of Neuroscience, November 7, 2018 • 38(45):9768–9780 Development/Plasticity/Repair Regulation of the Natriuretic Peptide Receptor 2 (Npr2) by Phosphorylation of Juxtamembrane Serine and Threonine Residues Is Essential for Bifurcation of Sensory Axons Hannes Schmidt,1,2 Deborah M. Dickey,3 XAlexandre Dumoulin,1 Marie Octave,2 Jerid W. Robinson,3 Ralf Ku¨hn,1,4 Robert Feil,2 Lincoln R. Potter,3 and XFritz G. Rathjen1 1Max Delbru¨ck Center for Molecular Medicine, 13092 Berlin, Germany, 2Interfaculty Institute of Biochemistry, University of Tu¨bingen, 72076 Tu¨bingen, Germany, 3Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota 55455, and 4Berlin Institute of Health, 10178 Berlin, Germany cGMP signaling elicited by activation of the transmembrane receptor guanylyl cyclase Npr2 (also known as guanylyl cyclase B) by the ligand CNP controls sensory axon bifurcation of DRG and cranial sensory ganglion (CSG) neurons entering the spinal cord or hindbrain, respectively. Previous studies have shown that Npr2 is phosphorylated on serine and threonine residues in its kinase homology domain (KHD). However, it is unknown whether phosphorylation of Npr2 is essential for axon bifurcation. Here, we generated a knock-in mouse line in which the seven regulatory serine and threonine residues in the KHD of Npr2 were substituted by alanine (Npr2-7A), resulting in a nonphosphorylatable enzyme. Real-time imaging of cGMP in DRG neurons with a genetically encoded fluorescent cGMP sensor or biochemical analysis of guanylyl cyclase activity in brain or lung tissue revealed the absence of CNP-induced cGMP generation in the Npr27A/7A mutant.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,741,861 B2 Mann (45) Date of Patent: Jun
    USOO8741861 B2 (12) United States Patent (10) Patent No.: US 8,741,861 B2 Mann (45) Date of Patent: Jun. 3, 2014 (54) METHODS OF NOVEL THERAPEUTIC McLaughlin et al. Pulmonary arterial hypertension, 2006, Circula CANDDATE DENTIFICATION THROUGH tion, 1.14:1417-1431).* GENE EXPRESSION ANALYSIS IN Vidal et al. Making sense of antisense, 2005, European Journal of VASCULAR-RELATED DISEASES Cancer, 41:2812-18.* Barst et al. Diagnosis and Differential Assessment of pulmonary (75) Inventor: David M. Mann, San Diego, CA (US) arterial hypertension, 2004, Journal of the American College of Car diology, vol.43, No. 12, Supplement S. p. 40S-47S.* (73) Assignee: Vascular Biosciences, San Diego, CA Esau et al., WO 2005/013901 A2, only pp. 1-250 are included.* (US) Chan and Loscalzo, “Pathogenic Mechanisms of Pulmonary Arterial Hypertension.” (2007) Journal of Molecular and Cellular Cardiology (*) Notice: Subject to any disclaimer, the term of this 44:14-30. patent is extended or adjusted under 35 Geracietal., “Gene Expression Patterns in the Lungs of Patients with U.S.C. 154(b) by 177 days. Primary Pulmonary Hypertension: A Gene Microarray Analysis.” (2001) Circulation Research 88:555-562. (21) Appl. No.: 12/934,950 Giaid and Saleh, “Reduced Expression of Endothelial Nitric Oxide Synthase in the Lungs of Patients with Pulmonary Hypertension.” (22) PCT Filed: Mar. 27, 2009 (1995) New England Journal of Medicine 333:214-221. Hoshikawa et al., “Hypoxia Induces Different Genes in the Lungs of (86). PCT No.: PCT/US2O09/038685 Rats Compared with Mice.” (2003) Physiological Genomics 12:209 219. S371 (c)(1), Kwapiszewska et al., “Expression Profiling of Laser-Microdissected (2), (4) Date: Dec.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2003/0198970 A1 Roberts (43) Pub
    US 2003O19897OA1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2003/0198970 A1 Roberts (43) Pub. Date: Oct. 23, 2003 (54) GENOSTICS clinical trials on groups or cohorts of patients. This group data is used to derive a Standardised method of treatment (75) Inventor: Gareth Wyn Roberts, Cambs (GB) which is Subsequently applied on an individual basis. There is considerable evidence that a significant factor underlying Correspondence Address: the individual variability in response to disease, therapy and FINNEGAN, HENDERSON, FARABOW, prognosis lies in a person's genetic make-up. There have GARRETT & DUNNER been numerous examples relating that polymorphisms LLP within a given gene can alter the functionality of the protein 1300 ISTREET, NW encoded by that gene thus leading to a variable physiological WASHINGTON, DC 20005 (US) response. In order to bring about the integration of genomics into medical practice and enable design and building of a (73) Assignee: GENOSTIC PHARMA LIMITED technology platform which will enable the everyday practice (21) Appl. No.: 10/206,568 of molecular medicine a way must be invented for the DNA Sequence data to be aligned with the identification of genes (22) Filed: Jul. 29, 2002 central to the induction, development, progression and out come of disease or physiological States of interest. Accord Related U.S. Application Data ing to the invention, the number of genes and their configu rations (mutations and polymorphisms) needed to be (63) Continuation of application No. 09/325,123, filed on identified in order to provide critical clinical information Jun. 3, 1999, now abandoned. concerning individual prognosis is considerably less than the 100,000 thought to comprise the human genome.
    [Show full text]
  • C-Type Natriuretic Peptide (CNP) Is a Bifurcation Factor for Sensory Neurons
    C-type natriuretic peptide (CNP) is a bifurcation factor for sensory neurons Hannes Schmidta, Agne Stonkutea, Rene´ Ju¨ ttnera, Doris Koeslingb, Andreas Friebeb,1, and Fritz G. Rathjena,2 aDepartment of Developmental Neurobiology, Max Delbru¨ck Center for Molecular Medicine, Robert Ro¨ssle Strasse 10, D-13092 Berlin, Germany; and bInstitute for Pharmacology and Toxicology, Ruhr University Bochum, D-44780 Bochum, Germany Edited by Cornelia I. Bargmann, The Rockefeller University, New York, NY, and approved August 6, 2009 (received for review June 12, 2009) Neuronal circuits are shaped during development by the coordi- that is expressed in the dorsal horn of the embryonic spinal cord nated action of guidance factors and signals that regulate axonal as a ligand that induces bifurcation of ingrowing sensory axons branching. Unlike guidance cues, the molecules and signaling via its receptor Npr2. cascades that underlie axonal branching remain to be resolved. Here we show that the secreted molecule C-type natriuretic pep- Results tide (CNP) induces a cGMP signaling cascade via its receptor Expression of CNP in the Dorsal Spinal Cord During the Ingrowth of particulate guanylyl cyclase Npr2 which is essential for sensory Sensory Neurons. Preferential activation of Npr2 occurs via the axon bifurcation at the dorsal root entry zone (DREZ) of the spinal natriuretic peptide ligands (CNPϾϾANPϾϾBNP) (23) or weakly cord. In contrast, another form of sensory axon branching— via the small GTPase Rac and the p21-activated kinase pathway collateral formation—is not affected by this pathway. We also (24). To identify factor(s) responsible for sensory axon bifurca- demonstrate that cGMP signaling via the nitric oxide-stimulated tion at the DREZ via activation of guanylyl cyclase Npr2 we soluble guanylyl cyclase system (NO-GC) is dispensable for sensory concentrated on natriuretic peptides.
    [Show full text]
  • Dephosphorylation of the NPR2 Guanylyl Cyclase Contributes To
    RESEARCH ARTICLE Dephosphorylation of the NPR2 guanylyl cyclase contributes to inhibition of bone growth by fibroblast growth factor Leia C Shuhaibar1*, Jerid W Robinson2†, Giulia Vigone1†, Ninna P Shuhaibar1, Jeremy R Egbert1, Valentina Baena1, Tracy F Uliasz1, Deborah Kaback1, Siu-Pok Yee1, Robert Feil3, Melanie C Fisher4, Caroline N Dealy4, Lincoln R Potter2*, Laurinda A Jaffe1* 1Department of Cell Biology, University of Connecticut Health Center, Farmington, United States; 2Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, United States; 3Interfakulta¨ res Institut fu¨ r Biochemie, University of Tu¨ bingen, Tu¨ bingen, Germany; 4Center for Regenerative Medicine and Skeletal Development, University of Connecticut Health Center, Farmington, United States Abstract Activating mutations in fibroblast growth factor (FGF) receptor 3 and inactivating mutations in the NPR2 guanylyl cyclase both cause severe short stature, but how these two signaling systems interact to regulate bone growth is poorly understood. Here, we show that bone elongation is increased when NPR2 cannot be dephosphorylated and thus produces more cyclic GMP. By developing an in vivo imaging system to measure cyclic GMP production in intact tibia, we show that FGF-induced dephosphorylation of NPR2 decreases its guanylyl cyclase activity in *For correspondence: growth plate chondrocytes in living bone. The dephosphorylation requires a PPP-family [email protected] (LCS); phosphatase. Thus FGF signaling lowers cyclic GMP production in the growth plate, which [email protected] (LRP); counteracts bone elongation. These results define a new component of the signaling network by [email protected] (LAJ) which activating mutations in the FGF receptor inhibit bone growth. †These authors contributed DOI: https://doi.org/10.7554/eLife.31343.001 equally to this work Competing interests: The authors declare that no Introduction competing interests exist.
    [Show full text]
  • Dephosphorylation of the NPR2 Guanylyl Cyclase Contributes to Inhibition of Bone Growth by Fibroblast Growth Factor
    bioRxiv preprint doi: https://doi.org/10.1101/193847; this version posted September 28, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Dephosphorylation of the NPR2 guanylyl cyclase contributes to inhibition of bone growth by fibroblast growth factor Leia C. Shuhaibar1*, Jerid W. Robinson2, Ninna P. Shuhaibar1, Jeremy R. Egbert1, Giulia Vigone1, Valentina Baena1, Deborah Kaback1, Siu-Pok Yee1, Robert Feil3, Melanie C. Fisher4, Caroline N. Dealy4, Lincoln R. Potter2*, Laurinda A. Jaffe1* 1Department of Cell Biology and 4Center for Regenerative Medicine and Skeletal Development, University of Connecticut Health Center, Farmington CT USA, 2Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis MN USA, and 3Interfakultäres Institut für Biochemie, University of Tübingen, 72076 Tübingen, Germany *For correspondence: [email protected] (LCS); [email protected] (LRP); [email protected] (LAJ) Abstract Activating mutations in fibroblast growth factor (FGF) receptor 3 and inactivating mutations in the NPR2 guanylyl cyclase cause similar forms of dwarfism, but how these two signaling systems interact to regulate bone growth is poorly understood. Here, by use of a mouse model in which NPR2 cannot be dephosphorylated, we show that bone elongation is opposed when NPR2 is dephosphorylated and thus produces less cyclic GMP. By developing an in vivo imaging system to measure cyclic GMP levels in intact tibia, we show that FGF-induced dephosphorylation of NPR2 decreases its guanylyl cyclase activity in growth plate chondrocytes in living bone.
    [Show full text]