Regulation of the Natriuretic Peptide Receptor 2 (Npr2) by Phosphorylation of Juxtamembrane Serine and Threonine Residues Is

Total Page:16

File Type:pdf, Size:1020Kb

Regulation of the Natriuretic Peptide Receptor 2 (Npr2) by Phosphorylation of Juxtamembrane Serine and Threonine Residues Is This Accepted Manuscript has not been copyedited and formatted. The final version may differ from this version. Research Articles: Development/Plasticity/Repair Regulation of the natriuretic peptide receptor 2 (Npr2) by phosphorylation of juxtamembrane serine and threonine residues is essential for bifurcation of sensory axons Hannes Schmidt1,2, Deborah M. Dickey3, Alexandre Dumoulin1,4, Marie Octave2, Jerid W. Robinson3, Ralf Kühn1, Robert Feil2, Lincoln R. Potter3 and Fritz G. Rathjen1 1Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany 2Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany 3Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Medical School, 6-155 Jackson Hall, 321 Church St., Minneapolis, MN 55455, USA 4Berlin Institute of Health, Anna-Louisa-Karsch-Str. 2, 10178 Berlin, Germany DOI: 10.1523/JNEUROSCI.0495-18.2018 Received: 8 February 2018 Revised: 28 August 2018 Accepted: 18 September 2018 Published: 24 September 2018 Author contributions: H.S., D.M.D., R.K., R.F., L.P., and F.G.R. designed research; H.S., D.M.D., A.D., M.O., J.R., R.K., and F.G.R. performed research; H.S., D.M.D., A.D., M.O., J.R., R.K., R.F., L.P., and F.G.R. analyzed data; H.S., R.F., L.P., and F.G.R. edited the paper; H.S. and F.G.R. wrote the paper; L.P. and F.G.R. wrote the first draft of the paper. Conflict of Interest: The authors declare no competing financial interests. The technical help of Madlen Driesner, Mechthild Henning, Anne Banerjee and Karola Bach is greatly acknowledged. We thank Stefanie Peters for help with FRET/cGMP measurements of embryonic DRG neurons and Siu-Pok Yee, Leia Shuhaibar and Laurinda Jaffe (University of Connecticut) for providing Npr27E/7E embryos and mice. This work was supported by DFG grants SFB 665/B2 to FGR and FOR 2060 (FE 438/5-2 and FE 438/6-2 to RF, and SCHM 2371/1 to HS), National Institutes of Health grant R01GM098309 and Hormone Receptor Fund to LRP and the grants from the Fund for Science to LRP and RF. Correspondence: Fritz G. Rathjen, email: [email protected], or, Hannes Schmidt, email: [email protected] Cite as: J. Neurosci ; 10.1523/JNEUROSCI.0495-18.2018 Alerts: Sign up at www.jneurosci.org/cgi/alerts to receive customized email alerts when the fully formatted version of this article is published. Accepted manuscripts are peer-reviewed but have not been through the copyediting, formatting, or proofreading process. Copyright © 2018 the authors 1 Regulation of the natriuretic peptide receptor 2 (Npr2) by phosphorylation of juxtamembrane 2 serine and threonine residues is essential for bifurcation of sensory axons 3 4 5 Hannes Schmidt1,2, Deborah M. Dickey3), Alexandre Dumoulin1,4), Marie Octave2,5), Jerid W. 6 Robinson3), Ralf Kühn1,6), Robert Feil2), Lincoln R. Potter3) and Fritz G. Rathjen1) 7 8 9 10 1) Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, 11 Germany 12 2) Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 13 Tübingen, Germany 14 3) Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 15 Medical School, 6-155 Jackson Hall, 321 Church St., Minneapolis, MN 55455, USA 16 4) Present address: Institute of Molecular Life Sciences, University of Zürich, 17 Winterthurerstrasse 190, 8057 Zürich, Switzerland 18 5) Present address: Institute of Experimental and Clinical Research (IREC), Université 19 catholique de Louvain, Avenue Hippocrate, 55, 1200 Brussels, Belgium 20 6) Berlin Institute of Health, Anna-Louisa-Karsch-Str. 2, 10178 Berlin, Germany 21 22 23 24 Correspondence: 25 Fritz G. Rathjen, email: [email protected] 26 or 27 Hannes Schmidt, email: [email protected] 28 29 30 Running title: Regulation of Npr2 by phosphorylation 31 32 Key words: axon bifurcation, sensory axons, cGMP signaling, Npr2, phosphorylation 33 34 35 1 36 Abstract 37 38 cGMP signaling elicited by activation of the transmembrane receptor guanylyl cyclase 39 Npr2 (also known as GC-B) by the ligand CNP controls sensory axon bifurcation of dorsal 40 root ganglion (DRG) and cranial sensory ganglion (CSG) neurons entering the spinal cord or 41 hindbrain, respectively. Previous studies have shown that Npr2 is phosphorylated on serine 42 and threonine residues in its kinase homology domain (KHD). However it is unknown 43 whether phosphorylation of Npr2 is essential for axon bifurcation. Here, we generated a 44 knock-in mouse line in which the seven regulatory serine and threonine residues in the KHD 45 of Npr2 were substituted by alanine (Npr2-7A), resulting in a non-phosphorylatable enzyme. 46 Real-time imaging of cGMP in DRG neurons with a genetically encoded fluorescent cGMP 47 sensor or biochemical analysis of guanylyl cyclase activity in brain or lung tissue revealed the 48 absence of CNP-induced cGMP generation in the Npr2 7A/7A mutant. Consequently, 49 bifurcation of axons, but not collateral formation, from DRG or CSG in this mouse mutant 50 was perturbed at embryonic and mature stages. In contrast, axon branching was normal in a 51 mouse mutant in which constitutive phosphorylation of Npr2 is mimicked by a replacement of 52 all of the seven serine and threonine sites by glutamic acid (Npr2-7E). Furthermore, we 53 demonstrate that the Npr27A/7A mutation causes dwarfism as described for global Npr2 54 mutants. In conclusion our in vivo studies provide strong evidence that phosphorylation of the 55 seven serine and threonine residues in the KHD of Npr2 is an important regulatory element of 56 Npr2-mediated cGMP signaling which affects physiological processes such as axon 57 bifurcation and bone growth. 58 59 60 Significant statement 61 62 The branching of axons is a morphological hallmark of virtually all neurons. It allows an 63 individual neuron to innervate different targets and to communicate with neurons located in 64 different regions of the nervous system. The natriuretic peptide receptor 2 (Npr2) – a 65 transmembrane guanylyl cyclase – is essential for the initiation of bifurcation of sensory 66 axons when entering the spinal cord or the hindbrain. By using two genetically engineered 67 mouse lines we show that phosphorylation of specific serine and threonine residues in 68 juxtamembrane regions of Npr2 are required for its enzymatic activity and for axon 69 bifurcation. These investigations might help to understand the regulation of Npr2 and its 70 integration in intracellular signaling systems. 2 71 Introduction 72 73 Axonal branching is one of the key processes that determine the formation of complex 74 neuronal circuits during embryonic and postnatal stages of nervous system development. 75 Branching enables an individual axon to establish multiple contacts and it allows an 76 individual neuron to communicate with other neurons which might be located in different 77 regions. Therefore, branching provides the physical basis for the distribution and integration 78 of information. However, the molecular mechanisms that control branch formation in vivo are 79 not fully understood (Armijo-Weingart and Gallo, 2017). The projections of sensory axons 80 within the spinal cord or the hindbrain represent an attractive system to characterize 81 components implicated in branching of axons (Schmidt and Rathjen, 2010;Gibson and Ma, 82 2011;Dumoulin et al., 2018). Upon entering the spinal cord or hindbrain the incoming axons 83 from neurons of dorsal root ganglia (DRG) or cranial sensory ganglia (CSG), respectively, 84 split up into a T-like bifurcation giving rise to two daughter axons that extend in opposite 85 direction. The natriuretic peptide receptor 2 (Npr2) - also termed guanylyl cyclase B (GC-B) - 86 plays a central role in the process of sensory axon bifurcation. In loss-of-function mutations of 87 the receptor Npr2, sensory axons no longer form these T-like branches and instead turn only 88 in either ascending or descending direction. Identical results were obtained when the cGMP- 89 dependent kinase I (cGKI) (Zhao et al., 2009;Schmidt et al., 2002) or the Npr2 ligand C-type 90 natriuretic peptide (CNP) were inactivated in mice (Schmidt et al., 2007;Schmidt et al., 91 2009;Ter-Avetisyan et al., 2014;Zhao and Ma, 2009). More recently, this signalling pathway 92 was shown to be of equivalent importance for the bifurcation of afferents of mesencephalic 93 trigeminal neurons (MTN) within the developing hindbrain (Ter-Avetisyan et al., 2018). A 94 critical missing link of this signaling pathway are the downstream targets of cGKIα in 95 somatosensory growth cones. However, by analyzing collateral branching or growth cone 96 behavior in cell culture experiments indicated that cGMP signaling might regulate 97 microtubule dynamics (Xia et al., 2013;Akiyama et al., 2016). Furthermore, although the 98 guidance receptors robo1 and 2 and their ligands slit1 and 2 did not perturb bifurcation itself, 99 their absence caused sensory axons to enter the spinal cord prematurely (Ma and Tessier- 100 Lavigne, 2007). The nitric oxide-sensitive guanylyl cyclases (NO-GCs) are not found in DRG 101 neurons at early embryonic stages and thus are not implicated in sensory axon branching in 102 vivo (Schmidt et al., 2009). The lack of axon bifurcation in DRG neurons results in altered 103 termination fields of primary afferents from the skin in the spinal cord. Furthermore, 104 behavioral testing indicated that noxious heat perception and nociception induced by chemical 105 irritants and the maximal biting force are impaired in mouse mutants with a conditional 106 inactivation of Npr2 in DRG or MTN neurons, whereas responses to mechanical stimulation 107 and motor coordination are not affected (Troster et al., 2018;Ter-Avetisyan et al., 2018).
Recommended publications
  • Evidence for a Novel Natriuretic Peptide Receptor That Prefers Brain Natriuretic Peptide Over Atrial Natriuretic Peptide Michael F
    Biochem. J. (2001) 358, 379–387 (Printed in Great Britain) 379 Evidence for a novel natriuretic peptide receptor that prefers brain natriuretic peptide over atrial natriuretic peptide Michael F. GOY*1, Paula M. OLIVER†2, Kit E. PURDY*, Joshua W. KNOWLES†, Jennifer E. FOX†3, Peter J. MOHLER*4, Xun QIAN*, Oliver SMITHIES† and Nobuyo MAEDA† *Departments of Cell and Molecular Physiology, University of North Carolina, Box 7545, Chapel Hill, NC 27599, U.S.A., and †Department of Pathology and Laboratory Medicine, University of North Carolina, Box 7525, Chapel Hill, NC 27599, U.S.A. Atrial natriuretic peptide (ANP) and brain natriuretic peptide protein expression, which ranges from maximal in adrenal gland, (BNP) exert their physiological actions by binding to natriuretic lung, kidney, and testis to minimal in heart and colon. In peptide receptor A (NPRA), a receptor guanylate cyclase (rGC) contrast, immunoreactive NPRA is not detectable in tissues that synthesizes cGMP in response to both ligands. The family of isolated from NPRA knockout animals and ANP- and BNP- rGCs is rapidly expanding, and it is plausible that there might be stimulatable GC activities are markedly reduced in all mutant additional, as yet undiscovered, rGCs whose function is to tissues. However, testis and adrenal gland retain statistically provide alternative signalling pathways for one or both of these significant, high-affinity responses to BNP. This residual response peptides, particularly given the low affinity of NPRA for BNP. to BNP cannot be accounted for by natriuretic peptide receptor We have investigated this hypothesis, using a genetically modified B, or any other known mammalian rGC, suggesting the presence (knockout) mouse in which the gene encoding NPRA has been of a novel receptor in these tissues that prefers BNP over ANP.
    [Show full text]
  • NPR1 Is Differentially Expressed in Non-Small Cell Lung Cancers
    1 The natriuretic peptide receptor, NPR1 is differentially expressed in non-small cell lung 2 cancer and associates with patient survival. 3 Shahan Mamoor1 4 [email protected] East Islip, NY USA 5 6 Non-small cell lung cancer (NSCLC) is the leading cause of cancer death in the United States1. 7 We mined published microarray data2,3,4 to identify differentially expressed genes in NSCLC. 8 We found that NPR1 was among the genes whose expression was most quantitatively different in 9 tumors from patients with NSCLC as compared to the lung. NPR1 expression was significantly decreased in NSCLC tumors as compared to the lung, and lower expression of NPR1 in patient 10 tumors was significantly associated with worse overall survival. NPR1 may be important for 11 initiation or progression of non-small cell lung cancer in humans. 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Keywords: NPR1, NSCLC, non-small cell lung cancer, systems biology of NSCLC, targeted 26 therapeutics in NSCLC. 27 28 1 OF 16 1 In 2016, lung cancer resulted in the death of 158,000 Americans; 81% of all patients 2 diagnosed with lung cancer will expire within 5 years5. Non-small cell lung cancer (NSCLC) is 3 4 the most common type of lung cancer, diagnosed in 84% of patients with lung cancer, and 76% 5 of all patients with NSCLC will expire within 5 years5. The rational development of targeted 6 therapeutics to treat patients with NSCLC can be supported by an enhanced understanding of 7 8 fundamental transcriptional features of NSCLC tumors.
    [Show full text]
  • NPR1 Paralogs of Arabidopsis and Their Role in Salicylic Acid Perception
    RESEARCH ARTICLE NPR1 paralogs of Arabidopsis and their role in salicylic acid perception ☯ ¤a☯ ¤b MarõÂa Jose Castello , Laura Medina-PucheID , JuliaÂn Lamilla , Pablo TorneroID* Instituto de BiologõÂa Molecular y Celular de Plantas, Universitat Politècnica de València -Consejo Superior de Investigaciones CientõÂficas, Valencia, SPAIN ☯ These authors contributed equally to this work. ¤a Current address: Shanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China a1111111111 ¤b Current address: Laboratorio de BiotecnologõÂa Vegetal, Facultad de Ciencias BaÂsicas y Aplicadas, a1111111111 Universidad Militar "Nueva Granada", Costado Oriental, Colombia a1111111111 * [email protected] a1111111111 a1111111111 Abstract Salicylic acid (SA) is responsible for certain plant defence responses and NON EXPRESSER OF PATHOGENESIS RELATED 1 (NPR1) is the master regulator of SA perception. In Arabi- OPEN ACCESS dopsis thaliana there are five paralogs of NPR1. In this work we tested the role of these para- Citation: Castello MJ, Medina-Puche L, Lamilla J, logs in SA perception by generating combinations of mutants and transgenics. NPR2 was Tornero P (2018) NPR1 paralogs of Arabidopsis and their role in salicylic acid perception. PLoS the only paralog able to partially complement an npr1 mutant. The null npr2 reduces SA per- ONE 13(12): e0209835. https://doi.org/10.1371/ ception in combination with npr1 or other paralogs. NPR2 and NPR1 interacted in all the con- journal.pone.0209835 ditions tested, and NPR2 also interacted with other SA-related proteins as NPR1 does. The Editor: Hua Lu, University of Maryland Baltimore remaining paralogs behaved differently in SA perception, depending on the genetic back- County, UNITED STATES ground, and the expression of some of the genes induced by SA in an npr1 background was Received: April 26, 2018 affected by the presence of the paralogs.
    [Show full text]
  • A Novel Variant of FGFR3 Causes Proportionate Short Stature
    S G Kant and others FGFR3 and proportionate short 172:6 763–770 Clinical Study stature A novel variant of FGFR3 causes proportionate short stature Sarina G Kant1, Iveta Cervenkova2, Lukas Balek2, Lukas Trantirek3, Gijs W E Santen1, Martine C de Vries4, Hermine A van Duyvenvoorde1, Michiel J R van der Wielen1, Annemieke J M H Verkerk5, Andre´ G Uitterlinden5, Sabine E Hannema4, Jan M Wit4, Wilma Oostdijk4, Pavel Krejci2,6,* and Monique Losekoot1,* 1Department of Clinical Genetics, Leiden University Medical Center, PO Box 9600, 2300RC, Leiden, The Netherlands, 2Department of Biology, Faculty of Medicine and 3Central European Institute of Technology, Masaryk University, Brno, Czech Republic, 4Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands, Correspondence 5Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands and 6Department of should be addressed Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA to S G Kant *(P Krejci and M Losekoot contributed equally to this work) Email [email protected] Abstract Objective: Mutations of the fibroblast growth factor receptor 3 (FGFR3) cause various forms of short stature, of which the least severe phenotype is hypochondroplasia, mainly characterized by disproportionate short stature. Testing for an FGFR3 mutation is currently not part of routine diagnostic testing in children with short stature without disproportion. Design: A three-generation family A with dominantly transmitted proportionate short stature was studied by whole-exome sequencing to identify the causal gene mutation. Functional studies and protein modeling studies were performed to confirm the pathogenicity of the mutation found in FGFR3. We performed Sanger sequencing in a second family B with dominant proportionate short stature and identified a rare variant in FGFR3.
    [Show full text]
  • Mutations in C-Natriuretic Peptide (NPPC): a Novel Cause of Autosomal Dominant Short Stature
    © American College of Medical Genetics and Genomics ORIGINAL RESEARCH ARTICLE Mutations in C-natriuretic peptide (NPPC): a novel cause of autosomal dominant short stature Alfonso Hisado-Oliva, PhD1,2,3, Alba Ruzafa-Martin, MSc1, Lucia Sentchordi, MD, MSc1,3,4, Mariana F.A. Funari, MSc5, Carolina Bezanilla-López, MD6, Marta Alonso-Bernáldez, MSc1, Jimena Barraza-García, MD, MSc1,2,3, Maria Rodriguez-Zabala, MSc1, Antonio M. Lerario, MD, PhD7,8, Sara Benito-Sanz, PhD1,2,3, Miriam Aza-Carmona, PhD1,2,3, Angel Campos-Barros, PhD1,2, Alexander A.L. Jorge, MD, PhD5,7 and Karen E. Heath, PhD1,2,3 Purpose: C-type natriuretic peptide (CNP) and its principal receptor, reductions in cyclic guanosine monophosphate synthesis, confirming natriuretic peptide receptor B (NPR-B), have been shown to be their pathogenicity. Interestingly,onehasbeenpreviouslylinkedto important in skeletal development. CNP and NPR-B are encoded by skeletal abnormalities in the spontaneous Nppc mouse long-bone natriuretic peptide precursor-C (NPPC) and natriuretic peptide receptor abnormality (lbab)mutant. NPR2 NPR2 2( ) genes, respectively. While mutations have been Conclusions: Our results demonstrate, for the first time, that NPPC describedinpatientswithskeletaldysplasias and idiopathic short stature mutations cause autosomal dominant short stature in humans. The (ISS), and several Npr2 and Nppc skeletal dysplasia mouse models exist, NPPC NPPC mutations cosegregated with a short stature and small hands no mutations in have been described in patients to date. phenotype. A CNP analog, which is currently in clinical trials for the Methods: NPPC was screened in 668 patients (357 with dispro- treatment of achondroplasia, seems a promising therapeutic approach, portionate short stature and 311 with autosomal dominant ISS) and 29 since it directly replaces the defective protein.
    [Show full text]
  • Cldn19 Clic2 Clmp Cln3
    NewbornDx™ Advanced Sequencing Evaluation When time to diagnosis matters, the NewbornDx™ Advanced Sequencing Evaluation from Athena Diagnostics delivers rapid, 5- to 7-day results on a targeted 1,722-genes. A2ML1 ALAD ATM CAV1 CLDN19 CTNS DOCK7 ETFB FOXC2 GLUL HOXC13 JAK3 AAAS ALAS2 ATP1A2 CBL CLIC2 CTRC DOCK8 ETFDH FOXE1 GLYCTK HOXD13 JUP AARS2 ALDH18A1 ATP1A3 CBS CLMP CTSA DOK7 ETHE1 FOXE3 GM2A HPD KANK1 AASS ALDH1A2 ATP2B3 CC2D2A CLN3 CTSD DOLK EVC FOXF1 GMPPA HPGD K ANSL1 ABAT ALDH3A2 ATP5A1 CCDC103 CLN5 CTSK DPAGT1 EVC2 FOXG1 GMPPB HPRT1 KAT6B ABCA12 ALDH4A1 ATP5E CCDC114 CLN6 CUBN DPM1 EXOC4 FOXH1 GNA11 HPSE2 KCNA2 ABCA3 ALDH5A1 ATP6AP2 CCDC151 CLN8 CUL4B DPM2 EXOSC3 FOXI1 GNAI3 HRAS KCNB1 ABCA4 ALDH7A1 ATP6V0A2 CCDC22 CLP1 CUL7 DPM3 EXPH5 FOXL2 GNAO1 HSD17B10 KCND2 ABCB11 ALDOA ATP6V1B1 CCDC39 CLPB CXCR4 DPP6 EYA1 FOXP1 GNAS HSD17B4 KCNE1 ABCB4 ALDOB ATP7A CCDC40 CLPP CYB5R3 DPYD EZH2 FOXP2 GNE HSD3B2 KCNE2 ABCB6 ALG1 ATP8A2 CCDC65 CNNM2 CYC1 DPYS F10 FOXP3 GNMT HSD3B7 KCNH2 ABCB7 ALG11 ATP8B1 CCDC78 CNTN1 CYP11B1 DRC1 F11 FOXRED1 GNPAT HSPD1 KCNH5 ABCC2 ALG12 ATPAF2 CCDC8 CNTNAP1 CYP11B2 DSC2 F13A1 FRAS1 GNPTAB HSPG2 KCNJ10 ABCC8 ALG13 ATR CCDC88C CNTNAP2 CYP17A1 DSG1 F13B FREM1 GNPTG HUWE1 KCNJ11 ABCC9 ALG14 ATRX CCND2 COA5 CYP1B1 DSP F2 FREM2 GNS HYDIN KCNJ13 ABCD3 ALG2 AUH CCNO COG1 CYP24A1 DST F5 FRMD7 GORAB HYLS1 KCNJ2 ABCD4 ALG3 B3GALNT2 CCS COG4 CYP26C1 DSTYK F7 FTCD GP1BA IBA57 KCNJ5 ABHD5 ALG6 B3GAT3 CCT5 COG5 CYP27A1 DTNA F8 FTO GP1BB ICK KCNJ8 ACAD8 ALG8 B3GLCT CD151 COG6 CYP27B1 DUOX2 F9 FUCA1 GP6 ICOS KCNK3 ACAD9 ALG9
    [Show full text]
  • The Acute-Phase Protein Orosomucoid Regulates Food Intake and Energy Homeostasis Via Leptin Receptor Signaling Pathway
    1630 Diabetes Volume 65, June 2016 Yang Sun,1 Yili Yang,2 Zhen Qin,1 Jinya Cai,3 Xiuming Guo,1 Yun Tang,3 Jingjing Wan,1 Ding-Feng Su,1 and Xia Liu1 The Acute-Phase Protein Orosomucoid Regulates Food Intake and Energy Homeostasis via Leptin Receptor Signaling Pathway Diabetes 2016;65:1630–1641 | DOI: 10.2337/db15-1193 The acute-phase protein orosomucoid (ORM) exhibits a intake and energy expenditure. Energy homeostasis in the variety of activities in vitro and in vivo, notably modulation body is maintained by the integrated actions of multiple of immunity and transportation of drugs. We found in this factors (1,2), including adipose hormones (such as leptin study that mice lacking ORM1 displayed aberrant energy and adiponectin), gastrointestinal hormones (such as in- homeostasis characterized by increased body weight and sulin, ghrelin, and cholecystokinin), and nutrient-related fat mass. Further investigation found that ORM, predom- signals (such as free fatty acids). In addition to acting on fi inantly ORM1, is signi cantly elevated in sera, liver, and peripheral tissues, these actions can also influence central – adipose tissues from the mice with high-fat diet (HFD) circuits in the hypothalamus, brainstem, and limbic system db/db induced obesity and mice that develop obesity to modulate food intake and energy expenditure (1,3). spontaneously due to mutation in the leptin receptor Notably, the adipose tissue–produced leptin is a major (LepR). Intravenous or intraperitoneal administration of regulator of fat, and the level of leptin in circulation is exogenous ORM decreased food intake in C57BL/6, HFD, proportional to body fat (4) and is a reflection of long- and leptin-deficient ob/ob mice, which was absent in db/db OBESITY STUDIES fi term nutrition status as well as acute energy balance.
    [Show full text]
  • Xo GENE PANEL
    xO GENE PANEL Targeted panel of 1714 genes | Tumor DNA Coverage: 500x | RNA reads: 50 million Onco-seq panel includes clinically relevant genes and a wide array of biologically relevant genes Genes A-C Genes D-F Genes G-I Genes J-L AATK ATAD2B BTG1 CDH7 CREM DACH1 EPHA1 FES G6PC3 HGF IL18RAP JADE1 LMO1 ABCA1 ATF1 BTG2 CDK1 CRHR1 DACH2 EPHA2 FEV G6PD HIF1A IL1R1 JAK1 LMO2 ABCB1 ATM BTG3 CDK10 CRK DAXX EPHA3 FGF1 GAB1 HIF1AN IL1R2 JAK2 LMO7 ABCB11 ATR BTK CDK11A CRKL DBH EPHA4 FGF10 GAB2 HIST1H1E IL1RAP JAK3 LMTK2 ABCB4 ATRX BTRC CDK11B CRLF2 DCC EPHA5 FGF11 GABPA HIST1H3B IL20RA JARID2 LMTK3 ABCC1 AURKA BUB1 CDK12 CRTC1 DCUN1D1 EPHA6 FGF12 GALNT12 HIST1H4E IL20RB JAZF1 LPHN2 ABCC2 AURKB BUB1B CDK13 CRTC2 DCUN1D2 EPHA7 FGF13 GATA1 HLA-A IL21R JMJD1C LPHN3 ABCG1 AURKC BUB3 CDK14 CRTC3 DDB2 EPHA8 FGF14 GATA2 HLA-B IL22RA1 JMJD4 LPP ABCG2 AXIN1 C11orf30 CDK15 CSF1 DDIT3 EPHB1 FGF16 GATA3 HLF IL22RA2 JMJD6 LRP1B ABI1 AXIN2 CACNA1C CDK16 CSF1R DDR1 EPHB2 FGF17 GATA5 HLTF IL23R JMJD7 LRP5 ABL1 AXL CACNA1S CDK17 CSF2RA DDR2 EPHB3 FGF18 GATA6 HMGA1 IL2RA JMJD8 LRP6 ABL2 B2M CACNB2 CDK18 CSF2RB DDX3X EPHB4 FGF19 GDNF HMGA2 IL2RB JUN LRRK2 ACE BABAM1 CADM2 CDK19 CSF3R DDX5 EPHB6 FGF2 GFI1 HMGCR IL2RG JUNB LSM1 ACSL6 BACH1 CALR CDK2 CSK DDX6 EPOR FGF20 GFI1B HNF1A IL3 JUND LTK ACTA2 BACH2 CAMTA1 CDK20 CSNK1D DEK ERBB2 FGF21 GFRA4 HNF1B IL3RA JUP LYL1 ACTC1 BAG4 CAPRIN2 CDK3 CSNK1E DHFR ERBB3 FGF22 GGCX HNRNPA3 IL4R KAT2A LYN ACVR1 BAI3 CARD10 CDK4 CTCF DHH ERBB4 FGF23 GHR HOXA10 IL5RA KAT2B LZTR1 ACVR1B BAP1 CARD11 CDK5 CTCFL DIAPH1 ERCC1 FGF3 GID4
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • Regulation of Axonal Development by Natriuretic Peptide Hormones
    Regulation of axonal development by natriuretic peptide hormones Zhen Zhao and Le Ma1 Zilkha Neurogenetic Institute, Department of Cell and Neurobiology, Keck School of Medicine, Neuroscience Graduate Program, University of Southern California, 1501 San Pablo Street, Los Angeles, CA 90089 Edited by Cornelia I. Bargmann, The Rockefeller University, New York, NY, and approved August 28, 2009 (received for review June 24, 2009) Natriuretic peptides (NPs) are a family of cardiac- and vascular- entially binds to Npr2, could be the environmental cue respon- derived hormones that are well known for regulating blood sible for generating bifurcated axonal branches. These results pressure, but their expression in the brain poses an intriguing yet suggest an intriguing hypothesis that NPs provide a general unanswered question concerning their roles in the nervous system. extracellular mechanism to regulate different processes, such as Here, we report several unique activities of these hormones in branching and guidance, during axonal development via the regulating axonal development of dorsal root ganglion (DRG) regulation of cGMP signaling. neurons in the spinal cord. First, the C-type NP (CNP) is expressed To test this hypothesis, we first examined a spontaneous in a restricted area of the dorsal spinal cord and provides a cue that mouse mutant with a mutation in the Nppc gene encoding the is necessary for bifurcation of central sensory afferents. Second, in CNP precursor and found a similar bifurcation defect during the culture of embryonic DRG neurons, CNP stimulates branch sensory afferent development. In addition, we conducted a formation, induces axon outgrowth, and attracts growth cones. systematic analysis of the functions of NPs in axonal develop- Furthermore, these activities are mediated by cyclic guanosine- ment by using the primary culture of DRG neurons.
    [Show full text]
  • Two Interacting Transcriptional Coactivators Cooperatively Control Plant
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.21.436112; this version posted March 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Two interacting transcriptional coactivators cooperatively control plant 2 immune responses 3 4 Huan Chen1,2, Min Li2, Guang Qi2,3, Ming Zhao2, Longyu Liu2,4, Jingyi Zhang1,2, Gongyou Chen4, Daowen Wang3, 5 Fengquan Liu1, and Zheng Qing Fu2 6 7 1Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and 8 Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China 9 2Department of Biological Sciences, University of South Carolina, Columbia, SC, USA 10 3State Key Laboratory of Wheat and Maize Crop Science and College of Agronomy, Henan Agricultural University, 11 Zhengzhou 450002, China 12 4School of Agriculture and Biology/State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, 13 Shanghai 200240, China 14 15 Correspondence: [email protected]; [email protected] 16 17 Abstract 18 The phytohormone salicylic acid (SA) plays a pivotal role in plant defense against biotrophic and 19 hemibiotrophic pathogens. Genetic studies have identified NPR1 and EDS1 as two central hubs in 20 plant local and systemic immunity. However, it is unclear how NPR1 orchestrates gene regulation and 21 whether EDS1 directly participates in transcriptional reprogramming. Here we show that NPR1 and 22 EDS1 synergistically activate Pathogenesis-Related (PR) genes and plant defenses by forming a 23 protein complex and co-opting with Mediator.
    [Show full text]
  • Tumor Evolution
    8/1/2017 Immune Priming with Ultrasound Chandan Guha, MBBS, PhD Conflicts and Grants - NIH (R01 EB009040) - NCI SBIR grant with Professor and Vice Chair, Radiation Oncology Celldex Therapeutics, Inc. Professor, Urology and Pathology - Project Energy with Director, Einstein Institute of Onco-Physics Johnson & Johnson Montefiore Medical Center Albert Einstein College of Medicine, Bronx, NY [email protected] Tumor Evolution Immune Immune Tumor Restoration Surveillance progression Resurgence Living “with” Diagnosis Tumor • Cancer cure restored Living “with” Primary => Mets immune surveillance Mutated Cells • Ablation with Immune Restoration is curative “Killing” tumor Mutated Cells Tumor Ablation Immune Escape (Epigenetic loss – Antigen presentation) Suppression (IL10, TGFß, PD-L1) Cooption (Macrophage, Ectopic Lymphoid structure) Focal Oncology Clinical Adaptive Learning (FOCAL) Cancer Clinic Network 1. Ablative Therapies for local control induces anti-tumoral immunity, which in turn helps local control. 2. Ablative Therapies for systemic immunity: Immune Priming Ablation (IPA) for In Situ Tumor Vaccines a. UPR => ER stress => Antigen Processing / Presentation b. “Eat Me” and DAMP signals c. Reversal of tolerance d. Antigen Presentation (neo-antigens & cryptic antigens) “Focal Therapy for Systemic Cure” 1 8/1/2017 Project ENERGY.01: Proposed Study Design Immuno-Priming Abla on (IPA) Therapies Study 1: 3LL IP only; Biomarker endpoints Immuno-Priming (IP) Best 2 of all LOFU1-2 HT RP IRE1-2 RFP1-2 Digoxin Metformin Metastatic Model Immuno-Priming
    [Show full text]