Tuning, Timbre, Spectrum, Scale
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
3 Manual Microtonal Organ Ruben Sverre Gjertsen 2013
3 Manual Microtonal Organ http://www.bek.no/~ruben/Research/Downloads/software.html Ruben Sverre Gjertsen 2013 An interface to existing software A motivation for creating this instrument has been an interest for gaining experience with a large range of intonation systems. This software instrument is built with Max 61, as an interface to the Fluidsynth object2. Fluidsynth offers possibilities for retuning soundfont banks (Sf2 format) to 12-tone or full-register tunings. Max 6 introduced the dictionary format, which has been useful for creating a tuning database in text format, as well as storing presets. This tuning database can naturally be expanded by users, if tunings are written in the syntax read by this instrument. The freely available Jeux organ soundfont3 has been used as a default soundfont, while any instrument in the sf2 format can be loaded. The organ interface The organ window 3 MIDI Keyboards This instrument contains 3 separate fluidsynth modules, named Manual 1-3. 3 keysliders can be played staccato by the mouse for testing, while the most musically sufficient option is performing from connected MIDI keyboards. Available inputs will be automatically recognized and can be selected from the menus. To keep some of the manuals silent, select the bottom alternative "to 2ManualMicroORGANircamSpat 1", which will not receive MIDI signal, unless another program (for instance Sibelius) is sending them. A separate menu can be used to select a foot trigger. The red toggle must be pressed for this to be active. This has been tested with Behringer FCB1010 triggers. Other devices could possibly require adjustments to the patch. -
Unified Music Theories for General Equal-Temperament Systems
Unified Music Theories for General Equal-Temperament Systems Brandon Tingyeh Wu Research Assistant, Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan ABSTRACT Why are white and black piano keys in an octave arranged as they are today? This article examines the relations between abstract algebra and key signature, scales, degrees, and keyboard configurations in general equal-temperament systems. Without confining the study to the twelve-tone equal-temperament (12-TET) system, we propose a set of basic axioms based on musical observations. The axioms may lead to scales that are reasonable both mathematically and musically in any equal- temperament system. We reexamine the mathematical understandings and interpretations of ideas in classical music theory, such as the circle of fifths, enharmonic equivalent, degrees such as the dominant and the subdominant, and the leading tone, and endow them with meaning outside of the 12-TET system. In the process of deriving scales, we create various kinds of sequences to describe facts in music theory, and we name these sequences systematically and unambiguously with the aim to facilitate future research. - 1 - 1. INTRODUCTION Keyboard configuration and combinatorics The concept of key signatures is based on keyboard-like instruments, such as the piano. If all twelve keys in an octave were white, accidentals and key signatures would be meaningless. Therefore, the arrangement of black and white keys is of crucial importance, and keyboard configuration directly affects scales, degrees, key signatures, and even music theory. To debate the key configuration of the twelve- tone equal-temperament (12-TET) system is of little value because the piano keyboard arrangement is considered the foundation of almost all classical music theories. -
Download the Just Intonation Primer
THE JUST INTONATION PPRIRIMMEERR An introduction to the theory and practice of Just Intonation by David B. Doty Uncommon Practice — a CD of original music in Just Intonation by David B. Doty This CD contains seven compositions in Just Intonation in diverse styles — ranging from short “fractured pop tunes” to extended orchestral movements — realized by means of MIDI technology. My principal objectives in creating this music were twofold: to explore some of the novel possibilities offered by Just Intonation and to make emotionally and intellectually satisfying music. I believe I have achieved both of these goals to a significant degree. ——David B. Doty The selections on this CD process—about synthesis, decisions. This is definitely detected in certain struc- were composed between sampling, and MIDI, about not experimental music, in tures and styles of elabora- approximately 1984 and Just Intonation, and about the Cageian sense—I am tion. More prominent are 1995 and recorded in 1998. what compositional styles more interested in result styles of polyphony from the All of them use some form and techniques are suited (aesthetic response) than Western European Middle of Just Intonation. This to various just tunings. process. Ages and Renaissance, method of tuning is com- Taken collectively, there It is tonal music (with a garage rock from the 1960s, mendable for its inherent is no conventional name lowercase t), music in which Balkan instrumental dance beauty, its variety, and its for the music that resulted hierarchic relations of tones music, the ancient Japanese long history (it is as old from this process, other are important and in which court music gagaku, Greek as civilization). -
An Exploration of the Relationship Between Mathematics and Music
An Exploration of the Relationship between Mathematics and Music Shah, Saloni 2010 MIMS EPrint: 2010.103 Manchester Institute for Mathematical Sciences School of Mathematics The University of Manchester Reports available from: http://eprints.maths.manchester.ac.uk/ And by contacting: The MIMS Secretary School of Mathematics The University of Manchester Manchester, M13 9PL, UK ISSN 1749-9097 An Exploration of ! Relation"ip Between Ma#ematics and Music MATH30000, 3rd Year Project Saloni Shah, ID 7177223 University of Manchester May 2010 Project Supervisor: Professor Roger Plymen ! 1 TABLE OF CONTENTS Preface! 3 1.0 Music and Mathematics: An Introduction to their Relationship! 6 2.0 Historical Connections Between Mathematics and Music! 9 2.1 Music Theorists and Mathematicians: Are they one in the same?! 9 2.2 Why are mathematicians so fascinated by music theory?! 15 3.0 The Mathematics of Music! 19 3.1 Pythagoras and the Theory of Music Intervals! 19 3.2 The Move Away From Pythagorean Scales! 29 3.3 Rameau Adds to the Discovery of Pythagoras! 32 3.4 Music and Fibonacci! 36 3.5 Circle of Fifths! 42 4.0 Messiaen: The Mathematics of his Musical Language! 45 4.1 Modes of Limited Transposition! 51 4.2 Non-retrogradable Rhythms! 58 5.0 Religious Symbolism and Mathematics in Music! 64 5.1 Numbers are God"s Tools! 65 5.2 Religious Symbolism and Numbers in Bach"s Music! 67 5.3 Messiaen"s Use of Mathematical Ideas to Convey Religious Ones! 73 6.0 Musical Mathematics: The Artistic Aspect of Mathematics! 76 6.1 Mathematics as Art! 78 6.2 Mathematical Periods! 81 6.3 Mathematics Periods vs. -
Shifting Exercises with Double Stops to Test Intonation
VERY ROUGH AND PRELIMINARY DRAFT!!! Shifting Exercises with Double Stops to Test Intonation These exercises were inspired by lessons I had from 1968 to 1970 with David Smiley of the San Francisco Symphony. I don’t have the book he used, but I believe it was one those written by Dounis on the scientific or artist's technique of violin playing. The exercises were difficult and frustrating, and involved shifting and double stops. Smiley also emphasized routine testing notes against other strings, and I also found some of his tasks frustrating because I couldn’t hear intervals that apparently seemed so familiar to a professional musician. When I found myself giving violin lessons in 2011, I had a mathematical understanding of why it was so difficult to hear certain musical intervals, and decided not to focus on them in my teaching. By then I had also developed some exercises to develop my own intonation. These exercises focus entirely on what is called the just scale. Pianos use the equal tempered scale, which is the predominate choice of intonation in orchestras and symphonies (I NEED VERIFICATION THAT THIS IS TRUE). It takes many years and many types of exercises and activities to become a good violinist. But I contend that everyone should start by mastering the following double stops in “just” intonation: 1. Practice the intervals shown above for all possible pairs of strings on your violin or viola. Learn the first two first, then add one interval at a time. They get harder to hear as you go down the list for reasons having to do with the fractions: 1/2, 2/3, 3/4, 3/5, 4/5, 5/6. -
CIRCLE of FIFTHS WORKSHOP a Useful Concept for When You Want to Jam with Other Instruments Or Write a Song!
CIRCLE OF FIFTHS WORKSHOP A useful concept for when you want to jam with other instruments or write a song! The Circle of Fifths shows the relationships among the twelve tones of the Chromatic Scale, their corresponding key signatures and the associated Major and Minor keys. The word "chromatic" comes from the Greek word chroma meaning "color." The chromatic scale consists of 12 notes each a half step or “semi-tone” apart. It is from the chromatic scale that every other scale or chord in most Western music is derived. Here’s the C chromatic scale going up as an example: C C# D D# E F F# G G# A A# B C In everyday terms: The Circle of Fifths is useful if you’re playing in an open jam with other instruments, e.g., guitars or fiddles around a campfire, or when you’re trying to figure out the chords of a song from scratch, or write your own song. The Circle of Fifths is a music theory picture. Each “segment” on the circle represents a note, a chord, and a key. Why is it called the Circle of Fifths? When going clockwise, each key is a fifth above the last. When going counter-clockwise, each key is a fourth above the last, so you may also hear it called the “circle of fourths”. The perfect fifth interval is said to be consonant, meaning it is a typical “pleasant sound” and sounds stable within music (the groundwork for this concept was set by Pythagoras and based on the sound frequency ratios). -
Playing Music in Just Intonation: a Dynamically Adaptive Tuning Scheme
Karolin Stange,∗ Christoph Wick,† Playing Music in Just and Haye Hinrichsen∗∗ ∗Hochschule fur¨ Musik, Intonation: A Dynamically Hofstallstraße 6-8, 97070 Wurzburg,¨ Germany Adaptive Tuning Scheme †Fakultat¨ fur¨ Mathematik und Informatik ∗∗Fakultat¨ fur¨ Physik und Astronomie †∗∗Universitat¨ Wurzburg¨ Am Hubland, Campus Sud,¨ 97074 Wurzburg,¨ Germany Web: www.just-intonation.org [email protected] [email protected] [email protected] Abstract: We investigate a dynamically adaptive tuning scheme for microtonal tuning of musical instruments, allowing the performer to play music in just intonation in any key. Unlike other methods, which are based on a procedural analysis of the chordal structure, our tuning scheme continually solves a system of linear equations, rather than relying on sequences of conditional if-then clauses. In complex situations, where not all intervals of a chord can be tuned according to the frequency ratios of just intonation, the method automatically yields a tempered compromise. We outline the implementation of the algorithm in an open-source software project that we have provided to demonstrate the feasibility of the tuning method. The first attempts to mathematically characterize is particularly pronounced if m and n are small. musical intervals date back to Pythagoras, who Examples include the perfect octave (m:n = 2:1), noted that the consonance of two tones played on the perfect fifth (3:2), and the perfect fourth (4:3). a monochord can be related to simple fractions Larger values of mand n tend to correspond to more of the corresponding string lengths (for a general dissonant intervals. If a normally consonant interval introduction see, e.g., Geller 1997; White and White is sufficiently detuned from just intonation (i.e., the 2014). -
A Study of Microtones in Pop Music
University of Huddersfield Repository Chadwin, Daniel James Applying microtonality to pop songwriting: A study of microtones in pop music Original Citation Chadwin, Daniel James (2019) Applying microtonality to pop songwriting: A study of microtones in pop music. Masters thesis, University of Huddersfield. This version is available at http://eprints.hud.ac.uk/id/eprint/34977/ The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided: • The authors, title and full bibliographic details is credited in any copy; • A hyperlink and/or URL is included for the original metadata page; and • The content is not changed in any way. For more information, including our policy and submission procedure, please contact the Repository Team at: [email protected]. http://eprints.hud.ac.uk/ Applying microtonality to pop songwriting A study of microtones in pop music Daniel James Chadwin Student number: 1568815 A thesis submitted to the University of Huddersfield in partial fulfilment of the requirements for the degree of Master of Arts University of Huddersfield May 2019 1 Abstract While temperament and expanded tunings have not been widely adopted by pop and rock musicians historically speaking, there has recently been an increased interest in microtones from modern artists and in online discussion. -
Consonance & Dissonance
UIUC Physics 406 Acoustical Physics of Music Consonance & Dissonance: Consonance: A combination of two (or more) tones of different frequencies that results in a musically pleasing sound. Why??? Dissonance: A combination of two (or more) tones of different frequencies that results in a musically displeasing sound. Why??? n.b. Perception of sounds is also wired into (different of) our emotional centers!!! Why???/How did this happen??? The Greek scholar Pythagoras discovered & studied the phenomenon of consonance & dissonance, using an instrument called a monochord (see below) – a simple 1-stringed instrument with a movable bridge, dividing the string of length L into two segments, x and L–x. Thus, the two string segments can have any desired ratio, R x/(L–x). (movable) L x x L When the monochord is played, both string segments vibrate simultaneously. Since the two segments of the string have a common tension, T, and the mass per unit length, = M/L is the same on both sides of the string, then the speed of propagation of waves on each of the two segments of the string is the same, v = T/, and therefore on the x-segment of string, the wavelength (of the fundamental) is x = 2x = v/fx and on the (L–x) segment of the string, we have Lx = 2(L–x) = v/fLx. Thus, the two frequencies associated with the two vibrating string segments x and L – x on either side of the movable bridge are: v f x 2x v f Lx 2L x - 1 - Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002 - 2017. -
Study of Bartok's Compositions by Focusing on Theories of Lendvai, Karpati and Nettl
Science Arena Publications Specialty Journal of Humanities and Cultural Science ISSN: 2520-3274 Available online at www.sciarena.com 2018, Vol, 3 (4): 9-25 Study of Bartok's Compositions by Focusing on Theories of Lendvai, Karpati and Nettl Amir Alavi Lecturer, Tehran Art University, Tehran, Iran. Abstract: Bela Bartok is one of the most influential composers of the twentieth century whose works have been attended by many theorists. Among the most prominent musical theorists focusing on Bartok's works, Erno Lendvai, Jonas Karpati, Burno Nettl, and Milton Babbitt can be mentioned. These scholars have offered great theories by studying hidden, melodic and harmonic relations, and formal structures in the Bartok’s composition. The breadth of Bartok's works, diversity in using pitch organization, and lack of Bartok's personal views on analyzing his works, encouraged theorists to study his work more. The reason for focusing on Bartok in this research can be attributed to his prominent state as a composer in the twentieth century, as well as the way he employs folk melodies as the main component of composing structure. By focusing on tonal aspects, pitch organization, chord relations, and harmonic structures, this study deals with melodic lines and formal principles, and then dissects the theories and indicators in accordance with the mentioned theorists’ views. Keywords: Bartok, Axis System, Pole and Counter Pole, Overtone. INTRODUCTION Bartok's musical structure was initially influenced by the folk music of Eastern Europe. However, he has not provided any explanation with regard to his music. John Vinton's paper titled “Bartok in His Own Music” can be considered as the main source of reflection of Bartok's thoughts. -
Exploration of an Adaptable Just Intonation System Jeff Snyder
Exploration of an Adaptable Just Intonation System Jeff Snyder Submitted in partial fulfillment of the requirements of the degree of Doctor of Musical Arts in the Graduate School of Arts and Sciences Columbia University 2010 ABSTRACT Exploration of an Adaptable Just Intonation System Jeff Snyder In this paper, I describe my recent work, which is primarily focused around a dynamic tuning system, and the construction of new electro-acoustic instruments using this system. I provide an overview of my aesthetic and theoretical influences, in order to give some idea of the path that led me to my current project. I then explain the tuning system itself, which is a type of dynamically tuned just intonation, realized through electronics. The third section of this paper gives details on the design and construction of the instruments I have invented for my own compositional purposes. The final section of this paper gives an analysis of the first large-scale piece to be written for my instruments using my tuning system, Concerning the Nature of Things. Exploration of an Adaptable Just Intonation System Jeff Snyder I. Why Adaptable Just Intonation on Invented Instruments? 1.1 - Influences 1.1.1 - Inspiration from Medieval and Renaissance music 1.1.2 - Inspiration from Harry Partch 1.1.3 - Inspiration from American country music 1.2 - Tuning systems 1.2.1 - Why just? 1.2.1.1 – Non-prescriptive pitch systems 1.2.1.2 – Just pitch systems 1.2.1.3 – Tempered pitch systems 1.2.1.4 – Rationale for choice of Just tunings 1.2.1.4.1 – Consideration of non-prescriptive -
A Whole Different Serving of Tapioca: Exploring Just Intonation Dissonance
SPRING 2002 1 1 Volume 11, Number 1 THE JOURNAL OF THE JUST INTONATION NETWORK A PROJECT OF OTHER MUSIC, INC. A Whole Different Serving of Tapioca: Exploring Just Intonation Dissonance by Kyle Gann wrote a song, “Jargon,” completely in seconds, sevenths, Just Intonation dissonance, said Harry Partch in one of and ninths, and justified them with a satirical text (“Let tuning theory’s more ringing phrases, is “a whole dif- horrid Jargon split the air/And rive the Nerves asunder”). ferent serving of tapioca” from equally tempered dis- Somewhat analogously, I found a text and allowed pro- sonance. I had no idea what that meant when I first heard grammatic considerations to lead me into several differ- it. I’ve now used enough Just Intonation dissonance in ent kinds and degrees of just dissonance. my music to learn how right he was. My text was taken from My Life on the Plains, the My early Just Intonation works were rather fanatically autobiographical memoir of General George Armstrong consonant. Having expended years of time and energy Custer. 1 If ever a text cried out for dissonance, it was to achieve pure consonance, I was at a loss as to how to this, bristling with unacknowledged contradictions. One justify returning to dissonance, and as to what strategy or moment, Custer would admit that if he were an Indian, he theory to use as a guideline. After all, if you start working would ignore U.S. Government mandates and go live on in Just Intonation to get rid of beats in your sonic surface, the plains; a few pages later he would damn all Indians under what theoretical aegis do you bring beats back in? as brutes only governable by force.