Crossandra Infundibuliformis (Acanthaceae) Firecracker Flower Crossandra Infundibuliformis Kros‐AN‐Dra In‐Fun‐Di‐Bew‐Lee‐FORM‐Is

Total Page:16

File Type:pdf, Size:1020Kb

Crossandra Infundibuliformis (Acanthaceae) Firecracker Flower Crossandra Infundibuliformis Kros‐AN‐Dra In‐Fun‐Di‐Bew‐Lee‐FORM‐Is Spring 2017 Instructors: Sandy Wilson Bart Schutzman Teaching Assistant: Ray Odeh Catharanthus roseus (Apocynaceae) Madagascar Periwinkle Catharanthus roseus kath‐ur‐RANTH‐us ROE‐zee‐us • Native to Madagascar • Type: Herbaceous perennial • katharos= pure, anthas=a flower used as an annual • Roseus=rose colored • Full sun to part shade • Leaves: simple, entire, obtuse • Heat and drought tolerant apex, glossy • Use: bedding plant • Flowers: tubular with 5 • Heat, drought and salt tolerant flattened petal‐like lobes • Reseeds freely appearing singly in upper leaf axils; pink, red, lilac and white • Formerly known as Vinca rosea • Form: loose, 0.5 to 1.5 ‘ tall Coreopsis grandiflora (Asteraceae) Largeflower Coreopsis, Tickseed Coreopsis grandiflora • Type: herbaceous perennial, short kor‐ee‐OP‐sis lived but reseeding • USDA Zone 4‐9 • Native to southeastern US • Full sun Heat and drought tolerant • Koris=bug, opsis=like referring • Use: borders, naturalized areas, to shape of seed butterfly gardens • Grandiflora=large flower • ‘Early Sunrise’‐compact cultivar with • Leaves: spatulate to lanceolate, semi double flowers with yellow rays and darker yellow disks. Comes true lower basal leaves are mostly from seed. entire while smaller stem leaves • ‘Rising Sun’‐yellow with red at base are often pinnately lobed of petals • Flowers: yellow, daisy‐like with • Hybrid crosses of C. lanceolata and C. notched rays grandiflora are available • Form: clumping to 2’ tall • Frances, Wilson et al., 2008 Crossandra infundibuliformis (Acanthaceae) Firecracker Flower Crossandra infundibuliformis kros‐AN‐dra in‐fun‐di‐bew‐lee‐FORM‐is • Native to southern India, Sri • Type: Broadleaf evergreen Lanka • Winter hardy to zone 10‐11 • Krossos=a fringe, andros=male, referring to fringed anthers • Full sun to part shade • Infundibuliformis=funnel or • Heat tolerant trumpet shaped • Use: landscape settings • Leaves: ovate to lanceolate, • Requires supplemental fertilizer shiny to maintain leaf color • Flowers: salmon, yellow everblooming in terminal racemes • Form: erect reaching 3’ Echinacea purpurea (Asteraceae) Coneflower, Purple Coneflower Echinacea purpurea • Type: herbaceous perennial ek‐in‐AY‐shee‐a pur‐PUR‐ee‐uh • USDA Zone 3‐8 • Full sun to part shade • Native to central to southeastern U.S. • Drought tolerant, tolerant of poor soils • Echinos=hedgehog, referring to prickly receptacle scales • Use: border, meadow, naturalized areas; fresh and • Purpurea=purple dried flowers • Leaves: coarse, ovate to broad‐ • ‘Kim’s Knee High’‐ compact lanceolate version with long bloom time • Flowers: daisy‐like, need (PP 2001) deadheading, • ‘White Swan’‐white flowers • Form: clumping to 3‐4’ tall • Susceptible to Japanese beetle and leaf spot Gaillardia ×grandiflora (Asteraceae) Blanketflower Gaillardia ×grandiflora gay‐LAR‐dee‐uh gran‐dih‐FLOR‐uh • Type: short lived herbaceous perennial • Tetraploid hybrid arose in cultivation used as an annual in Belgium • Cold hardiness Zone 3‐10 • Genus honors Gaillard de Charentonneau, a French magistrate • Full sun, heat, drought and salt tolerant and patron of botany • Use: Butterfly gardens, mixed perennial • Grandiflora=large‐flowered and annual landscapes, natural settings, • Leaves: surface with hirsute hairs, cut flowers punctate‐dotted, loved with tapered, winged petiole • Prefers well drained soils • Flowers: daisy‐like, solitary on • Double flowered and dwarf selections penduncles; yellow, orange, red with maroon to orange banding at petal • Mesa series: bright bi‐color, peach, bases, notched tips to petals; yellow • Form: erect branching to 3’ tall • G. aristata ‘Burgundy’, G. aristata • Tetraploid hybrid (G. aristata xG. pulchella). Breeds true. ‘Arizona Red Shades’ • Hammond, Wilson et al., 2007a, 2007b, 2005) Justicia brandegeeana (Acanthaceae) Shrimp Plant Justicia brandegeeana jus‐TEE‐see‐ah bran‐deh‐GEE‐aye‐nuh • Native to Mexico • Type: perennial • In honor of James Justice, a • Winter hardy to USDA Zone 9‐ Scottish botanist 11, roots surviving in Zone 8 • Brandegee (1843‐1925) was a • Full sun to part shade civil engineer and plantsman • Leaves: oval • Heat and drought tolerant • Stems: weak • Use: • Flowers: white appearing inside • Seeds freely red, yellow or lime green bracts, • Prune to regain shape seasonal bloomer • Form: erect, sprawling to 3’ tall • ‘Fruit Cocktail’‐red flowers, lime bracts; ‘Yellow Queen’, ‘Red’ Justicia carnea (Acanthaceae) Jacobinia, Brazilian Plume Flower Justicia carnea jus‐TEE‐see‐ah KAR‐nee‐uh • Native to South America • Type: perennial • After James Justice, Scottish • USDA zone 8b‐11 botanist • Full sun to part shade • carnea=flesh colored • Heat tolerant • Leaves: simple, opposite, • Use: foundation or mass elliptic, pinnate venation plantings, containers • Flowers: plumes of tubular • Responds well to pruning, flower clusters in rose, red, flowers form on new growth yellow, orange, apricot or white • Form: upright, 3‐7’ tall Lysimachia congestiflora (Primulaceae) Creeping Jenny, Moneywort Lysimachia congestiflora ly‐se‐MAK‐ee‐uh con‐gess‐TI‐flor‐ah • Native to China • Type: herbaceous perennial • Genus honors King Lysimachus, • Winter hardy to USDA Zone 7‐9 Mecedonian King of Thrace • Full sun to part shade • Lysimacheios‐ ancient Greek name of a plant in this grouping • Heat and drought tolerant • Congestus=congested, flos=flower, • Use: ground cover, containers, referring to the flower clusters baskets, rock gardens • Leaves: opposite to whorled, • Variegated forms ovate to broad‐ovate • L. congestiflora ‘Chocolate • Flowers: cup shaped, yellow Sunshine’ and ‘Persian • Form: prostrate, mat‐forming Chocolate’ • L. nummularia ‘Aurea’ Rudbeckia fulgida sulivantii ‘Goldsturm’ (Asteraceae) Goldsturm Gloriosa Daisy, Goldsturm Black‐eyed Susan, Orange Coneflower Rudbeckia fulgida sullivantii ‘Goldsturm’ • Type: herbaceous perennial • Developed in Germany • Cold hardy to Zone 3 • Named after Olof Rudbeck • Full sun, heat and drought • Fulgida=shining tolerant • Goldsturm= Gold storm • Use: perennial border, meadow • Leaves: hirsute, oblong to gardens, cut flowers, butterfly lanceolate gardens • Flowers: daisy‐like with yellow • Do not come true from seed rays and dark brownish‐black • Susceptible to leaf spot and disk flowers powdery mildew • Form: upright, rhizomatous, clumping to 3’ tall • Use vegetatively propagated sources to ensure true to type Viola ×wittrockiana (Violaceae) Pansy Viola ×wittrockiana • FI hybrids from V. tricolor, V. • Type: cool season annual lutea, V. altaica, and V. cornuta • USDA zone 6‐10 • Viola=violet • Full sun to part shade • Professor VeitBrecher Wittrock, • Use: bedding plants, edging, author containers • Leaves: ovate to elliptic • Viola cornuta‐ smaller leaves • Flowers:5 rounded petals of and flowers blue, purple, red, rose, yellow, • Slugs favor the foliage white and bicolors • Petals are edible • Form: compact to 8” tall Spring 2017 Instructors: Sandy Wilson Bart Schutzman Teaching Assistant: Ray Odeh.
Recommended publications
  • Changes at a Critical Branchpoint in the Anthocyanin Biosynthetic Pathway Underlie the Blue to Orange Flower Color Transition in Lysimachia Arvensis
    fpls-12-633979 February 16, 2021 Time: 19:16 # 1 ORIGINAL RESEARCH published: 22 February 2021 doi: 10.3389/fpls.2021.633979 Changes at a Critical Branchpoint in the Anthocyanin Biosynthetic Pathway Underlie the Blue to Orange Flower Color Transition in Lysimachia arvensis Edited by: Mercedes Sánchez-Cabrera1*†‡, Francisco Javier Jiménez-López1‡, Eduardo Narbona2, Verónica S. Di Stilio, Montserrat Arista1, Pedro L. Ortiz1, Francisco J. Romero-Campero3,4, University of Washington, Karolis Ramanauskas5, Boris Igic´ 5, Amelia A. Fuller6 and Justen B. Whittall7 United States 1 2 Reviewed by: Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, Seville, Spain, Department of Molecular 3 Stacey Smith, Biology and Biochemical Engineering, Pablo de Olavide University, Seville, Spain, Institute for Plant Biochemistry 4 University of Colorado Boulder, and Photosynthesis, University of Seville – Centro Superior de Investigación Científica, Seville, Spain, Department 5 United States of Computer Science and Artificial Intelligence, University of Seville, Seville, Spain, Department of Biological Science, 6 Carolyn Wessinger, University of Illinois at Chicago, Chicago, IL, United States, Department of Chemistry and Biochemistry, Santa Clara 7 University of South Carolina, University, Santa Clara, CA, United States, Department of Biology, College of Arts and Sciences, Santa Clara University, United States Santa Clara, CA, United States *Correspondence: Mercedes Sánchez-Cabrera Anthocyanins are the primary pigments contributing to the variety of flower colors among [email protected] angiosperms and are considered essential for survival and reproduction. Anthocyanins † ORCID: Mercedes Sánchez-Cabrera are members of the flavonoids, a broader class of secondary metabolites, of which orcid.org/0000-0002-3786-0392 there are numerous structural genes and regulators thereof.
    [Show full text]
  • Sinopsis De La Familia Acanthaceae En El Perú
    Revista Forestal del Perú, 34 (1): 21 - 40, (2019) ISSN 0556-6592 (Versión impresa) / ISSN 2523-1855 (Versión electrónica) © Facultad de Ciencias Forestales, Universidad Nacional Agraria La Molina, Lima-Perú DOI: http://dx.doi.org/10.21704/rfp.v34i1.1282 Sinopsis de la familia Acanthaceae en el Perú A synopsis of the family Acanthaceae in Peru Rosa M. Villanueva-Espinoza1, * y Florangel M. Condo1 Recibido: 03 marzo 2019 | Aceptado: 28 abril 2019 | Publicado en línea: 30 junio 2019 Citación: Villanueva-Espinoza, RM; Condo, FM. 2019. Sinopsis de la familia Acanthaceae en el Perú. Revista Forestal del Perú 34(1): 21-40. DOI: http://dx.doi.org/10.21704/rfp.v34i1.1282 Resumen La familia Acanthaceae en el Perú solo ha sido revisada por Brako y Zarucchi en 1993, desde en- tonces, se ha generado nueva información sobre esta familia. El presente trabajo es una sinopsis de la familia Acanthaceae donde cuatro subfamilias (incluyendo Avicennioideae) y 38 géneros son reconocidos. El tratamiento de cada género incluye su distribución geográfica, número de especies, endemismo y carácteres diagnósticos. Un total de ocho nombres (Juruasia Lindau, Lo­ phostachys Pohl, Teliostachya Nees, Streblacanthus Kuntze, Blechum P. Browne, Habracanthus Nees, Cylindrosolenium Lindau, Hansteinia Oerst.) son subordinados como sinónimos y, tres especies endémicas son adicionadas para el país. Palabras clave: Acanthaceae, actualización, morfología, Perú, taxonomía Abstract The family Acanthaceae in Peru has just been reviewed by Brako and Zarruchi in 1993, since then, new information about this family has been generated. The present work is a synopsis of family Acanthaceae where four subfamilies (includying Avicennioideae) and 38 genera are recognized.
    [Show full text]
  • Acanthaceae), a New Chinese Endemic Genus Segregated from Justicia (Acanthaceae)
    Plant Diversity xxx (2016) 1e10 Contents lists available at ScienceDirect Plant Diversity journal homepage: http://www.keaipublishing.com/en/journals/plant-diversity/ http://journal.kib.ac.cn Wuacanthus (Acanthaceae), a new Chinese endemic genus segregated from Justicia (Acanthaceae) * Yunfei Deng a, , Chunming Gao b, Nianhe Xia a, Hua Peng c a Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, People's Republic of China b Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, Facultyof Life Science, Binzhou University, Binzhou, 256603, Shandong, People's Republic of China c Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China article info abstract Article history: A new genus, Wuacanthus Y.F. Deng, N.H. Xia & H. Peng (Acanthaceae), is described from the Hengduan Received 30 September 2016 Mountains, China. Wuacanthus is based on Wuacanthus microdontus (W.W.Sm.) Y.F. Deng, N.H. Xia & H. Received in revised form Peng, originally published in Justicia and then moved to Mananthes. The new genus is characterized by its 25 November 2016 shrub habit, strongly 2-lipped corolla, the 2-lobed upper lip, 3-lobed lower lip, 2 stamens, bithecous Accepted 25 November 2016 anthers, parallel thecae with two spurs at the base, 2 ovules in each locule, and the 4-seeded capsule. Available online xxx Phylogenetic analyses show that the new genus belongs to the Pseuderanthemum lineage in tribe Justi- cieae.
    [Show full text]
  • Diapensia Family, by Stephen Doonan 101
    Bulletin of the American Rock Garden Society Volume 51 Number 2 Spring 1993 Cover: Gentiana sino-ornata by Jill S. Buck of Westminster, Colorado All Material Copyright © 1993 American Rock Garden Society \ Bulletin of the American Rock Garden Society Volume 51 Number 2 Spring 1993 Features Asarums, by Barry R. Yinger 83 Ancient Rocks and Emerald Carpets, by Jeanie Vesall 93 The Diapensia Family, by Stephen Doonan 101 The Southeast Asia-America Connection, by Richard Weaver, Jr. 107 Early Editors of the Bulletin, by Marnie Flook 125 From China with Concern, by Don Jacobs 136 Departments Plant Portraits 132 Propagation 145 Books 147 u to UH 82 Bulletin of the American Rock Garden Society Vol. 51(2) Asarums by Barry R. Yinger Until very recently, few American of old Japanese prints, my interest went gardeners displayed interest in the from slow simmer to rapid boil. I subse• species and cultivars of Asarum. When quently spent a semester in Japan, my own interest in this group began to where my interest became obsession. I develop 20 years ago, there was little have since learned a great deal about evidence of cultivation, even among these plants, particularly during my avid rock gardeners. Some American research in the Japanese literature for species were grown by wildflower my thesis in the Longwood Program, a enthusiasts, and pioneers of American graduate course in public garden admin• rock gardening such as Line Foster and istration. As I make more visits to Harold Epstein were sampling a few of Japan, I continue to assemble an ever- the Japanese species.
    [Show full text]
  • Atoll Research Bulletin No. 503 the Vascular Plants Of
    ATOLL RESEARCH BULLETIN NO. 503 THE VASCULAR PLANTS OF MAJURO ATOLL, REPUBLIC OF THE MARSHALL ISLANDS BY NANCY VANDER VELDE ISSUED BY NATIONAL MUSEUM OF NATURAL HISTORY SMITHSONIAN INSTITUTION WASHINGTON, D.C., U.S.A. AUGUST 2003 Uliga Figure 1. Majuro Atoll THE VASCULAR PLANTS OF MAJURO ATOLL, REPUBLIC OF THE MARSHALL ISLANDS ABSTRACT Majuro Atoll has been a center of activity for the Marshall Islands since 1944 and is now the major population center and port of entry for the country. Previous to the accompanying study, no thorough documentation has been made of the vascular plants of Majuro Atoll. There were only reports that were either part of much larger discussions on the entire Micronesian region or the Marshall Islands as a whole, and were of a very limited scope. Previous reports by Fosberg, Sachet & Oliver (1979, 1982, 1987) presented only 115 vascular plants on Majuro Atoll. In this study, 563 vascular plants have been recorded on Majuro. INTRODUCTION The accompanying report presents a complete flora of Majuro Atoll, which has never been done before. It includes a listing of all species, notation as to origin (i.e. indigenous, aboriginal introduction, recent introduction), as well as the original range of each. The major synonyms are also listed. For almost all, English common names are presented. Marshallese names are given, where these were found, and spelled according to the current spelling system, aside from limitations in diacritic markings. A brief notation of location is given for many of the species. The entire list of 563 plants is provided to give the people a means of gaining a better understanding of the nature of the plants of Majuro Atoll.
    [Show full text]
  • Lysimachia Huangsangensis (Primulaceae), a New Species from Hunan, China
    RESEARCH ARTICLE Lysimachia huangsangensis (Primulaceae), a New Species from Hunan, China Jian-Jun Zhou1, Xun-Lin Yu1*, Yun-Fei Deng2*, Hai-Fei Yan2, Zhe-Li Lin2,3 1 School of Forestry, Central South University of Forestry & Technology, 410004, Changsha, People’s Republic of China, 2 Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou 510650, People’s Republic of China, 3 University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China * [email protected] (XLY); [email protected] (YFD) Abstract A new species, Lysimachia huangsangensis (Primulaceae), from Hunan, China is described and illustrated. The new species is closely related to L. carinata because of the crested calyx, but differs in the leaf blades that are ovate to elliptic and (3–)4.5–9×2–3.4 cm, 2–5- OPEN ACCESS flowered racemes, and the calyx lobes that are ovate-lanceolate and 5–6×3–4 mm. The Citation: Zhou J-J, Yu X-L, Deng Y-F, Yan H-F, Lin Z- systematic placement and conservation status are also discussed. L (2015) Lysimachia huangsangensis (Primulaceae), a New Species from Hunan, China. PLoS ONE 10(7): e0132713. doi:10.1371/journal.pone.0132713 Editor: Nico Cellinese, University of Florida, UNITED STATES Introduction Received: February 19, 2015 Lysimachia L. belongs to the tribe Lysimachieae Reich. and consists of 140–200 species with an Accepted: June 15, 2015 almost worldwide distribution but exhibits striking local endemism [1–7]. China is one of the Published: July 22, 2015 centers of diversity for Lysimachia, being home to approximately 140 species [5, 8–20].
    [Show full text]
  • The Acanthaceae, Derived from Acanthus Are
    Vol. 7(36), pp. 2707-2713, 25 September, 2013 DOI: 10.5897/JMPR2013.5194 ISSN 1996-0875 ©2013 Academic Journals Journal of Medicinal Plants Research http://www.academicjournals.org/JMPR Full Length Research Paper Ethnobotany of Acanthaceae in the Mount Cameroon region Fongod A.G.N*, Modjenpa N.B. and Veranso M.C Department of Botany Plant Physiology, University of Buea, P.O Box 63, Buea. Cameroon. Accepted 2 September, 2013 An ethnobotanical survey was carried out in the Mount Cameroon area, southwest region of Cameroon to determine the uses of different species of the Acanthaceae. An inventory of identified Acanthaceaes used by different individuals and traditional medical practitioners (TMPs) was established from information gathered through the show-and-tell/semi-structured method and interviews during field expeditions. Sixteen villages were selected for this research: Munyenge, Mundongo, Ekona, Lelu, Bokoso, Bafia. Bakingili, Ekonjo, Mapanja, Batoke, Wututu, Idenau, Njongi, Likoko, Bokwango and Upper farms. The study yielded 18 plant species used for treating twenty five different diseases and 16 species with ornamental potentials out of the Acanthaceaes identified. Results revealed that 76% of species are used medicinally, while 34% are employed or used for food, rituals, forage and hunting. The leaves of these species are the most commonly used plant parts. The species with the highest frequency of use was Eremomastax speciosa (Hotsch.) with 29 respondents followed by Acanthus montanus (Nes.) T. Anders. The study reveals the medicinal and socio-cultural uses of the Acanthaceaes in the Mount Cameroon Region and a need for proper investigation of the medicinal potentials of these plants.
    [Show full text]
  • Relative Ranking of Ornamental Flower Plants to Foraging Honey Bees (With Notes on Favorability to Bumble Bees)
    Relative Ranking of Ornamental Flower Plants to Foraging Honey Bees (With Notes on Favorability to Bumble Bees) Whitney Cranshaw Colorado State University Observations were made during the 2007-2009 growing seasons on the relative attractiveness of various flowering ornamental plants to honey bees (Apis mellifera). This information was collected so that honey bee favorability - or lack of favorability - may be considered in plant selection. The study was conducted by repeated visits to public garden plantings in Larimer, Denver, Adams, and Cheyenne counties. Gardens were chosen that had large mass plantings of numerous flowering plants so that comparisons could be made and included the Denver Botanic Garden, gardens at Colorado State University (PERC, Flower Demonstration Planting), Welby Gardens, and Cheyenne Botanic Garden. These sites also were chosen because plantings had identification labeling. Plantings were visited between 2 and 12 times between mid-June and mid-September. Evaluations were made by examining plants that were in flower for the presence of honey bees. A planting was then given a relative ranking based on honey bee numbers. A 0-3 scale was used: 3 - Heavily visited by foraging honey bees 2 - Moderately visited by honey bees and foraged 1 - Honey bees seen occasionally visiting flowers 0 - Honey bees do not forage at these flowers Data were collected from a total of 319 different plant entries durig this study. Variation in rankings between dates did occur; where this occurred from multiple ratings the final ranking was rounded up to a whole number. Numerous other bees and other insects were commonly seen on many plants.
    [Show full text]
  • Using ITS Sequences Suggests Lability in Reproductive Characters
    MOLECULAR PHYLOGENETICS AND EVOLUTION Molecular Phylogenetics and Evolution 33 (2004) 127–139 www.elsevier.com/locate/ympev Phylogeny of Coreopsideae (Asteraceae) using ITS sequences suggests lability in reproductive characters Rebecca T. Kimballa,*, Daniel J. Crawfordb a Department of Zoology, University of Florida, P.O. Box 118525, Gainesville, FL 32611-8525, USA b Department of Ecology and Evolutionary Biology, The Natural History Museum and Biodiversity Research Center, University of Kansas, Lawrence, KS 66045-2106, USA Received 3 November 2003; revised 14 April 2004 Available online 7 July 2004 Abstract Relationships among the 21 genera within the tribe Coreopsideae (Asteraceae) remain poorly resolved despite phylogenetic stud- ies using morphological and anatomical traits. Recent molecular phylogenies have also indicated that some Coreopsideae genera are not monophyletic. We used internal transcribed spacer (ITS) sequences from representatives of 19 genera, as well as all major lin- eages in those genera that are not monophyletic, to examine phylogenetic relationships within this group. To examine the affects of alignment and method of analysis on our conclusions, we obtained alignments using five different parameters and analyzed all five alignments with distance, parsimony, and Bayesian methods. The method of analysis had a larger impact on relationships than did alignments, although different analytical methods gave very similar results. Although not all relationships could be resolved, a num- ber of well-supported lineages were found, some in conflict with earlier hypotheses. We did not find monophyly in Bidens, Coreopsis, and Coreocarpus, though other genera were monophyletic for the taxa we included. Morphological and anatomical traits which have been used previously to resolve phylogenetic relationships in this group were mapped onto the well-supported nodes of the ITS phy- logeny.
    [Show full text]
  • Ornamental Plants in Different Approaches
    Ornamental Plants in Different Approaches Assoc. Prof. Dr. Arzu ÇIĞ cultivation sustainibility ecology propagation ORNAMENTAL PLANTS IN DIFFERENT APPROACHES EDITOR Assoc. Prof. Dr. Arzu ÇIĞ AUTHORS Atilla DURSUN Feran AŞUR Husrev MENNAN Görkem ÖRÜK Kazım MAVİ İbrahim ÇELİK Murat Ertuğrul YAZGAN Muhemet Zeki KARİPÇİN Mustafa Ercan ÖZZAMBAK Funda ANKAYA Ramazan MAMMADOV Emrah ZEYBEKOĞLU Şevket ALP Halit KARAGÖZ Arzu ÇIĞ Jovana OSTOJIĆ Bihter Çolak ESETLILI Meltem Yağmur WALLACE Elif BOZDOGAN SERT Murat TURAN Elif AKPINAR KÜLEKÇİ Samim KAYIKÇI Firat PALA Zehra Tugba GUZEL Mirjana LJUBOJEVIĆ Fulya UZUNOĞLU Nazire MİKAİL Selin TEMİZEL Slavica VUKOVIĆ Meral DOĞAN Ali SALMAN İbrahim Halil HATİPOĞLU Dragana ŠUNJKA İsmail Hakkı ÜRÜN Fazilet PARLAKOVA KARAGÖZ Atakan PİRLİ Nihan BAŞ ZEYBEKOĞLU M. Anıl ÖRÜK Copyright © 2020 by iksad publishing house All rights reserved. No part of this publication may be reproduced, distributed or transmitted in any form or by any means, including photocopying, recording or other electronic or mechanical methods, without the prior written permission of the publisher, except in the case of brief quotations embodied in critical reviews and certain other noncommercial uses permitted by copyright law. Institution of Economic Development and Social Researches Publications® (The Licence Number of Publicator: 2014/31220) TURKEY TR: +90 342 606 06 75 USA: +1 631 685 0 853 E mail: [email protected] www.iksadyayinevi.com It is responsibility of the author to abide by the publishing ethics rules. Iksad Publications – 2020© ISBN: 978-625-7687-07-2 Cover Design: İbrahim KAYA December / 2020 Ankara / Turkey Size = 16 x 24 cm CONTENTS PREFACE Assoc. Prof. Dr. Arzu ÇIĞ……………………………………………1 CHAPTER 1 DOUBLE FLOWER TRAIT IN ORNAMENTAL PLANTS: FROM HISTORICAL PERSPECTIVE TO MOLECULAR MECHANISMS Prof.
    [Show full text]
  • Asteraceae – Aster Family
    ASTERACEAE – ASTER FAMILY Plant: herbs (annual or perennial), some shrubs, rarely vines or trees. Stem: Root: Often with tubers, rhizomes, stolons, or fleshy roots Leaves: mostly simple, some compound, alternate or opposite, rarely whorled. Flowers: flower head supported by an involucre (whorl of green bracts or phyllaries); each head composed of small flowers (composite) of flat ray-like (ligulate) flowers on the outside (ray flowers) and central tube-like flowers (disk flowers) – some species may have only one or the other. Calyx absent or modified into hairs, bristles, scales or a crown (pappus); 5 stamens (syngenesious -united by anthers); 5 united petals (sympetalous), receptacle may also have hairs or bristles. Both pappus and receptacle hairs/bristles may be used in ID. Fruit: achene (small, one-seeded, inferior ovule, 2 carpels, hard shell fruit) often with persisting crowned pappus which helps with seed dispersal. Other: Very large family, divided into sub-families and tribes, once named Compositae; 1-2,000 genera, 20,000+ species. Dicotyledons Group WARNING – family descriptions are only a layman’s guide and should not be used as definitive ASTERACEAE – ASTER FAMILY Straggler Daisy; Calyptocarpus vialis Less. (Introduced) Nodding [Plumeless] Thistle; Carduus nutans L. (Introduced) Garden Cornflower [Bachelor’s Button; Blue Bottle]; Centaurea cyanus L. (Introduced) Spotted Knapweed; Centaurea stoebe L. ssp. micranthos (Gugler) Hayek (Introduced) Woody [Bush] Goldenrod; Chrysoma pauciflosculosa (Michx.) Greene (Solidago pauciflosculosa) Green and Gold; Chrysogonum virginianum L. Soft Goldenaster; Chrysopsis pilosa Nutt. Chicory; Cichorium intybus L. (Introduced) Tall Thistle; Cirsium altissimum (L.) Hill Canada Thistle; Cirsium arvense (L.) Scop. Soft [Carolina] Thistle; Cirsium carolinianum (Walter) Fernald & B.G.
    [Show full text]
  • Journal of the Oklahoma Native Plant Society, Volume 9, December 2009
    4 Oklahoma Native Plant Record Volume 9, December 2009 VASCULAR PLANTS OF SOUTHEASTERN OKLAHOMA FROM THE SANS BOIS TO THE KIAMICHI MOUNTAINS Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy May 1969 Francis Hobart Means, Jr. Midwest City, Oklahoma Current Email Address: [email protected] The author grew up in the prairie region of Kay County where he learned to appreciate proper management of the soil and the native grass flora. After graduation from college, he moved to Eastern Oklahoma State College where he took a position as Instructor in Botany and Agronomy. In the course of conducting botany field trips and working with local residents on their plant problems, the author became increasingly interested in the flora of that area and of the State of Oklahoma. This led to an extensive study of the northern portion of the Oauchita Highlands with collections currently numbering approximately 4,200. The specimens have been processed according to standard herbarium procedures. The first set has been placed in the Herbarium of Oklahoma State University with the second set going to Eastern Oklahoma State College at Wilburton. Editor’s note: The original species list included habitat characteristics and collection notes. These are omitted here but are available in the dissertation housed at the Edmon-Low Library at OSU or in digital form by request to the editor. [SS] PHYSICAL FEATURES Winding Stair Mountain ranges. A second large valley lies across the southern part of Location and Area Latimer and LeFlore counties between the The area studied is located primarily in Winding Stair and Kiamichi mountain the Ouachita Highlands of eastern ranges.
    [Show full text]