Rubber Compounds

Total Page:16

File Type:pdf, Size:1020Kb

Rubber Compounds RUBBER COMPOUNDS A MARKET OPPORTUNITY STUDY September 2011 By: Robert Brentin and Phil Sarnacke OMNI TECH INTERNATIONAL, LTD. 2715 Ashman Street Midland, MI 48640 Phone: 989.631.3377 TABLE OF CONTENTS EXECUTIVE SUMMARY .................................................................................................................... 1 STUDY OBJECTIVES .......................................................................................................................... 3 THE RUBBER MARKET ..................................................................................................................... 4 PRICE TRENDS ................................................................................................................................. 9 RUBBER PRODUCTS Natural Rubber ....................................................................................................................... 12 Polybutadiene ....................................................................................................................... 16 Ethylene Propylene Diene Monomer .................................................................................... 18 Styrene Butadiene Rubber ..................................................................................................... 21 Butyl Rubber .......................................................................................................................... 23 Nitrile Butadiene Rubber ....................................................................................................... 24 Chloroprene Rubber .............................................................................................................. 25 RUBBER COMPOUNDS AND MATERIALS Rubber Compounding ......................................................................................................... 28 Process Aids and Plasticizers ............................................................................................... 29 Vulcanized Vegetable Oil .................................................................................................... 32 Epoxidized Vegetable Oil .................................................................................................... 34 Carbon Black ....................................................................................................................... 34 Carbonate, Clay, Silica and Other Mineral Fillers ............................................................... 36 RUBBER AND ELASTOMER APPLICATIONS Tires ..................................................................................................................................... 39 Footwear ............................................................................................................................. 44 Hose and Belting ................................................................................................................. 45 Rubber-Covered Rolls ......................................................................................................... 47 Roofing and Geo Membranes ............................................................................................. 49 Wire and Cable Insulation ................................................................................................... 50 OPPORTUNITIES FOR SOY PRODUCTS IN RUBBER COMPOUNDS United Soybean Board Sponsored Projects ........................................................................ 51 Research and Development - Process Oil ........................................................................... 52 Research and Development - Fillers ................................................................................... 54 Vulcanized Soybean Oil ....................................................................................................... 57 Application Development ................................................................................................... 59 ISSUE ANALYSIS High Aromatic Hydrocarbons .............................................................................................. 61 Sustainability ....................................................................................................................... 62 COMMERCIALIZATION NEXT STEPS Value Chain for Soy in Rubber ............................................................................................ 64 Product and Market Development Strategies for Soy Products in Rubber Compounds ... 65 RESOURCES Patents and Patent Applications ......................................................................................... 68 Table of Common Synthetic Rubbers ................................................................................. 75 Rubber Industry Terminology ............................................................................................. 76 North American Industry Classification System, Rubber Product Manufacturing ............. 82 Standard Classification System for Rubber Products in Automotive Applications ............ 86 Product and Market Development Strategy ....................................................................... 88 FIGURES 1. World Consumption of Rubber by Region ................................................................................ 4 2. Statistical Summary of World Rubber Situation ....................................................................... 5 3. Rubber Price and Related Indicators ........................................................................................ 6 4. The World Market for Synthetic Rubber is Growing ................................................................ 6 5. Price Index: 2001 – 2011 (Energy and Soybean Products) ....................................................... 9 6. Price Index: 2001 – 2011 (Natural Oils) .................................................................................... 9 7. Small-size Truck Tires .............................................................................................................. 13 8. Worldwide Production of NR .................................................................................................. 14 9. Natural Rubber Price ............................................................................................................... 15 10. United States EP Rubber Capacity .......................................................................................... 18 11. ASTM Classification of Various Types of Petroleum Oils for Rubber Compounding .............. 30 12. Starting Point Compounds ...................................................................................................... 31 13. Unit Sales of Tires (United States) .......................................................................................... 39 14. 2010 United States Replacement Tire Sales ........................................................................... 41 15. Tire Units Shipped ................................................................................................................... 42 16. North American Tire Plant Capacities ..................................................................................... 43 17. North American Light Vehicles ............................................................................................... 43 18. United States Footwear Retail Market Forecast 2008 – 2013................................................ 44 19. Recent, Current and Proposed USB Soy in Rubber and Elastomers Projects ......................... 52 20. Fatty Acid Profiles of Sustainable Oils .................................................................................... 53 21. Recommended Usage Levels for Factice by Rubber Type and Process .................................. 58 22. Commercial Grades of Vulcanized Soybean Oil ...................................................................... 58 23. Starting Point Compounds from The Vanderbilt Rubber Handbook ...................................... 59 24. Value Chain for Soy in Rubber ................................................................................................ 64 EXECUTIVE SUMMARY There is significant potential for soy products in the rubber and synthetic elastomer industry as plasticizer oil and filler alternatives for petroleum-based process aids and additives. There are several factors supporting this emerging opportunity, Product technology • Soybean products already have some established uses in the rubber and plastics industry as a plasticizer, acid scavenger, and process aid. • Published research and patent applications have shown that soy products can function as process aids / plasticizers and as a reinforcing filler in a range of rubber compounds. Market • Rubber manufacturing and fabrication is a large global industry. The International Rubber Study Group forecasts that total rubber consumption should increase 4.5% this year, totaling 25.7 million metric tons, and that in 2012 consumption will increase 7.5% to 27.6 mmt. • Rubber is a formulated product containing elastomeric polymers, fillers, processing aids, cure systems, and a variety of chemical additives. Soy products, as a component in a formulation, need to demonstrate functional performance at favorable economics, rather than validate their performance as a stand-alone, new product. • The supply of natural rubber has decreased due to the reduction in land use dedicated to growing rubber trees. Vulcanized vegetable oils, notably soybean, have the potential
Recommended publications
  • Biodiesel Handling and Use Guide (Fifth Edition)
    Biodiesel Handling and Use Guide (Fifth Edition) DOE/GO-102016-4875 November 2016 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agen- cy thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Every effort has been made to ensure that this manual is accurate, complete, and compre- hensive at the time of publication. It is intended to be used as a guide and resource docu- ment. The authors strongly encourage all parties with an interest in establishing E85 or other ethanol blends fueling systems to engage professional support during installation to ensure fuel integrity and systems compatibility. This document is not intended for use as a “how to” guide for individuals or organizations performing conversions. Report Contributors and Roles Lead Authors Teresa L. Alleman and Robert L. McCormick, National Renewable Energy Laboratory Contributing Authors Earl D. Christensen, Gina Fioroni, and Kristi Moriarty, National Renewable Energy Laboratory Janet Yanowitz, EcoEngineering Contents Introduction............................................................
    [Show full text]
  • Comparing Strength Properties of Natural and Synthetic Rubber Mixtures
    Sustainable Construction and Design 2011 COMPARING STRENGTH PROPERTIES OF NATURAL AND SYNTHETIC RUBBER MIXTURES T. Renner, L. Pék Institute for Mechanical Engineering Technology, Faculty of Mechanical Engineering, !"#$%&'$(#%*#+(",'+$-.%/122P.%45#67,- www.geti.gek.szie.hu Abstract: During in our research work we examine the condition of developing elastomer – metal connection at manufacturing machine – and car industry hybrid parts. As a first step we have carried out comparison tests relating to the strength properties of synthetic – and natural rubber mixtures. During tests we have compared four mixtures used often in the practice (NR, NBR, EPDM, CR) in three characteric hardnesses (43 Sh 0, 57Sh 0, 72Sh 0). In addition to hardness we have measured the elongation at rupture and the density, too. As a continuation of our tests we researched what connection is between the surface roughness of metal plate and the elastomer – metal bonding formed. Keywords: rubber mixtures, latex, hybrid parts, strength properties 1 INTRODUCTION: CHARACTERIZING THE MIXTURES EXAMINED The natural rubber is the most often used type of mixture of the rubber industry nowadays which is produced from the milk-like fluid (from latex) of certain tropical trees. The latex is a colloid state dispersion, the rubber is precipipated (killed) by acetic – or formic acid from it then is washed, pressed, dried or smoked [2]. After these the quality classification takes place then it is packed in to bales and according to the so called „green book” it is put into commercial circulation. This handbook was accepted by the International Federation of Rubber Producting Nations in 1960 which is a standard publication in classifying rubbers up to present days.
    [Show full text]
  • Silicone Rubber Fluid Resistance Guide
    Fluid Resistance Guide Performance Profiles for Silastic® brand Silicone and Fluorosilicone Rubber and XIAMETER® brand Silicone Rubber Contents Page Introduction noitcudortnI 2 This guide is intended to give you an idea of the performance profile of xednI sdiulF xednI 4 various classes of silicone rubbers when immersed in different fluids. ASTM and IRM Oils, Fuels, and Fluids 6 It's our hope that the information will save you the time and cost of MIL Specification Oils, Fuels, and Fluids 8 preliminary screening and feasibility tests. We recommend that you test Automotive Oils and Fluids 11 specific materials prior to use. Keep in mind that service conditions are Fuels 41 usually less severe than immersion tests. For instance, in actual service Hydraulic Fluids 51 the rubber is often only partly exposed or is subjected only to spills or Transformer and Instrument Oils 71 splashing. This means that a rubber that shows only fair results in a Specialty O ils, G reases, and Fluids 81 prolonged total immersion test will often perform quite adequately under Solvents 12 actual conditions. sdiulF enociliS sdiulF 32 Silicone Compounds and Greases 52 Types of Silastic and XIAMETER Food Products 62 Silicone Rubbers Water and Steam 82 Immersion test results refer to types of silicone rubber by Acids 29 their ASTM designation. The polymer classification described in Bases 30 ASTM D 1418 is based on the organic group side chains attached to the Salts 31 silicon-oxygen chain. If other groups are present, their initials are listed Other Chemicals 13 prior to the MQ designation: MQ indicates methyl groups, V indicates phenyl groups.
    [Show full text]
  • The Ohio Motor Vehicle Industry
    Policy Research and Strategic Planning Office A State Affiliate of the U.S. Census Bureau The Ohio Polymers Industry: Rubber and Plastic Resins and Products, and Related Machinery May 2010 Ted Strickland, Governor of Ohio Lee Fisher, Lt. Governor of Ohio Lisa Patt-McDaniel,Director, Ohio Department of Development THE OHIO POLYMERS INDUSTRY: Rubber and Plastic Resins and Products, and Related Machinery MAY 2010 B403 Don Larrick, Principal Analyst Policy Research and Strategic Planning, Ohio Department of Development P.O. Box 1001, Columbus, Oh. 43216-1001 Production Support: Steve Kelley, Editor; Robert Schmidley, GIS Specialist TABLE OF CONTENTS Page Executive Summary- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 Description of Ohio’s Polymers Industry - - - - - - - - - - - - - - - - - - - - - - 4 Notable Polymers Industry Manufacturers- - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6 Recent Expansion and Attraction Announcements- - - - - - - - - - - - - - - - - - - - - - - 12 The Composition of Ohio’s Polymers Industry: Value-Added- - - - - - - - - - - - - - - - 14 The Composition of Ohio’s Polymers Industry: Employment - - - - - - - - - - - - - - - - 16 Industry Pay - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 18 The Distribution of Industry Establishments in Ohio - - - - - - - - - - - - - - - - - - - - - - 20 The Distribution of Industry Employment in Ohio - - - - - - - - - - - - - - - - - - - - - - - - 22 Foreign Investment in Ohio
    [Show full text]
  • Crosslink Density of Rubbers
    Characterisation of Crosslinks in Vulcanised Rubbers: From Simple to Advanced Techniques K.L. Mok* and A.H. Eng** *Malaysian Rubber Board, Paper Presenter **Malaysian Institute of Chemistry Copyright © 2017 by K.L. Mok and A.H. Eng 1 Rubber & Elastomer • Rubbery: 1) Sufficient long chain; 2) Flexible molecules with noncollinear single bonds that allow segmental rotations along the backbone; 3) Non crystalline at service temperature • Rubber vs Elastomer: Rubber commonly refers to elastic materials that requires vulcanisation before they can be used in the products. However, there are elastic polymers that do not require vulcanisation such as polyurethane (PU), styrene- isoprene (SIS) copolymer. These elastic materials are classified under elastomer, which normally also includes rubbers. • Unvulcanised Rubbers: Unvulcanised rubbers are normally weak when put under stress during use. With very few exceptions, such as rubber glues almost all rubber products require vulcanisation to provide the required strength for a longer design life. • Elastomers: Polyurethane (PU), styrene-isoprene (SIS) copolymer, do not require vulcanisation to have good strength properties as they contain the hard segment Copyrightwhich © 2017 by K.L.is Mok good and A.H. Engfor strength and the soft segment good elasticity properties. 2 Rubber Vulcanisation & Crosslink Density • Vulcanization or vulcanisation: A reaction that leads to the formation of inter-molecular bonding among the unsaturated rubber molecules with 3 dimensional network such that the mechanical properties such as tensile strength is enhanced. The vulcanising agent originally referred to was elemental sulfur. Later, sulfur donor was included. It now also includes non sulfur systems such as metal oxide and peroxides.
    [Show full text]
  • A New Approach for Reclaiming of Waste Automotive EPDM Rubber Using Waste Oil
    Polymer Degradation and Stability 129 (2016) 56e62 Contents lists available at ScienceDirect Polymer Degradation and Stability journal homepage: www.elsevier.com/locate/polydegstab A new approach for reclaiming of waste automotive EPDM rubber using waste oil * Malihe Sabzekar a, Gholamhossein Zohuri b, c, , Mahdi Pourafshari Chenar a, Seyed Mohammadmahdi Mortazavi d, Majid Kariminejad e, Said Asadi e a Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, P.O. Box 91775-1111, Mashhad, Iran b Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, P.O. Box 91775-1111, Mashhad, Iran c Environmental Chemistry Research Center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran d Polymerization Engineering Department, Iran Polymer and Petrochemical Institute (IPPI), P.O. Box 14965/115, Tehran, Iran e Baspar Sazeh Toos Co. of Part Lastic Group, P.O. Box 91895-196, Mashhad, Iran article info abstract Article history: The disposal of polymeric and especially rubber materials is an important global issue. In this work we Received 28 July 2015 have used disulfide oil (DSO), the oily waste produced in gas refineries, as a chemical agent for mech- Received in revised form anochemical reclaiming of waste EPDM rubber at a specific operation condition. The devulcanization 6 January 2016 reaction was performed using different concentrations of DSO (5 and 7 phr) and different temperatures Accepted 4 April 2016 (220, 250 and 290 C). The results confirmed the effectiveness of DSO in decreasing the crosslink density Available online 5 April 2016 up to 73% at specific reaction conditions. Subsequently, two different portions of the devulcanized rubber (RR) (20 and 40 wt %) were blended with the virgin EPDM rubber to assess the reusability of the recycled Keywords: Waste EPDM product.
    [Show full text]
  • Global Automotive Components and Suppliers Expo 16-18 June 2015 Stuttgart, Germany
    GACS 2015 Report Global Automotive Components and Suppliers Expo 16-18 June 2015 Stuttgart, Germany 1.0 Introduction Global Automotive Components and Suppliers (GACS) Expo is the only show in Europe dedicated to showcasing automotive components and component suppliers for the OEM segment. Companies invited to exhibit at GACS 2015 comprised of automotive Tier 1, 2 and 3 suppliers. GACS 2015 was organized according to three main product categories namely Engine Expo, Automotive Interiors Expo and Automotive Testing Expo concurrently. These annual shows are organized by UKIP Media & Event Ltd. Global Automotive Components and Suppliers Expo (GACS2015) Date 16-18 June 2015 Venue Messe Stuttgart, Germany Organiser UKIP Media & Event Ltd Number of Malaysian Exhibitors 5 exhibitors with MREPC Exhibit Products Rubber Automotive Components – Gaskets, seals, O-rings, grommets, bushings, rubber metal bonded parts, weatherstrips, wiper blades, industrial gloves Table 1: Summary information of GACS 2015 Page | 1 GACS 2015 Report 2.0 Participation Info MREPC officers together with Malaysian manufacturers at MREPC Pavilion 2.1 Participation of MREPC in Exhibition MREPC participated in GACS 2015 for the first time with five rubber products manufacturers under MREPC Pavilion. MREPC and the Malaysian manufacturers promoted a wide range of rubber automotive components, including gaskets, O-rings, grommets, weatherstrips, wiper blades, rubber metal bonded parts such as engine mounts and exhaust hangers as well as industrial gloves. Companies Products 1. COOLTEC INDUSTRIES SDN BHD Rubber molded parts, O-rings, grommet, seals 2. KOSSAN RUBBER INDUSTRIES BHD Rubber automotive components 3. KUMPULAN JEBCO (M) SDN BHD Chasis & suspension parts – engine mounting system, bushes, dampers and strut mount suspension 4.
    [Show full text]
  • Silicone Materials for Automobiles
    Silicone Materials for Automobiles CO NTENTS Silicone Fluids and Secondary Products for Automotive Applications P2 Silicone Elastomers for Automotive Applications P4 Silicone Elastomers for Automotive Applications — Application to Airbags — P6 Thermal Interface Materials for Automotive Applications P8 LIMS Materials for Automobiles P10 Silicone Materials for Automobiles Silicone Fluids and Secondary Products for Automotive Applications The auto industry has been unremitting in its pursuit of development of automotive technologies to improve safety, comfort, and fuel efficiency. Silicones have frequently been used as automotive materials, and Shin-Etsu has been using the latest technologies to develop products to meet evolving needs. In these pages we will present examples of some typical applications, mainly featuring silicone fluids and their secondary products. Introduction adding heat-resistance improvers to dimethyl tires wore out quickly and were therefore not In recent years, automakers have taken silicone fluid. They are used as fan coupling practical. Later, KBE-846 was developed by efforts to make safer vehicles that are more fluids and in other torque transmission researchers who realized that sulfide silane comfortable and eco-friendly by adding car applications, and as a heating medium in could be used to improve the wear life of room temperature it forms a uniform film navigation systems, sensors and other automobiles (Table 1). silica-compounded tires. with exceptional water repellency, oil features, while making vehicles lighter and repellency, release properties, and antifouling more fuel-efficient. In this article, we will 1-3. Modifier for synthetic leather seat materials 1-6. Plastic & rubber modifiers properties (Table 2). discuss some of the places where silicone Double end-capped carbinol-modified fluids Master pellets and acrylic silicone powders fluids and their secondary products Single end-capped diol-modified fluids Silicone master pellets are plastics compounded 2-2.
    [Show full text]
  • Airfield Maintenance Activities at North Carolina Airports
    STATE OF NORTH CAROLINA DEPARTMENT OF TRANSPORTATION PAT MCCRORY ANTHONY J. TATA GOVERNOR SECRETARY November 17, 2014 NOTICE TO PROSPECTIVE BIDDERS Subject: Invitation to attend a Mandatory Pre-Bid Conference Airfield Maintenance Activities at North Carolina Airports The North Carolina Department of Transportation – Division of Aviation is requesting bids for a purchase order contract involving airfield maintenance activities at North Carolina airports. The contract includes full depth asphalt patching, crack sealing, concrete and asphalt pavement repair, joint sealing, sealing/rejuvenation, rubber removal, airfield painting, marking removal, pressure washing, micro-surfacing, polyurethane foam systems, seeding and mulching, and other additional items. A Contract will be awarded to the three lowest responsible Bidders. The Contractor is to furnish labor, materials, equipment and traffic control and be available to perform work at any airport within North Carolina. A Mandatory Pre-Bid Conference will be held at the NCDOT – Division of Aviation building ( 1050 Meridian Drive, RDU Airport, NC ) in the second floor conference room on November 21, 2014 at 10:30 A.M. Contractors may call-in as an alternative to attending in-person. A call-in number and electronic copy of the Contract Proposal will be available at https://connect.ncdot.gov/letting/Pages/Aviation.aspx The NCDOT, in accordance with the provisions of Title VI of the Civil Rights of 1964 (78 Stat.252) and the Regulations of the Department of Transportation (49 C.F.R., Part 21), issued pursuant to such act, hereby notifies all bidders that it will affirmatively insure that the contract entered into pursuant to this notice will be awarded to the lowest responsible bidders without discrimination on the grounds of sex, race, color, or national origin.
    [Show full text]
  • The Curing and Degradation Kinetics of Sulfur Cured EPDM Rubber A
    The Curing and Degradation Kinetics of Sulfur Cured EPDM Rubber A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science By ROBERT J. WEHRLE B.S., Northern Kentucky University, 2012 Wright State University 2014 WRIGHT STATE UNIVERSITY GRADUATE SCHOOL August 29, 2014 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Robert Joseph Wehrle ENTITLED The Curing and Degradation Kinetics of Sulfur Cured EPDM Rubber BE ACCEPTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE. Eric Fossum Ph.D. Thesis Director David A. Grossie, Ph.D. Chair, Department of Chemistry Committee on Final Examination Eric Fossum, Ph.D. William A. Feld, Ph.D. Steven B. Glancy, Ph.D. Kenneth Turnbull, Ph.D. Robert E. W. Fyffe, Ph.D. Vice President for Research and Dean of the Graduate School Abstract Wehrle, Robert J. M.S, Department of Chemistry, Wright State University, 2014. The Curing and Degradation Kinetics of Sulfur Cured EPDM Rubber. Ethylene‐propylene‐diene (EPDM) rubbers containing varying amounts of diene were cured with sulfur using either a moving die rheometer (MDR) or a rubber process analyzer (RPA). The effect of removing curatives and how the curing reaction changed was explored. Kinetic data was extracted from the rheology plots and reaction rate constants were determined by two separate ways: manually choosing points of interest or by a computer model. iii TABLE OF CONTENTS Page 1. Introduction 1 1.1 EPDM Overview 1 1.2 Preparation of EPDM 2 1.2.1 Ziegler‐Natta Catalysts 2 1.2.2 Metallocene Catalysts 4 1.3 Cross‐link Chemistry 5 1.3.1 Peroxide Cure 5 1.3.2 Sulfur Cure 6 1.3.3 Cross‐link Sites 8 1.3.3.1 Polymer Branching 9 1.3.4 Rubber Ingredients 10 1.3.4.1 Non‐curative Ingredients 10 1.3.4.2 Curative Ingredients 11 1.4 Kinetics 12 1.5 Instrumentation 13 2.
    [Show full text]
  • Effect of the Nitrile Content on Nitrile Rubber Cure in Wide Temperature Range
    INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 9, ISSUE 02, FEBRUARY 2020 ISSN 2277-8616 Effect Of The Nitrile Content On Nitrile Rubber Cure In Wide Temperature Range. Denis Kalugin, Anton Nashchokin, Anna Sutyagina, Nikolay Tikhonov, Artem Malakho Victor Avdeev Abstract: Vulcanization of NBR rubber with different nitrile content was studied. Enthalpy of vulcanization drops from 6.62J/g for 18% nitrile rubber to 1.89J/g for 40% one. The peak of vulcanization shifts to higher temperatures for 12°C with nitrile content increase. No secondary vulcanization process was observed for 18% nitrile rubber. The other rubbers possess thermal polymerization at 285°C in neat rubbers accelerated by nitrile groups. This process is additionally accelerated when vulcanization additives are present in rubber. Thus the post-vulcanization peak shifts up to 20°C to lower temperatures for 40% nitrile rubber with increase in enthalpy in 5 times compared to neat rubber. When heated at 250°C for 6 hours no significant change in rubber hardness is occurred for 18% nitrile rubber and 2 times increase for 40% nitrile rubber is measured indicating dramatic role of nitrile content for rubber properties. No considerable effect of nitrile groups cross link on rubber hardness is observed. Index Terms: cross-link, cure, DSC, hardness, NBR, nitrile, properties, rubber, vulcanization —————————— ◆ —————————— 1 INTRODUCTION The resulted mixture is poured into silicon paper box and rest Acrylonitrile–butadiene rubber (NBR), commonly known as for night for primary solvent evaporation. After that the resulted nitrile rubber, has been commercially available for more than film was dried at 50°C in vacuum to a constant weight.
    [Show full text]
  • Attachment C
    ATTACHMENT C C-1 ATTACHMENT C DIVISION 1 - GENERAL REQUIREMENTS 01110 JBR Summary of Work 1:4 01116 JBR Project Manual Language 1:2 01140 JBR Work Restrictions 1:8 01201 JBR Payment Procedures 1:2 01292 JBR Schedule of Values 1:4 01294 JBR Applications for Payment 1:2 01312 JBR Project Meetings 1:4 01324A JBR Progress Schedules and Reports 1:14 01329 JBR Safety Plan 1:2 01330 JBR Submittal Procedures 1:8 01350 JBR Special Procedures 1:2 01352 JBR Alteration Project Procedures 1:4 01354 JBR Hazardous Material Procedures 1:2 01424 JBR Abbreviations 1:8 01450 JBR Quality Control 1:6 01455 JDS Special Tests and Inspections 1:6 01500 JBR Temporary Facilities and Controls 1:6 01600 JBR Product Requirements 1:4 01612 JDS Seismic Design Criteria 1:2 01614 JDS Wind Design Criteria 1:2 01722 JBR Field Engineering 1:2 01732 JBR Cutting and Patching 1:4 01734 JBR Work Within Public Right-of-Way 1:2 01738 JBR Selective Demolition 1:4 01756 JBR Testing, Training, and Facility Start-Up 1:14 01770 JBR Closeout Procedures 1:6 01782 JBR Operation and Maintenance Data 1:4 C-2 ATTACHMENT C DIVISION 2 - SITE CONSTRUCTION 02084 JBR Utility Structures 1:4 02100 JBR Traffic Control 1:6 02200 JBR Site Preparation 1:4 02222 JBR Demolition 1:2 02240 JBR Dewatering 1:4 02260 JDS Excavation Support and Protection 1:6 02280 JBR Subsurface Utility Engineering 1:4 02300 JDS Earthwork 1:12 02318 JBR Trenching 1:6 02550 JBR Temporary Bypass Pumping 1:8 02580 JBR Concrete Manholes 1:2 02581 JBR Electrical Manholes 1:2 02722 JBR Aggregate Base Course 1:2 02742 JBR Asphaltic
    [Show full text]