<<

© Copyright 2020: Instituto de Astronomía, Universidad Nacional Autónoma de México DOI: https://doi.org/10.22201/ia.01851101p.2020.56.01.08 fmte rmteco e in notehtcom- hot the onto giant red cool the the of from result matter of a major a as displaying eruption thermonuclear symbiotic novae of type, Symbiotic subgroup a shell. D are dust and thick type, continuum, a S by stellar characterized classes: Sym- a two by into 1984). characterized divided Webbink are & binaries Kenyon biotic 1992; (Mikolajewska Kenyon processes physical & different differ- to them due exhibit interpret as white systems authors nebula some These hot a behaviors; outburst cases 1997). a ent some in al. , and et , (Murset neutron cool a a or dwarf binary of interacting consisting of group stars a are systems Symbiotic eit eiaad srnmı Astrof´ısica Astronom´ıa y de Mexicana Revista https://doi.org/10.22201/ia.01851101p.2020.56.01.08 c srnm eatet ainlRsac nttt fAtooyadGohsc,Hla,Cio Egypt. Cairo, Helwan, Geophysics, and Astronomy of Institute Research National Department, Astronomy 00 nttt eAtoo´a nvria ainlAtooad M´exico Aut´onoma de Nacional Astronom´ıa, Universidad de Instituto 2020: PCRLBHVO FTESMITCNV MSEI THE IN SGE HM SYMBIOTIC THE OF BEHAVIOR SPECTRAL einelsmdlsd iad&Wlsn(97 omgiie l (1995). al. et explicarse Formiggini pueden y (1987) Words: IUE Willson Key del & observaciones de Girard Las de consecuencia emisi´on, modelos como masa. regi´on los de t´erminos p´erdidamediante la de en l´ıneas la podr´ıan de explicarse las en temperatura de variaciones la flujo variaci´on de del la tiempo de el 1909 en en variaciones III] Las C el y eH g atrd aasrio n2200 absorci´on en la variaci´on de de la enrojecimiento partir demuestran el a l´ıneas que de Determinamos Sge de HM perfiles tiempos. de tres distintos presentan emisi´on en tiempo l´ıneas Se de de algunas intervalo 1992. el durante - (IUE) 1980 Explorer” Ultraviolet “International el diante (1987); Willson & Girard variations. of the loss models of mass (1995). the of terms by al. result in explained et a explained be Formiggini as can be region observations could emitting IUE dates the The different in at temperature variations of flux variations line The star. t1550 at ae r rsne.W eemndterdeigo MSefo h 2200 the from Sge HM of reddening is different value the at estimated determined lines the We emission feature; absorption some presented. of 1992. variations are - the 1980 dates demonstrating from interval profiles the line through Three (IUE) Explorer Ultraviolet International the .INTRODUCTION 1. E ( eotveo bevcoe lrvoea el oasmioiaH g me- Sge simbi´otica HM nova la de ultravioletas observaciones obtuvieron Se lrvoe bevtoso h yboi oaH g eeotie from obtained were Sge HM nova symbiotic the of observations Ultraviolet B ,H I1640 II He A, ˚ − V iais yboi tr:idvda:H g lrvoe:stars ultraviolet: — Sge HM individual: stars: — symbiotic binaries: 0 = ) eevdAgs 521;acpe eebr1 2019 13 December accepted 2019; 25 August Received . 34 ,lıesqes rdcne lvet el srlacaliente. estrella la de viento el en producen se l´ıneas que A, ˚ ± .R aa n .A Abdel-Sabour A. M. and Sanad R. M. ,adCI]a 1909 at CIII] and A, ˚ 0 . 2 sdao lCVe 1550 en CIV el Esudiamos 02. ULTRAVIOLET , 56 ABSTRACT RESUMEN 36 (2020) 63–69 , E ( ytmcnann aetp variable. symbiotic Slo- type binary late a a 1975. of containing Sge model system HM a developed of were (1978) eruption vak processes the nuclear calculations for nova-like model responsible their that hot of cool suggest the result the they of a of radiation As loss the mass by component. system the ionized star by and double created component a nebula of a (1987) consisting with Vogel density model & to high a Nussbaumer attempt employ the models spectra. to theoretical the Some due absence interpret The be nebula. the may nebula. of lines a have emission be- systems of states all ionization not different cause with lines emission their of of evolution scale 2001). - Tamova time & (Tomov long decay a with ponent, B rdcdi h idfo h hot the from wind the in produced A ˚ − ,yotvmsu ao estimado valor un obtuvimos y A, ˚ oesmitcssesehbtalrevariety large a exhibit systems symbiotic Some V 0 = ) . 34 ± ,e eI n1640 en II He el A, ˚ 0 . 2 esuidCIV studied We 02. A, ˚ A ˚ 63 © Copyright 2020: Instituto de Astronomía, Universidad Nacional Autónoma de México DOI: https://doi.org/10.22201/ia.01851101p.2020.56.01.08 iasa.Ti euai oie yterdainof the radiation from the by mass ionized of is loss nebula the This by star. associated Mira formed system nebula binary model a a a of with consisting proposed Sge (1990) HM Vogel for lev- & excitation Nussbaumer and ionization els. higher temporal toward with large trend fluxes, a line undergone emission ultraviolet has the in Sge variations HM that found ionized. deduced radiatively and is nebula region emitting the the of that temperature Nussbaumer cal- the & to IUE culate Mueller wind from observations fast ultraviolet dwarf. used a white (1985) to hot attributed the large- they from a which has outflow Sge HM scale opti- that from (1999), reported spectroscopy, al. cal a et Corradi of while presence star, the Mira indicated cool Sge HM of variations flux object, line emission Sge. co- HM new of the a ordinates representing Stover spec- Dec=+16:38 it R.A.=19:39, emission called with 9. They nebular - ob- typical 2 trum. spectroscopic a M optical found on as using later servations such (1977) and to Sivertsen 12, nebula Hb & extended similar and an plan- 4997 lines compact to IC a like to emission evolve nebula may etary nebular Sge HM that has Cyg. V1016 reported Sge observations, HM spectroscopic and ric approximated hyperboloid. front a cool by ionization Monte the from the a wind with stellar using component, spherical By slow that the profiles by line star. vary the computed cool neu- they technique, the a Carlo Keplerian in near occuring a region scattering by tral Raman region with disk emission thin the described the and from inferred is continuum. the component The of cool shape a component. the of cool of from the presence combination emission of a and of emission reddened result dust a thin is optically flux In embedded the component. dust hot model optically a their an ABDEL-SABOUR containing and & component system SANAD cool star binary accu- a an to due dwarf matter. white accreted hot of the mulation on of (TNR) surface runaway thermonuclear the in- a This eruption from nova as 1976). resulting interpreted (Dokuchaeva was brightness 11 in to mag- crease optical 17 in changed from Sge White- nitude HM & 1975, of In Munari period 1999; 1989). pulsation Schmid lock a & with (Murset star days Mira 527 giant red cool a 64 ebla 18)as sn U observations, IUE using also (1982) Feibelman infrared the that found (1982) Yudin & Taranova photomet- optical using (1977), al. et Ciatti model disk accretion wind a adopted (2009) Lee is Sge HM that suggested (1978) al. et Puetter of consisting nova symbiotic type D a is Sge HM fH g n eue httetu au fred- of value true the that deduced is dening and Sge conditions HM nebular of the discussed observations scope hycluae h ieflxso oeeiso lines emission some of fluxes line (1985), the Nussbaumer calculated & They Mueller e.g. studies, previous (2001). al. al. et et Gonzalez of Pascual - and Rodriguez description (1999) see and spectra information ultraviolet the more For at analysis. the 1950 site (6 - spectra (1150 resolution from Spectra) ultraviolet low The Extracted with retrieved (IUE) Newly http://ines.vilspa.esa.es. been (IUE Explorer INES have Ultraviolet observations International The SGE HM OF OBSERVATIONS ULTRAVIOLET 2. paper. this dwarf. of white hot conclusions emission from the of wind contains colliding behavior the spectral in the lines of discussion and reddening. the determining Nuss- in In and (1985); studies observations Nussbaumer (1990). Previous Vogel & & Mueller baumer Sge. of HM those of are (IUE) Ultravi- International Explorer the olet with obtained data violet density. and in- temperature the the to in due as decrease interpreted and modulations are crease rate the loss of secondly mass wind and the of the dwarf; in white behavior, origin hot spectral the common same emission possible the ultraviolet a nearly indicating the have firstly, fluxes that line are study our hot the of envelope a the as in Sge flash star. HM hydrogen of a of outburst cool the result the wind from interpreted wind the the and of and Mira, region dwarf white colliding hot a the from in produced are lines nebula. surrounding two the revealed in regions diagnostics pro- 40 distinct density be the and to estimated binary Temperature separation They the binary of angular Sge. positions jected HM the of time first components di- the measured for emission and rectly nebula, optical extended and the radio in embedded with features discrete of radia- 4 1 the to from that increased reported temperature also tion They dwarf. white the ye ta.(01,uigHbl pc Tele- Space Hubble using (2001), al. et Eyres h U bevtoshv enue nsome in used been have observations IUE The ultra- the of analysis an present we paper this In in characteristics observational important The emission optical the that reported (1984) Stauffer . 7 × 10 E 5 ( B n1989. in K − )wr sdi h euto and reduction the in used were A) ˚ V 0 = ) § IHIUE WITH . epeettemto of method the present we 3 5 hyietfidanumber a identified They 35. )adsotwavelength short and A) ˚ § § edsusteIUE the discuss we 2 hw h results the shows 4 × 10 4 n1976 in K ± mas. 9 § 5 © Copyright 2020: Instituto de Astronomía, Universidad Nacional Autónoma de México DOI: https://doi.org/10.22201/ia.01851101p.2020.56.01.08 u ee n oitgaeteflxo h emission the of flux continuum. the the integrate above contin- line to the and estimate level to uum suite software MIDAS command the integrate/line in the fluxes used pro- the we fluxes of for lines estimations emission line used the of For was in software spectra. variations the MIDAS the cessing The shows 1 time. with Figure 1. 9 ble order of line in CIV variations the found 20 of (1990) flux Vogel the & Nussbaumer were 1982 April to 1978 January 4 from period the 1550 CIV as such cm erg of stages different units during in plotted Sge is HM flux of (The spectrum IUE 1. Fig. n pcsadfudvrain nteflxo h line the of 5 flux of order the in in variations found and epochs ent . 6 × h o fteIEosrain slse nTa- in listed is observations IUE the of log The ebla 18)aaye I 1550 CIV analyzed (1982) Feibelman × 10 10 − − 12 12 r cm erg . o15 to 02 × 10 . 9 − ;tevrain fCVthrough CIV of variations the A; ˚ − × 2 12 s 10 − o12 to 1 − . 12 . 93 r cm erg × 10 − − − 12 2 2 MSEI H LRVOE 65 ULTRAVIOLET THE IN SGE HM . s s 4 r cm erg − − 1 × 1 ndiffer- in A ˚ A ˚ . − 10 1 − ). − 2 12 s − to 1 ; in eeslce o u eemnto fthe SWP38638 - of - LWP19016 SWP33154 - determination - (SWP28896 & LWP12920 our LWP24119) - for (LWP08880 reddening selected 15 were in tions 3000 binned 25 - are and 2000 between spectra wavelengths The of range the dant 1950 - 1150 tween (6 resolution low of the set using determined was Sge 2200 HM of reddening The W402LwLre19-01 2448915.21653 1992-10-19 2448915.12249 1992-10-19 2448855.86235 Large 1992-08-21 2448855.75214 Large 1992-08-21 2448851.01356 Large 1992-08-16 Low 2448850.97169 Large 1992-08-16 Low 2448524.30658 Large SWP46012 1991-09-24 Low 2448524.19478 Large SWP46011 1991-09-24 Low 2448470.46081 Large SWP45389 1991-08-01 Low 2448180.47445 Large SWP45387 1990-10-15 Low 2448180.41296 Large SWP45355 1990-10-15 Low 2448002.70632 Large SWP45354 1990-04-21 Low 2448002.60074 Large SWP42548 1990-04-21 Low 2447843.14039 Large SWP42547 1989-11-12 Low 2447843.02143 Large SWP42154 1989-11-12 Low 2447777.19521 Large SWP39838 1989-09-07 Low 2447619.79851 Large SWP39837 1989-04-03 Low 2447619.73762 Large SWP38939 1989-04-03 Low 2447245.79245 Large SWP38638 1988-03-25 Low 2447245.68857 Large SWP37573 1988-03-25 Low 2446939.37905 Large SWP37572 1987-05-23 Low 2446888.64367 Large SWP36951 1987-04-03 Low 2446888.58032 Large SWP35922 1987-04-03 Low 2446657.36038 Large SWP35921 1986-08-14 Low 2446155.31349 Large SWP33155 1986-08-14 Low 2446155.31349 Large SWP33154 1985-03-30 Low 2445072.69293 Large SWP31033 1982-04-13 Low 2445072.63036 Large SWP30694 1982-04-13 Low 2445066.55572 Large SWP30693 1982-04-07 Low 2445066.51274 Large SWP28897 1982-04-07 Low 2445022.35865 Large SWP28896 1982-02-21 Low 2445022.13708 Large SWP25552 1982-02-21 Low 2444909.69151 Large SWP16753 1981-11-01 Low 2444909.42918 Large SWP16752 1981-10-31 Low 2444831.01329 Large SWP16706 1981-08-14 Low 2444826.30751 Large SWP16705 1981-08-09 Low 2444686.25105 Large SWP16404 1981-03-22 Low 2444685.99707 Large SWP16402 1981-03-22 Low 2444480.65055 Large SWP15355 1980-08-29 Low 2444477.28274 Large SWP15353 1980-08-25 Low 2444290.15734 Large SWP14756 1980-02-20 Low Large SWP14704 Low Large SWP13548 Low SWP13546 Low SWP09943 Low SWP09898 SWP07995 mg iprinAetr bevto J.D. Observation Aperture Dispersion Image DDate ID bopinfaue eue h etdata best the used We feature. absorption A ˚ LR pcr ihlwrslto (6 resolution low with spectra (LWR) hr aeeghPrime Wavelength Short .MTO FETMTN THE ESTIMATING OF METHOD 3. isfrLR h olwn observa- following The LWR. for bins A ˚ ITO U OBSERVATIONS IUE OF LIST )i h ag fwvlntsbe- wavelengths of range the in A) ˚ and A ˚ REDDENING AL 1 TABLE ogWvlnt Redun- Wavelength Long pcr SP with (SWP) spectra isfrSWP for bins A ˚ )in A) ˚ A. ˚ © Copyright 2020: Instituto de Astronomía, Universidad Nacional Autónoma de México DOI: https://doi.org/10.22201/ia.01851101p.2020.56.01.08 20)uigteetnto a method. al. map et Eyres by the determined using that (2001) to close very is value be to reddening of reddening a determined E (1985) Nussbaumer & lar on h ednn obe to reddening the found as Sge HM 2. Figure in shown eigfrH g is Sge red- HM the of for value dening estimated The values. line) theoretical (dashed standard 2200 and the observations between to agree- ment best fit the best represented which the feature, for absorption plots the of inspection reddening the spec- of value. smoothing determination our best for the suitable trum gave which SWP46011) - ABDEL-SABOUR & SANAD 66 Corrected Flux Corrected Flux Corrected Flux Corrected Flux 1•10 2•10 3•10 1•10 2•10 3•10 1•10 2•10 3•10 1•10 2•10 3•10 ( B ye ta.(01 eotdterdeigfor reddening the reported (2001) al. et Eyres h otsial au sdtrie yvisual by determined is value suitable most The 0 0 0 0 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 i.2 ednn eemnto o MSge. HM for determination Reddening 2. Fig. − 1500 1500 1500 1500 V HM Sge:E(B-V)=0.38 HM Sge:E(B-V)=0.34 HM Sge:E(B-V)=0.30 HM Sge:E(B-V)=0.42 0 = ) Wavelength Wavelength Wavelength Wavelength E 2000 2000 2000 2000 ( B . 1 uste l 19)fudthe found (1991) al. et Murset 61, E − 2500 2500 2500 2500 ( V B 0 = ) − 3000 3000 3000 3000 E V ( B 0 = ) E . Corrected Flux Corrected Flux Corrected Flux Corrected Flux 5 vsne l (1991) al. et Ivison 35; − 1•10 2•10 3•10 1•10 2•10 3•10 1•10 2•10 3•10 1•10 2•10 3•10 ( B 0 0 0 0 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 V . − 0 = ) 3 u estimated Our 63. 1500 1500 1500 1500 V HM Sge:E(B-V)=0.36 HM Sge:E(B-V)=0.32 HM Sge:E(B-V)=0.44 HM Sge:E(B-V)=0.40 0 = ) Wavelength Wavelength Wavelength Wavelength . 2000 2000 2000 2000 34 . ± 8 Muel- 58; 2500 2500 2500 2500 0 . 2as 02 3000 3000 3000 3000 A ˚ nraei h ieflxso I,H IadCIII] and shock II The He 1987. in CIV, maximum of a reaching fluxes steady 1982, a line until to the led in and shock increase facing this of temperature al. et the Formiggini toward 1987; other Willson 1995). & the formed, (Girard are dwarf, star, shocks white cool region. two the wind collision, toward this colliding one of the result as a known and As the is distance other, some what each at result toward forms occurs a winds them As two cool between dwarf. of a collision white motion from the the wind from of a wind contains a wind. Sge and stellar Mira HM a as stage WD this the At of atmosphere eject the will radiation of pressure some and radiation con- increased and both The outburst in pressure. an rise to a (WD). to leads dwarf sequently mass white of the transfer of of The top temperature on the layer increases hydrogen dwarf the white hot the to (1992). Ayres and Lenz in fluxes 1 line reported of measured behavior range the the spectral for in errors the are lines The represent emission lines. 5 CIII] such 4, of and 3, II Figures He con- and CIV, 2 Table for dwarf similar. fluxes white is tains hot behavior the spectral from their wind a emis- since the the reached of be they may origin The increase lines and sion 1987. steady 1982, April a in April flux was until maximum There fluxes line scales, years. in time to long and hours short from over time with vary lines Vogel & (1990). Nussbaumer by (1985), discussed Nussbaumer 1909 & previously at Mueller line, line intercombination emission an CIII] is the 1640 and at line line, spectral bination II He the line, 1550 sion at line spectral CIV The cm erg of for units fluxes in integrated 1550 lines the emission emission CIV determined the of we measurements the fluxes, the line of For continuum. flux this the 1640 integrate He level continuum to the estimate and of “inte- to ESO/MIDAS The used wings software effectively the was the function. in Gaussian of command a grate/line” portions by observed lines emission the fitted We 4.2 ieVrain fteSeta ie rmthe from Lines Spectral the of Variations Time . 4.1 h aito rmtehtW nrae the increased WD hot the from radiation The (Mira) star cool the from mass transferred The emission CIII] and II He & CIV of fluxes line The ehdo acltn h ieFue of Fluxes Line the Calculating of Method . .RSLSADDISCUSSION AND RESULTS 4. n II 1909 CIII] and A ˚ ido o Star Hot of Wind σ msinLines. Emission sdtrie ytemethods the by determined as , msinlnsabove lines emission A ˚ sarsnneemis- resonance a is A ˚ − 2 sarecom- a is A ˚ s − 1 . A, ˚ A ˚ © Copyright 2020: Instituto de Astronomía, Universidad Nacional Autónoma de México DOI: https://doi.org/10.22201/ia.01851101p.2020.56.01.08 odtoso h msinlnsas ies sdo as differs, also lines emission is physical the systems the two on of the effect conditions the of environ- consequently regions physical and emitting different, the Abdel- the of & in nature (Sanad ment The Mus, 2016). GQ of Sabour as behavior such spectral novae ultraviolet classical the from differs Sge de- fluxes line the therefore and the creased. both decreased so, WD) (wind region dwarf; of rate emitting the white the the of hot of temperature in the and velocity density from decrease the loss a of mass consequently of decrease and a in wind, decline to hot The led time. shock with this weakened WD the facing cm erg of units in plotted emis- is II flux He (The 1 the point The of 2440000) flux. - line (JD sion evolution Time 4. Fig. cm erg of units in plotted emis- is CIV flux the (The 1 of point The 2440000) - flux. line (JD sion evolution Time 3. Fig. h pcrlbhvo ftesmitcnv HM nova symbiotic the of behavior spectral The σ σ ro asaesono ahdata each on shown are bars error data each on shown are bars error MSEI H LRVOE 67 ULTRAVIOLET THE IN SGE HM − − 2 2 s s − − 1 1 A ˚ A ˚ − − 1 1 ). ). is n h aso h o ht wr ob 0 be to dwarf white hot the of mass the ing 9 be to (1984). al. et Willson by derived that (1999). al. et Richards by estimated as used, is following of distance the The from equation. ultraviolet average 3 Table line. shift. CIV Doppler the of the velocities of the result shows Full lines a The emission as of region. (FWHM) increases Maximum this Half of at expansion Width the three from the mined for dwarf white a,b). hot 2017 a (Sanad novae from ef- symbiotic produced wind physical similar are a with lines region fects: emitting spectral same the the since in Cyg 1016 Peg, V AG both and of behavior spectral (Sanad ultraviolet Sge the HM of case the wind in the dwarf to 2016). white opposed hot as a star, giant of partially cool is a which by of dwarf, eclipsed white there because the Vul, around Vul, nebula PU a For PU is of environments. physical behavior different spectral the from the Mus. and GQ Sge for HM ejecta for of dwarf shell white hot expanding the of wind the cm erg of units in plotted is emis- flux CIII] (The the 1 point of The 2440000) flux. - line (JD sion evolution Time 5. Fig. 1640 ≈ h lrvoe uioiyo h mtigregion emitting the of luminosity ultraviolet The h aiso h o ht wr sdetermined is dwarf white hot the of radius The ( fluxes integrated The deter- be can region emitting the of velocity The to similar is Sge HM of spectrum the However, differs Sge HM of behavior spectral the Similarly, 4 n II 1909 CIII] and A ˚ . × 3 × 10 10 34 8 r s erg mb h olwn qain assum- equation, following the by cm − L σ 1 UV ro asaesono ahdata each on shown are bars error hsvlei oprbeto comparable is value This . r sdt eemn the determine to used are A ˚ 4 = ≈ F Fd πF fCV1550 CIV of ) 00p oteH Sge HM the to pc 1000 2 . − 2 ,H II He A, ˚ s − . 7 1 A ˚ M − 1

). , © Copyright 2020: Instituto de Astronomía, Universidad Nacional Autónoma de México DOI: https://doi.org/10.22201/ia.01851101p.2020.56.01.08 vrg au ftert fwn asls obe to loss mass wind of rate the of value average where R (1990). Vogel & Nussbaumer ABDEL-SABOUR & SANAD 68 h olwn qain(oe&Eas2008): Evans & (Bode equation following (1997). the al. et Murset by calculated that to W4021.397 .419-01 2448915.21653 1992-10-19 2448915.12249 1992-10-19 5.74 2448855.86235 1992-08-21 7.95 2448855.75214 9.76 7.65 2448851.01356 1992-08-21 9.60 1992-08-16 11.63 2448850.97169 6.66 9.19 2448524.30658 SWP46012 1992-08-16 18.38 8.20 1991-09-24 SWP46011 10.18 16.53 6.75 2448524.19478 9.75 5.35 SWP45389 1991-09-24 16.82 2448470.46081 5.93 SWP45387 1991-08-01 17.82 6.98 9.37 2448180.47445 SWP45355 17.10 6.42 2448180.41296 1990-10-15 9.02 SWP45354 8.29 1990-10-15 2448002.70632 6.28 8.26 SWP42548 1990-04-21 17.81 8.31 2448002.60074 SWP42547 1990-04-21 10.21 16.01 5.27 2447843.14039 6.52 SWP42154 11.96 6.69 1989-11-12 10.90 2447843.02143 SWP39838 18.71 2447777.19521 1989-11-12 5.53 8.23 SWP39837 9.62 1989-09-07 8.29 2447619.79851 SWP38939 11.53 18.51 8.13 1989-04-03 2447619.73762 SWP38638 11.06 10.91 1989-04-03 7.45 2447245.79245 9.72 SWP37573 18.76 1988-03-25 9.60 SWP37572 11.60 20.02 2447245.68857 8.46 2446939.37905 1988-03-25 SWP36951 10.12 15.57 2446888.64367 1987-05-23 10.86 SWP35922 1987-04-03 13.70 21.31 9.93 SWP35921 12.50 13.92 2446888.58032 7.83 2446657.36038 1987-04-03 SWP33155 1986-08-14 11.78 22.78 9.76 12.39 SWP33154 17.93 2446155.31349 6.01 1986-08-14 SWP31033 15.30 13.65 2446155.31349 2445072.69293 7.67 1985-03-30 12.63 SWP30694 1982-04-13 24.40 2445072.63036 10.79 SWP30693 13.74 11.03 8.37 2445066.55572 1982-04-13 SWP28897 1982-04-07 12.05 22.31 13.32 2445066.51274 7.81 SWP28896 18.32 9.36 1982-04-07 2445022.35865 9.14 SWP25552 12.25 1982-02-21 12.82 2445022.13708 9.13 SWP16753 17.20 1982-02-21 15.64 2444909.69151 9.66 SWP16752 14.73 1981-11-01 10.11 2444909.42918 9.91 SWP16706 18.54 2444831.01329 1981-10-31 14.66 8.71 SWP16705 1981-08-14 17.17 10.52 2444826.30751 8.83 SWP16404 12.83 8.88 1981-08-09 2444686.25105 7.91 SWP16402 15.53 2444685.99707 1981-03-22 11.89 8.31 SWP15355 1981-03-22 12.70 2444480.65055 13.81 7.64 SWP15353 1980-08-29 14.16 7.92 2444477.28274 8.97 SWP14756 14.64 8.64 2444290.15734 1980-08-25 7.40 SWP14704 1980-02-20 15.67 12.30 8.25 SWP13548 12.16 9.24 7.51 SWP13546 12.84 6.06 SWP09943 14.55 SWP09898 11.04 SWP07995 U IEFUE FCV eI N II IN CIII] AND II He CIV, OF FLUXES LINE IUE D W M mg I eI IIOsrainJ.D. Observation CIII II He CIV Image h aeo h idms osi eemndfrom determined is loss mass wind the of rate The comparable is radius the of value calculated Our D1550 ID wind • =0 α w . = 78 NT F10 OF UNITS sa rirr aaee.W on an found We parameter. arbitrary an is 3 × . 3 10 1640 A ˚ × α 9 "  w 10 1 − M . 44 AL 2 TABLE 1909 A ˚ 11 D W M  −

M R 11  Date A ˚ D W 2 D W r cm erg / 3 −   1 1 M . / 44 2 − D W L 2 M UV s

−  1 M 2 /

3 # yr 1 − / 2 cm 1 , . yNsbue oe 19)adMelr&Nuss- & (1985). Muellar and baumer reported (1990) that Vogel & to Nussbaumer comparable by is value estimated is Our temperature average The area. and surface constant, Boltzmann Steffan where region, emitting the of Nuss- temperature the and culate (1989) al. (1990) et Vogel & Livio baumer by calculated that ≈ 5 W40210 921-92448915.21653 2448915.12249 1992-10-19 2448855.86235 1992-10-19 2448855.75214 1992-08-21 2448851.01356 1502 1992-08-21 2448850.97169 1194 1992-08-16 2448524.30658 1244 SWP46012 1992-08-16 2448524.19478 1202 SWP46011 1991-09-24 2448470.46081 1212 SWP45389 1991-09-24 2448180.47445 1189 SWP45387 1991-08-01 2448180.41296 1731 SWP45355 1990-10-15 2448002.70632 1243 SWP45354 1990-10-15 2448002.60074 1194 SWP42548 1990-04-21 2447843.14039 1538 SWP42547 1990-04-21 2447843.02143 1178 SWP42154 1989-11-12 2447777.19521 1665 SWP39838 1989-11-12 2447619.79851 1183 SWP39837 1989-09-07 2447619.73762 1556 SWP38939 1989-04-03 2447245.79245 1207 SWP38638 1989-04-03 2447245.68857 1212 SWP37573 1988-03-25 2446939.37905 1501 SWP37572 1988-03-25 2446888.64367 1238 SWP36951 1987-05-23 2446888.58032 1520 SWP35922 1987-04-03 2446657.36038 1185 SWP35921 1987-04-03 2446155.31349 1501 SWP33155 1986-08-14 2446155.31349 1632 SWP33154 1986-08-14 2445072.69293 1216 SWP31033 1985-03-30 2445072.63036 1702 SWP30694 1982-04-13 2445066.55572 1291 SWP30693 1982-04-13 2445066.51274 1357 SWP28897 1982-04-07 2445022.35865 1479 SWP28896 1982-04-07 2445022.13708 1199 SWP25552 1982-02-21 2444909.69151 1429 SWP16753 1982-02-21 2444909.42918 1226 SWP16752 1981-11-01 2444831.01329 1085 SWP16706 1981-10-31 2444826.30751 1423 SWP16705 1981-08-14 2444686.25105 1258 SWP16404 1981-08-09 2444685.99707 1411 SWP16402 1981-03-22 2444480.65055 1403 SWP15355 1981-03-22 2444477.28274 1323 SWP15353 1980-08-29 2444290.15734 1311 SWP14756 1980-08-25 1417 SWP14704 1980-02-20 1477 SWP13548 1263 SWP13546 1457 SWP09943 SWP09898 SWP07995 h tffnBlzaneuto sue ocal- to used is equation Steffan-Boltzmann The × mg I bevto J.D. Observation CIV Image D(WM Date (FWHM) ID 10 σ − ≈ 6 M 5

I FH)I kms IN (FWHM) CIV . 6704 yr − × 1 L hsvlei oprbeto comparable is value This . AL 3 TABLE 10 = − σAT 5 r cm erg 4 , − A 2 − s − 1 4 = 1 ≈ K π − 1 r 4 × 2 10 sthe is sthe is 5 K. © Copyright 2020: Instituto de Astronomía, Universidad Nacional Autónoma de México DOI: https://doi.org/10.22201/ia.01851101p.2020.56.01.08 emntos h anrslsaea follows: as are results main de- The previous with cal- terminations. agree The parameters parameters. physical physical culated CIII) some & estimate star) II He to hot (CIV, and the lines spectral of specific (wind and some constrain using region IUE. to emitting the was the work by this diagnose obtained of purpose Sge main of HM The observations nova ultraviolet symbiotic studied the we paper this In .A be-aoradM .Snd srnm eatet ainlRsac nttt fAtooyand Astronomy of Institute Research National Department, Astronomy Sanad: R. M. and Abdel-Sabour A. M. 2001, al. et R., A. Taylor, F., M. Bode, S., P. 1D 1189, S. IBVS, Eyres, 1976, D. Brandi, O. E., Dokuchaeva, H. Schwarz, E., O. Ferrer, M., L. 61, R. A&A, Corradi, 1977, A. Vittone, & A., Mammano, F., Ciatti, F. M. ed. Novae, Classical 2008, A. Evans, F., M. Bode, Teutailtosrain ihteIEcan IUE the with observations ultraviolet The 5. mass wind luminosity, ultraviolet estimated The 4. the to attributed are modulations flux line The 3. wind the in produced are lines emission The star 2. Mira the from mass of accumulation The 1. p,51 512 551, ApJ, 978C 348, A&A, 1999, L. Garcia, & E., 459C Press University Cambridge Series, Cambridge: Astrophysics 43, Cambridge No. Evans. A. and Bode epyis ewn ar,Eyt(aor00htalcm [email protected]). ([email protected], Egypt Cairo, Helwan, Geophysics, eitrrtdwt h idmdl fsymbi- of models novae. wind otic the with interpreted be with consistent are calculations. temperature previous and rate loss loss. mass of variations to- other the Mira. and cool shocks, dwarf the two white ward of the formation toward the one to the consequently, leads and, collision two stars between two collision the the from of winds region result emitting a This as formed dwarf. is white hot the from Sge. HM of outburst an to leads .CONCLUSIONS 5. REFERENCES MSEI H LRVOE 69 ULTRAVIOLET THE IN SGE HM usamr .&Vgl .18,AA 8,51N 182, 319, A&A, 1987, A&A, M. 1997, Vogel, & S. H. Jordan, Nussbaumer, & B., Vogel, Wolff, & U., M., Murset, H. 473 Schmid, 137, H., A&AS, Nussbaumer, 1999, 45 M. U., 237, H. Murset, MNRAS, Schmid, 1989, & A. 145, U. P. Murset, A&A, Whitelock, & 1985, U. H. Munari, Nussbaumer, & A. 256, E. MNRAS, B. 1992, Mueller, J. S. Kenyon, 299L & 341, ApJ, 1104 J. 1989, 104, O. Mikolajewska, PASP, Regev, 1992, & D., R. Prialnik, T. M., Livio, Ayres, & D. 252 D. 82L 279, Lenz, 404, ApJ, ASPS, 1991, 1984, 2009, al. F. H.-W. R. et Lee, Webbink, A., & J. J. S. Roberts, Kenyon, F., M. Bode, J., R. Ivison, W. Wamsteker, 247 & 183, A., A&A, Cassatella, 1987, R., A. Gonzalez-Riestra, L. 1995, Willson, M. & T. E. Girard, Leibowitz, & M., 1995, Contini, M. L., E. Formiggini, Leibowitz, & M., Contini, 584 L., 258, Formiggini, ApJ, 1982, A. W. Feibelman, ilo,L . alrti,G,Bue,E . Stencel, & W., E. Brugel, 311T G., 278, Wallerstein, 46T Ap&SS, A., 8, L. 2001, SvAL, Willson, M. 1982, Tomova, F. & 33S B. N. 214L, Tomov, Yudin, ApJ, & 1977, G. S. O. Sivertsen, Taranova, & 75S J. 70L, R. A&A, Stover, 1978, H. M. 361, Slovak, Ap&SS, 2016, A. M. Abdel-Sabour, & R. M. Sanad, 386 361, Ap&SS, 2016, R. M. Sanad, al. Schar- et R., S., P. Gonzalez-Riestra, S. M., P. Eyres, Rodriguez-Pascual, F., M. Bode, S., Willner, M. & A. T., Richards, B. Soifer, W., R. Russell, C., 417P R. 21, Puetter, AcA, 1971, B. Paczynski, 201M 458M 248, A&A, 1991, M. 144 177M 374 249, MNRAS, 730G 373, A&A, 2001, 1071F 277, MNRAS, 1071 277, MNRAS, .E 94 &,13 154W 133, A&A, 1984, E. R. 152 183R 139, A&AS, 1999 W. Wamsteker, & N., tel, 380R 305, MNRAS, 1999, 93P 223L, ApJ, 1978, P. S. 07 eA 3 20S 53, NewA, 2017, 14S . 52, NewA, 2017, . 117 236, A&A, 1990, .