Mikalojewska

Total Page:16

File Type:pdf, Size:1020Kb

Mikalojewska The Place of Recurrent Novae among the Symbiotic Stars Joanna Mikołajewska Copernicus Astronomical Center Warsaw, Poland Symbiotic stars S(stellar) normal giant 80% -7 Mg~10 Msun/yr Porb ~ 1-15 yr •Accreting white dwarf majority •Neutron star D(dusty) •Disk-accreting MS star? Mira + dust evelope •Black hole? 20% -5 a few Mg~10 Msun/yr Porb > 50 yr RS Oph, T CrB, V3890 Sgr & V745 Sco are S-type RNe Points to be addressed • Orbital parameters • The hot component & its activity • The cool giant & mass transfer Orbital parameters • 70 SyS – known orbital periods (Belczyński et al. 2000, Mikołajewska 2003, 2004; Gromadzki et al. 2007) • 32 SyS – known spectroscopic orbits for the cool giant (Mikołajewska 2003; Hinkle et al. 2006 – V2116 Oph; Brandi et al. 2006 - Hen3- 1761) T CrB: 227.6d RS Oph: 453.6d • 19 SyS – mass ratios (Mikołajewska 2003; 2007) In both symbiotic RNe: • Mg<Mh, and the lowest among SyS • Mh~1.1-1.4 Msun -the highest among SyS Spectroscopic orbits The hot component Quiescence: AG Dra •Overlap with central stars of PNe •TNR-powered white dwarfs •Stable /quasi-stable H-shell burning of the accreted matter or very slow TNR on low mass wd’s •Galactic and MC SyS overlap in HR diagram; MC systems are among the hottest and brighest systems However: Far UV SEDs for RW Hya, SY Mus and EG And indicate much lower T than emission lines (Sion et al. 2002, 2004) The hot component Iben & Tutukov (1996): accreting cold WDs Paczyński-Uus relation for AGB stars with CO cores •HCs cluster around the M-L relations for stars leaving the AGB with a CO core and the RG with a He core Hot He cores Iben & Tutukov 1996 •Symbiotic WDs could still be hot at the onset of the mass transfer from the cool giant The hot component Outbursts: •Symbiotic novae (AG Peg, RX Pup + 6); both S- and D-type •Stable (RW Hya, SY Mus) – -8 must accrete ~10 Msun/yr or extremely slow symbiotic novae: both S- and D-type majority? •Multiple outbursts Z And- type: only S-type how many? SyRNe: activity between outbursts Anupama & Mikołajewska (1999, and ref. therein): RS Oph, T CrB, V3890 Sgr & V745 Sco •Variable A-F shell source with LUV/opt~50-500 Lsun •Emission line spectrum: T>~50000 K and LEUV~LUV/opt but HeII and other high-ionization lines rarely observed •Flickering in RS Oph & T CrB correlated with the activity Mikołajewska et al. (1998): RX Pup -the same post-nova-outburst behaviour as in RS Oph & T CrB as well as the accretion-powered symbiotic CH Cyg -7 LEUV/opt ~100-500 Lsun consistent with unstable accretion at ~10 Msun/yr whereas LX indicates 1-2 orders of mag lower Mdot RSOph SyRNe: activity between outbursts Gromadzki et al. (2007, poster): Z And-type outburst activity between the nova eruptions in RS Oph RX Pup Z And What powers the multiple outburst activity? •TNR instability on high-mass (>1Msun) WD (Paczyński & Rudak 1980)? Problem: <Mwd> ~ 0.5 Msun (JMik 2003) •Accretion disc instability on accreting MS star (Duschl 1988, JMik & Kenyon 1992)? Problem: only a few SyS may host an MS star •Combination-nova scenario: accretion disc instability on more or less stably burning WD (JMik 2001; 2002; Sokolski et al. 2005) The link between the SyRNe & Z And-type symbiotics • Both the activity of Z And-type SyS and the high & low states of SyRNe due to unstable disc-accretion onto WD • The WDs in Z And-type SyS burn the accreted hydrogen more or less stably wheras in SyRNe they don’t The cool giant •S-types: Sp types between M3 and M6, with a peak at M5 •D-types: peaks at M6 and M7 •The frequency of Miras higher among symbiotic giants Muerset & Schmid (1999) Yellow SyS: S-types •S: K III (e.g.AG Dra) •D’ G III & warm dust M giants in the (e.g. HD 330036) Hipparcos Cat. D-types RS Oph T CrB V3890 Sqr V745 Sco Symbiotic Miras •Longer pulsation periods •Optically thick dust envelopes Single Symbiotic •Higher mass loss rates, -6 -5 10 -10 Msun/yr, as compared to -7 average field LPVs, 10 Msun/yr •Dust obscuration in RX Pup and other symbiotic Miras can be related to intensive and variable mass loss The cool giant Most contain SRVs & thus may have mass loss rates -7 ~a few 10 Msun/yr (Gromadzki et al. 2006) The cool giant Large radius & high mass loss from the red giant are the key parameters for triggering the symbiotic phenomenon Red giant radii & distance scale 48 SyS – vrot,g sin i (Fekel et al. 2003; Zamanov et al. 2006; Hinkle et al. 2007) 31 SyS – also Porb Are the giants synchronized? Yes if Porb < 1000d Red giant radii & distance scale Generally the radii derived from vsini agree with the radii predicted by Sp type Rg~0.4-0.5 RRL but in some SyS they are larger although consistent with Rg~RRL H-R Diagram for cool giants Both galactic and MC symbiotics are low- mass systems Mg <2-3 Msun AGB giants in MC symbiotics and yellow galactic systems with P>900 days T CrB - normal RGB RS Oph – metal-poor AGB? What we know about chemical abundances of symbiotic stars? UV emission line analysis of 24 SyS (Nussbaumer et al. 1988): relative CNO ratios place SyS among red giants. Photospheric abundances: •AG Dra, BD-21 3873 & He2-467, yellow SYS, with K giants: metal poor with [Fe/H]<-1 & s-process overabundant (Smith et al. 1996, 1997; Pereira et al. 1998) •HD 330036, AS 201 & StHA 190, D’ systems with G giants & warm dust: high vgsini, [Fe/H]~0 & s-process overabundant (Smith et al. 2001; Pereira et al. 2005) • S-types with M giants: CH Cyg & V2116 Oph ~ solar abundaces; no evidence for s-process overabundances in red SyS... (Schmidt et al. 2006, Hinkle et al. 2006) Carbon abundance Single M giants Symbiotic giants Comparison of symbiotic stars (black) with single field M giants (magenta) from Schmidt & Mik 2003 RS Oph: [C/H]~ -3 /-4 (!!!); 12C/13C=10 (Scott et al. 1994) Metal-poor field halo giants: [C/H]~ -3, 12C/13C=10 & [Fe/H] ~ -2 (Keller et al. 2001) Consistent with with the position of RS Oph in H-R diagram & d~3 kpc Mass transfer in symbiotics 3D HD models: the cool giant wind must be focused towards the orbital plane (Mastrodemos & Morris 1998, 1999; Gawryszczak et al. 2002, 2003): In agreement with observations: • resolved nebulae in D-types (e.g. Corradi 2003) • spectroscopic evidence for jets & bipolar outflows in active S-types (e.g. Tomov 2003) Mass transfer in S-type symbiotics: via stellar wind? YES (Nussbaumer & Co), because: Sp types, vsini indicate Rg ~0.4-0.5 RRL no evidence for ellipsoidal variability, or Roche lobe owerflow? YES in multiple outburst systems (JMik et al. 2001; 2002, etc...) need red/near-IR photometry at quiescence to see the ellipsoidal variability Multiple outburst symbiotics CI Cyg: quiescent LC (Mik 2001) sinusoidal but with Porb in U & Porb/2 in VRI... AR Pav • A/F continuum most of time • Secondary P, also visible in JHK ... Z And q=Mg/Mh=3 … and even my best examples of the stable SyS!!! JHK(L) light curves • Ellipsoidal LC’s in AR Pav & Z And (active) but also in stable SyS RW Hya & SY Mus • No ellipsoidal changes in the classical symbiotic nova AG Peg • Secondary P, eclipses & ellipsoidal variability in high-eccentricity BX Mon T CrB Roche lobe filling giant q=Mg/Mh~0.6 i~60 Belczynski & Mikołajewska 1998 RS Oph Poster by Gromadzki et al.: •Primary minimum at the time of the spectroscopic conjunction with the red giant is in front. •Secondary minumum veiled by a moving bump? but If synchroneus rotation, vsini implies RL-filling giant AR Pav: A moving bump veils the secondary minimum in the visual LC… Ellipsoidal variability in SyS: • Absent in symbiotic novae (AG Peg) • Present in all (i>60; LC available) multiple outburst (Z And-type) SyS at quiescence (VRI) and activity (near-IR) • Present (at least in some) in steady SyS (near-IR) • Present in T CrB; need near-IR for RS Oph • All 12 SyS with ellipsoidal variability have d Porb <1000 and circular (e~0) orbits except BX Mon The RG radius – vsini problem What about the radius/v sin i ? • Asynchronous rotation? unlikely because of circular orbits • RL shinkage (up to 2-3 times!) expected in luminous stars with strong winds if some force drives the mass loss & almost compensates the gravity (e.g. Schuerman 1972) -7 very promising in Sys with strong (10 Msun/yr) and nearly constant speed winds A-F shell M giant Hot comp In AX Per, AR Pav & other active SyS associated with the hot comp (Mik & Kenyon 1992; Quiroga et al. 2002; Brandi et al. 2005; 2007) Departures from the expected circular orbit correlated with activity & due to stream res Hot comp In RS Oph – confusing (poster by Brandi et al.) Significant contribution from the stream? M giant Note the L1 point on the opposite side of CM as compared with the other SyS Main points: • Symbiotic RNe, RS Oph & T CrB, and V2116 Oph/GX1+4 are the only SyS with the cool giant being the less massive component, with mass < 1 Msun in all cases. The WDs in the SyRNe are the most massive, with M~1.1-1.4 Msun sufficient for them to become SNIa. • Tidally distorted red giants and RF owerflow are present in T CrB & RS Oph.
Recommended publications
  • The Star Newsletter
    THE HOT STAR NEWSLETTER ? An electronic publication dedicated to A, B, O, Of, LBV and Wolf-Rayet stars and related phenomena in galaxies No. 25 December 1996 http://webhead.com/∼sergio/hot/ editor: Philippe Eenens http://www.inaoep.mx/∼eenens/hot/ [email protected] http://www.star.ucl.ac.uk/∼hsn/index.html Contents of this Newsletter Abstracts of 6 accepted papers . 1 Abstracts of 2 submitted papers . .4 Abstracts of 3 proceedings papers . 6 Abstract of 1 dissertation thesis . 7 Book .......................................................................8 Meeting .....................................................................8 Accepted Papers The Mass-Loss History of the Symbiotic Nova RR Tel Harry Nussbaumer and Thomas Dumm Institute of Astronomy, ETH-Zentrum, CH-8092 Z¨urich, Switzerland Mass loss in symbiotic novae is of interest to the theory of nova-like events as well as to the question whether symbiotic novae could be precursors of type Ia supernovae. RR Tel began its outburst in 1944. It spent five years in an extended state with no mass-loss before slowly shrinking and increasing its effective temperature. This transition was accompanied by strong mass-loss which decreased after 1960. IUE and HST high resolution spectra from 1978 to 1995 show no trace of mass-loss. Since 1978 the total luminosity has been decreasing at approximately constant effective temperature. During the present outburst the white dwarf in RR Tel will have lost much less matter than it accumulated before outburst. - The 1995 continuum at λ ∼< 1400 is compatible with a hot star of T = 140 000 K, R = 0.105 R , and L = 3700 L . Accepted by Astronomy & Astrophysics Preprints from [email protected] 1 New perceptions on the S Dor phenomenon and the micro variations of five Luminous Blue Variables (LBVs) A.M.
    [Show full text]
  • Accretion Flows in Nonmagnetic White Dwarf Binaries As Observed in X-Rays
    Accretion Flows in Nonmagnetic White Dwarf Binaries as Observed in X-rays Şölen Balmana,< aKadir Has University, Faculty of Engineering and Natural Sciences, Cibali 34083, Istanbul, Turkey ARTICLEINFO ABSTRACT Keywords: Cataclysmic Variables (CVs) are compact binaries with white dwarf (WD) primaries. CVs and other cataclysmic variables - accretion, accre- accreting WD binaries (AWBs) are useful laboratories for studying accretion flows, gas dynamics, tion disks - thermal emission - non-thermal outflows, transient outbursts, and explosive nuclear burning under different astrophysical plasma con- emission - white dwarfs - X-rays: bina- ditions. They have been studied over decades and are important for population studies of galactic ries X-ray sources. Recent space- and ground-based high resolution spectral and timing studies, along with recent surveys indicate that we still have observational and theoretical complexities yet to an- swer. I review accretion in nonmagnetic AWBs in the light of X-ray observations. I present X-ray diagnostics of accretion in dwarf novae and the disk outbursts, the nova-like systems, and the state of the research on the disk winds and outflows in the nonmagnetic CVs together with comparisons and relations to classical and recurrent nova systems, AM CVns and Symbiotic systems. I discuss how the advective hot accretion flows (ADAF-like) in the inner regions of accretion disks (merged with boundary layer zones) in nonmagnetic CVs explain most of the discrepancies and complexities that have been encountered in the X-ray observations. I stress how flickering variability studies from optical to X-rays can be probes to determine accretion history and disk structure together with how the temporal and spectral variability of CVs are related to that of LMXBs and AGNs.
    [Show full text]
  • 1983Apj. . .273. .280K the Astrophysical Journal, 273:280-288, 1983 October 1 © 1983. the American Astronomical Society. All Ri
    .280K .273. The Astrophysical Journal, 273:280-288, 1983 October 1 . © 1983. The American Astronomical Society. All rights reserved. Printed in U.S.A. 1983ApJ. THE OUTBURSTS OF SYMBIOTIC NOVAE1 Scott J. Kenyon and James W. Truran Department of Astronomy, University of Illinois Received 1982 December 21 ; accepted 1983 March 9 ABSTRACT We discuss possible conditions under which thermonuclear burning episodes in the hydrogen-rich envelopes of accreting white dwarfs give rise to outbursts similar in nature to those observed in the symbiotic stars AG Peg, RT Ser, RR Tel, AS 239, V1016 Cyg, V1329 Cyg, and HM Sge. In principle, thermonuclear runaways involving low-luminosity white dwarfs accreting matter at low rates produce configurations that evolve into A-F supergiants at maximum visual light and which resemble the outbursts of RR Tel, RT Ser, and AG Peg. Very weak, nondegenerate hydrogen 8 -1 shell flashes on white dwarfs accreting matter at high rates (M > 10" M0 yr ) do not produce cool supergiants at maximum, and may explain the outbursts in V1016 Cyg, V1329 Cyg, and HM Sge. The low accretion rates demanded for systems developing strong hydrogen shell flashes on low-luminosity white dwarfs are not compatible with observations of “normal” quiescent symbiotic stars. The extremely slow outbursts of symbiotic novae appear to be typical of accreting white dwarfs in wide binaries, which suggests that the outbursts of classical novae may be accelerated by the interaction of the expanding white dwarf envelope with its close binary companion. Subject headings: stars: accretion — stars: combination spectra — stars: novae — stars: white dwarfs I.
    [Show full text]
  • Fermi-Gst: a New View of the Gamma-Ray
    FERMI-GST: A NEW VIEW OF THE γ-RAY SKY S. CHATY on behalf of the Fermi-LAT collaboration Laboratoire AIM (UMR 7158 CEA/DSM-CNRS-Universit´eParis Diderot), Irfu/Service d’Astrophysique, CEA-Saclay, FR-91191 Gif-sur-Yvette Cedex, France, e-mail: [email protected] The Large Area Telescope on the Fermi γ-ray Space Telescope (FGST, ex-GLAST) provides unprecedented sensitivity for all-sky monitoring of γ-ray activity. It is an adequate telescope to detect transient sources, since the observatory scans the entire sky every three hours and allows a general search for flaring activity on daily timescale. This search is conducted automatically as part of the ground processing of the data and allows a fast response –less than a day– to transient events. Follow-up observations in X-rays, optical, and radio are then performed to attempt to identify the origin of the emission and probe the possible existence of new transient γ-ray sources in the Galaxy. Since its launch on 11th June 2008, Fermi-LAT has detected nearly 1500 γ-ray sources, nearly half of them being extragalactic. After a brief census of detected celestial objects, we report here on the LAT results focusing on Galactic transient binary systems. The Fermi-LAT has detected 2 γ-ray binaries, a microquasar and an unexpected new type of γ-ray source: a symbiotic nova. 1 Introduction There has been two firmly established classes of variable sources in the high-energy γ-ray sky: blazars and γ-ray bursts (GRBs). The Energetic γ-Ray Experiment Telescope (EGRET) on the Compton Γ-Ray Observatory discovered a population of variable γ-ray blazars above 100 MeV 7.
    [Show full text]
  • The Symbiotic Stars 79
    6 The Symbiotic Stars ULISSE MUNARI 6.1 Symbiotic Stars: Binaries accreting from a Red Giant When Merrill and Humason (1932) discovered CI Cyg and AX Per, the first known sym- biotic stars (hereafter SySts), they were puzzled (in line with the wisdom of the time, not easily contemplating stellar binarity) by the co-existence in the ’same’ star of features be- longing to distant cornersof the HR diagram: the TiO bands typical of the coolest M giants, the HeII 4686 A˚ seen only in the hottest O-type stars, and an emission line spectrum match- ing that of planetary nebulae (hereafter PN). All these features stands out prominently in the spectrum of CI Cyg shown in Figure 6.1 together with its light-curve displaying a large assortment of different types of variability, with the spectral appearance changing in pace (a brighter state usually comes with bluer colors and a lower ionization). A great incentive to the study of SySts was provided in the 1980ies by the first confer- ence (Friedjung and Viotti, 1982) and monograph(Kenyon, 1986) devoted entirely to them, the first catalog and spectral atlas of known SySts by Allen (1984), and the first simple ge- ometrical modeling of their ionization front (Seaquist et al., 1984). Allen offered a clean classification criterium for SySts: a binary star, combining a red giant (RG) and a compan- ion hot enough to sustain HeII (or higher ionization) emission lines. The spectral atlas by Munari and Zwitter (2002), shows how the majorityof SySts meeting this criterium display in their spectra emission lines of at least the NeV, OVI or FeVII ionization stages, requiring a minimum photo-ionization temperature of 130,000 K (Murset and Nussbaumer, 1994).
    [Show full text]
  • International Astronomical Union Commission G1 BIBLIOGRAPHY
    International Astronomical Union Commission G1 BIBLIOGRAPHY OF CLOSE BINARIES No. 103 Editor-in-Chief: W. Van Hamme Editors: H. Drechsel D.R. Faulkner P.G. Niarchos D. Nogami R.G. Samec C.D. Scarfe C.A. Tout M. Wolf M. Zejda Material published by September 15, 2016 BCB issues are available at the following URLs: http://ad.usno.navy.mil/wds/bsl/G1_bcb_page.html, http://www.konkoly.hu/IAUC42/bcb.html, http://www.sternwarte.uni-erlangen.de/pub/bcb, or http://faculty.fiu.edu/~vanhamme/IAU-BCB/. The bibliographical entries for Individual Stars and Collections of Data, as well as a few General entries, are categorized according to the following coding scheme. Data from archives or databases, or previously published, are identified with an asterisk. The observation codes in the first four groups may be followed by one of the following wavelength codes. g. γ-ray. i. infrared. m. microwave. o. optical r. radio u. ultraviolet x. x-ray 1. Photometric data a. CCD b. Photoelectric c. Photographic d. Visual 2. Spectroscopic data a. Radial velocities b. Spectral classification c. Line identification d. Spectrophotometry 3. Polarimetry a. Broad-band b. Spectropolarimetry 4. Astrometry a. Positions and proper motions b. Relative positions only c. Interferometry 5. Derived results a. Times of minima b. New or improved ephemeris, period variations c. Parameters derivable from light curves d. Elements derivable from velocity curves e. Absolute dimensions, masses f. Apsidal motion and structure constants g. Physical properties of stellar atmospheres h. Chemical abundances i. Accretion disks and accretion phenomena j. Mass loss and mass exchange k.
    [Show full text]
  • THERMONUCLEAR RUNAWAY MODELS for SYMBIOTIC NOVAE Scott J. Kenyon Smithsonian Astrophysical Observatory Harvard-Smithsonian Cente
    THERMONUCLEAR RUNAWAY MODELS FOR SYMBIOTIC NOVAE Scott J. Kenyon Smithsonian Astrophysical Observatory Harvard-Smithsonian Center for Astrophysics 60 Garden Street Cambridge, MA 02138 USA ABSTRACT. This paper reviews the basic physics of thermonuclear runaways on the surfaces of accreting white dwarf stars, with a special emphasis on understanding the evolution of symbiotic novae. 1. Introduction The eruptions of the small class of objects known as symbiotic novae are very different from those experienced by classical symbiotic binaries such as Z And and CI Cyg. As reviewed by Viotti in this volume (see also Kenyon 1986, Chapter 5), symbiotic nova eruptions are characterized by a slow rise to visual maximum (- a few years) followed by a very tedious decline (- many decades). Observations suggest the bolometric luminosity, L^, of a symbiotic nova remains roughly constant following visual maximum, although the visual luminosity, Lvis, decreases by a factor of ~ 100. This evolution of L^ and Lvis with time is very similar to that observed in classical novae (see Gallagher and Starrfield 1978), which suggests a common eruption mechanism for these two types of novae. It is well-established that eruptions of classical novae result from thermonuclear runaways on the surfaces of white dwarf stars. The basic physical model consists of a short period binary system (Polb - hours), in which a lobe-filling red dwarf transfers material into an accretion disk surrounding a white dwarf. A hydrogen-rich atmosphere builds up on the white dwarf's surface, and eventually the pressure at the base of this envelope is sufficient to ignite the accreted material.
    [Show full text]
  • Cycle 8 Approved Programs
    Cycle 8 Approved Programs PI INSTITUTION COUNTRY PANEL TITLE Ajhar National Optical Astronomy Observatories United States CLUS Reconciling the SBF and SNIa Distance Scales Allen Space Telescope Science Institute United States ISM How Opaque Are Spiral Galaxies? Antonucci University of California Santa Barbara United States AGNH Optical Nuclear Hotspot in NGC 1068 Arav Institute of Geophysics and Planetary Physics United States AGNP Deep STIS Observations of BALQSO PG 0946+301 Armandroff Kitt Peak National Observatory United States FSP The Horizontal Branches of the M31 Dwarf Spheroidal Companions And V & VI Axon University of Manchester United Kingdom GSD The black hole versus bulge mass relationship in spiral galaxies Ayres University of Colorado United States CS Origins Structure and Evolution of Magnetic Activity in the Cool Half of the H-R Diagram: A STIS Survey Bagenal University of Colorado United States SS HST-Galileo Io Campaign Bailyn Yale University United States SPC High Precision Photometry of the Core of M13 Baker University of California Berkeley United States AGNP Absorption and obscuration in radio-loud quasars Baldwin Cerro Tololo Interamerican Observatory Chile AGNP High Abundances in Luminous Quasars: A Test Case Bally CASA University of Colorado Boulder United States SE Herbig-Haro Jets Irradiated by Massive OB Stars Bally University of Colorado Boulder United States YS The Structure and Kinematics of Irradiated Disks and Associated High Velocity Features in Orion Barstow University of Leicester United Kingdom HS THE
    [Show full text]
  • Ptf11kx: a Type-Ia Supernova with a Symbiotic Nova Progenitor
    PTF 11kx: A Type-Ia Supernova with a Symbiotic Nova Progenitor arXiv:1207.1306v1 [astro-ph.CO] 5 Jul 2012 1 B. Dilday1,2∗, D. A. Howell1,2, S. B. Cenko3, J. M. Silverman3, P. E. Nugent3,4, M. Sullivan5, S. Ben-Ami6, L. Bildsten2,7, M. Bolte8, M. Endl9, A. V. Filippenko3, O. Gnat10, A. Horesh12, E. Hsiao4,11, M. M. Kasliwal12,13, D. Kirkman14, K. Maguire5, G. W. Marcy3, K. Moore2, Y. Pan5, J. T. Parrent1,15, P. Podsiadlowski5, R. M. Quimby16, A. Sternberg17, N. Suzuki4, D. R. Tytler14, D. Xu6, J. S. Bloom3, A. Gal-Yam18, I. M. Hook5, S. R. Kulkarni12, N. M. Law19, E. O. Ofek18, D. Polishook20, D. Poznanski21 1Las Cumbres Observatory Global Telescope Network, 6740 Cortona Dr., Suite 102, Goleta, California 93117, USA 2Department of Physics, University of California, Santa Barbara, Broida Hall, Mail Code 9530, Santa Barbara, California 93106-9530, USA 3Department of Astronomy, University of California, Berkeley, CA 94720-3411, USA 4Lawrence Berkeley National Laboratory, Mail Stop 50B-4206, 1 Cyclotron Road, Berkeley, California 94720, USA 5Department of Physics (Astrophysics), University of Oxford, Keble Road, Oxford, OX1 3RH, UK 6Department of Particle Physics and Astrophysics, The Weizmann Institute of Science, Rehovot 76100, Israel 7Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA, 93106, USA 8UCO/Lick Observatory, University of California, Santa Cruz, California 95064, USA 9McDonald Observatory, The University of Texas at Austin, Austin, TX 78712, USA 10Racah Institute of Physics, The Hebrew University
    [Show full text]
  • Pos(GOLDEN 2017)066 , G , F , R
    Hydrodynamic Simulations of Classical Novae: Accretion onto CO White Dwarfs as SN Ia Progenitors S. Starrfield∗ ya, M. Bosea, C. Iliadisb, W. R. Hixc;d, C. E. Woodwarde, R. M. Wagner f ;g, h i J. Jóse , M. Hernanz PoS(GOLDEN 2017)066 aArizona State University- Earth and Space Exploration, Tempe, AZ,USA; b University of North Carolina - Physics and Astronomy, Chapel Hill, NC; cOak Ridge National Laboratory, Oak Ridge, TN; dUniversity of Tennessee, Knoxville, TN; eUniversity of Minnesota, Minneapolis, MN; f Large Binocular Telescope Observatory, Tucson, AZ; gOhio State University, Department of Astronomy, Columbus, OH; hUniversity Polytechnic of Catalunya, Barcelona, Catalunya, Spain; iInstitute of Space Sciences, Barcelona, Catalunya, Spain E-mail: [email protected],[email protected],[email protected], [email protected],[email protected],[email protected],[email protected], [email protected] We report on our continuing studies of Classical Nova explosions by following the evolution of thermonuclear runaways (TNRs) on carbon-oxygen (CO) white dwarfs (WDs). We have varied both the mass of the WD and the composition of the accreted material. Rather than assuming that the material has mixed from the beginning, we now rely on the results of the multidimensional (multi-D) studies of mixing as a consequence of the TNRs in WDs that accreted only Solar matter. The multi-D studies find that mixing with the core occurs after the TNR is well underway and reach enrichment levels in agreement with observations of the ejecta abundances. We report on 3 studies in this paper. First, simulations in which we accrete only Solar matter with NOVA (our 1-D, fully implicit, hydro code).
    [Show full text]
  • Download This Issue (Pdf)
    Volume 43 Number 1 JAAVSO 2015 The Journal of the American Association of Variable Star Observers The Curious Case of ASAS J174600-2321.3: an Eclipsing Symbiotic Nova in Outburst? Light curve of ASAS J174600-2321.3, based on EROS-2, ASAS-3, and APASS data. Also in this issue... • The Early-Spectral Type W UMa Contact Binary V444 And • The δ Scuti Pulsation Periods in KIC 5197256 • UXOR Hunting among Algol Variables • Early-Time Flux Measurements of SN 2014J Obtained with Small Robotic Telescopes: Extending the AAVSO Light Curve Complete table of contents inside... The American Association of Variable Star Observers 49 Bay State Road, Cambridge, MA 02138, USA The Journal of the American Association of Variable Star Observers Editor John R. Percy Edward F. Guinan Paula Szkody University of Toronto Villanova University University of Washington Toronto, Ontario, Canada Villanova, Pennsylvania Seattle, Washington Associate Editor John B. Hearnshaw Matthew R. Templeton Elizabeth O. Waagen University of Canterbury AAVSO Christchurch, New Zealand Production Editor Nikolaus Vogt Michael Saladyga Laszlo L. Kiss Universidad de Valparaiso Konkoly Observatory Valparaiso, Chile Budapest, Hungary Editorial Board Douglas L. Welch Geoffrey C. Clayton Katrien Kolenberg McMaster University Louisiana State University Universities of Antwerp Hamilton, Ontario, Canada Baton Rouge, Louisiana and of Leuven, Belgium and Harvard-Smithsonian Center David B. Williams Zhibin Dai for Astrophysics Whitestown, Indiana Yunnan Observatories Cambridge, Massachusetts Kunming City, Yunnan, China Thomas R. Williams Ulisse Munari Houston, Texas Kosmas Gazeas INAF/Astronomical Observatory University of Athens of Padua Lee Anne M. Willson Athens, Greece Asiago, Italy Iowa State University Ames, Iowa The Council of the American Association of Variable Star Observers 2014–2015 Director Arne A.
    [Show full text]
  • 942.Full.Pdf
    PTF 11kx: A Type Ia Supernova with a Symbiotic Nova Progenitor B. Dilday et al. Science 337, 942 (2012); DOI: 10.1126/science.1219164 This copy is for your personal, non-commercial use only. If you wish to distribute this article to others, you can order high-quality copies for your colleagues, clients, or customers by clicking here. Permission to republish or repurpose articles or portions of articles can be obtained by following the guidelines here. The following resources related to this article are available online at www.sciencemag.org (this information is current as of March 4, 2013 ): Updated information and services, including high-resolution figures, can be found in the online on March 4, 2013 version of this article at: http://www.sciencemag.org/content/337/6097/942.full.html Supporting Online Material can be found at: http://www.sciencemag.org/content/suppl/2012/08/22/337.6097.942.DC1.html http://www.sciencemag.org/content/suppl/2012/08/22/337.6097.942.DC2.html A list of selected additional articles on the Science Web sites related to this article can be found at: http://www.sciencemag.org/content/337/6097/942.full.html#related www.sciencemag.org This article cites 54 articles, 2 of which can be accessed free: http://www.sciencemag.org/content/337/6097/942.full.html#ref-list-1 This article has been cited by 4 articles hosted by HighWire Press; see: http://www.sciencemag.org/content/337/6097/942.full.html#related-urls This article appears in the following subject collections: Astronomy Downloaded from http://www.sciencemag.org/cgi/collection/astronomy Science (print ISSN 0036-8075; online ISSN 1095-9203) is published weekly, except the last week in December, by the American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005.
    [Show full text]