10-2 Areas of Trapezoids, Rhombi, and Kites

Total Page:16

File Type:pdf, Size:1020Kb

10-2 Areas of Trapezoids, Rhombi, and Kites 10-2 Areas of Trapezoids, Rhombi, and Kites Find the area of each trapezoid, rhombus, or kite. 3. 1. SOLUTION: SOLUTION: ANSWER: ANSWER: 4. PEP RALLY Suki is designing posters for the Homecoming game. Her design is shown at the right. What is the area of the poster in square feet? 2. SOLUTION: SOLUTION: ANSWER: The area A of a trapezoid is . She will need square feet of fabric. ANSWER: 4.375 ft² eSolutions Manual - Powered by Cognero Page 1 10-2 Areas of Trapezoids, Rhombi, and Kites ALGEBRA Find x. 7. 5. SOLUTION: SOLUTION: ANSWER: 6.3 ft ANSWER: STRUCTURE Find the area of each trapezoid, 8 cm rhombus, or kite. 6. 8. SOLUTION: SOLUTION: h = 13, b1 = 18 and b2 = 24 ANSWER: 6.6 in. ANSWER: eSolutions Manual - Powered by Cognero Page 2 10-2 Areas of Trapezoids, Rhombi, and Kites 11. 9. SOLUTION: SOLUTION: d1 = 16 in. and d2 = 17 in. h = 23, b1 = 22 and b2 = 37 ANSWER: ANSWER: 10. 12. SOLUTION: SOLUTION: d = 7 cm. and d = 6 + 9 = 15 cm d1 = 22 and d2 = 24 1 2 ANSWER: ANSWER: eSolutions Manual - Powered by Cognero Page 3 10-2 Areas of Trapezoids, Rhombi, and Kites 15. heartleaf plant Refer to the image on Page 739. SOLUTION: 13. SOLUTION: d1 = 11 ft. and d2 = 25 ft ANSWER: 24.5 square microns 16. eye of a fly Refer to the image on Page 739. SOLUTION: ANSWER: The figure consists of two trapezoids. MICROSCOPES Find the area of the identified portion of each magnified image. Assume that the identified portion is either a trapezoid, rhombus, or kite. Measures are provided in microns. 14. human skin Refer to the image on Page 739. ANSWER: 9.9 square microns SOLUTION: ANSWER: 26 square microns eSolutions Manual - Powered by Cognero Page 4 10-2 Areas of Trapezoids, Rhombi, and Kites 17. JOBS Jimmy works on his neighbors’ yards after 19. The area of a rhombus is 168 square centimeters. If school to earn extra money to buy a car. He is going one diagonal is three times as long as the other, what to plant grass seed in Mr. Troyer’s yard. What is the are the lengths of the diagonals? area of the yard? SOLUTION: The area A of a rhombus is one half the product of the lengths of its diagonals, d1 and d2. SOLUTION: ANSWER: Therefore, the diagonals are of length 10.6 cm. and ALGEBRA Find each missing length. 31.7 cm. 18. One diagonal of a kite is twice as long as the other diagonal. If the area of the kite is 240 square inches, ANSWER: what are the lengths of the diagonals? 10.6 cm, 31.7 cm SOLUTION: 20. A trapezoid has base lengths of 12 and 14 feet with The area A of a kite is one half the product of the an area of 322 square feet. What is the height of the trapezoid? lengths of its diagonals, d1 and d2. SOLUTION: The area A of a trapezoid is one half the product of the height h and the sum of the lengths of its bases, b1 and b2. Therefore, the diagonals are of length 15.5 in. and 31.0 in. ANSWER: ANSWER: 15.5 in., 31.0 in. 24.8 ft eSolutions Manual - Powered by Cognero Page 5 10-2 Areas of Trapezoids, Rhombi, and Kites 21. A trapezoid has a height of 8 meters, a base length of 22. HONORS Estella has been asked to join an honor 12 meters, and an area of 64 square meters. What is society at school. Before the first meeting, new the length of the other base? members are asked to sand and stain the front side of a piece of wood in the shape of an isosceles SOLUTION: trapezoid. What is the surface area that Allison will The area A of a trapezoid is one half the product of need to sand and stain? the height h and the sum of the lengths of its bases, b1 and b2. SOLUTION: ANSWER: The required area is the difference between the 4 m larger trapezoid and the smaller trapezoid. The area A of a trapezoid is one half the product of the height h and the sum of the lengths of its bases, b1 and b2. ANSWER: eSolutions Manual - Powered by Cognero Page 6 10-2 Areas of Trapezoids, Rhombi, and Kites For each figure, provide a justification showing that . 24. 23. SOLUTION: Set the area of the rhombus equal to the sum of the SOLUTION: areas of the two triangles with bases d and d . Set the area of the kite equal to the sum of the areas 1 2 ZWX = ZYX by SSS of the two triangles with bases d and d . 1 2 ANSWER: ANSWER: The area of and the area of The area of and the area of . Therefore, the area of . Therefore, the area of , and the area of . , and the area of . The area of kite FGHJ is equal to the area of The area of rhombus WXYZ is equal to the area of the area of . After the area of . After simplification, the area of kite FGHJ is equal to simplification, the area of rhombus WXYZ is equal to . eSolutions Manual - Powered by Cognero Page 7 10-2 Areas of Trapezoids, Rhombi, and Kites 25. CRAFTS Ashanti is competing in a kite festival. The SENSE-MAKING Find the area of each yellow, red, orange, green, and blue pieces of her kite quadrilateral with the given vertices. design shown are all congruent rhombi. 26. A(–8, 6), B(–5, 8), C(–2, 6), and D(–5, 0) a. How much fabric of each color does she need to SOLUTION: buy? Graph the quadrilateral. b. Competition rules require that the total area of each kite be no greater than 200 square inches. Does Ashanti’s kite meet this requirement? Explain. The quadrilateral is a kite. The area A of a kite is one SOLUTION: half the product of the lengths of its diagonals, d1 and The area of the yellow rhombus is or 24 in2. d2. The lengths of the diagonals are 6 units and 8 units. Therefore, the area of the kite is Since the yellow, red , orange, green, and blue pieces area all congruent rhombi, each have an area of 24 in 2. ANSWER: The area of the purple kite-shaped piece is 24 units² or 20 in2. The total area of the entire kite is 24(5) + 20 or 140 in 2, which is less than the maximum 200 in2 allowed. Therefore, her kite meets this requirement. ANSWER: a. each of yellow, red, orange, green, and blue; of purple b. Yes; her kite has an area of , which is less than 200 in2. eSolutions Manual - Powered by Cognero Page 8 10-2 Areas of Trapezoids, Rhombi, and Kites 27. W(3, 0), X(0, 3), Y(–3, 0), and Z(0, –3) 28. METALS When magnified in very powerful microscopes, some metals are composed of grains SOLUTION: that have various polygonal shapes. Graph the quadrilateral. a. What is the area of figure 1 if the grain has a height of 4 microns and bases with lengths of 5 and 6 microns? The quadrilateral is a rhombus. The area A of a b. If figure 2 has perpendicular diagonal lengths of rhombus is one half the product of the lengths of its 3.8 microns and 4.9 microns, what is the area of the diagonals, d and d . 1 2 grain? The lengths of the diagonals are 6 units each. Therefore, the area of the kite is SOLUTION: a. Figure 1 is a trapezoid. ANSWER: 18 units² The area of figure 1 is 22 square microns. b. Figure 2 is a rhombus. The area of figure 2 is about 9.3 square microns. ANSWER: a. 22 square microns b. 9.3 square microns eSolutions Manual - Powered by Cognero Page 9 10-2 Areas of Trapezoids, Rhombi, and Kites 29. PROOF The figure at the right is a trapezoid that nearest tenth, if necessary. consists of two congruent right triangles and an isosceles triangle. In 1876, James A. Garfield, the 20th president of the United States, discovered a proof of the Pythagorean Theorem using this diagram. Prove that . 30. SOLUTION: Both diagonals are perpendicular bisectors, so the figure is a rhombus and all four triangles are congruent. All of the sides are 12 feet, so the perimeter is 48 feet. SOLUTION: Following is an algebraic proof. Use trigonometry to find the lengths of the diagonals. The trapezoid is on its side, so the bases are x and y and the height is x + y. Set the area of the trapezoid equal to the sum of the areas of the triangles and simplify. ANSWER: The area of a trapezoid is So, . Now find the area. The area of . The area of . Set the area of the trapezoid equal to the combined areas of the triangles to get . Multiply by 2 on each side: . When simplified, . ANSWER: DIMENSIONAL ANALYSIS Find the perimeter 48 ft; 129.4 ft2 and area of each figure in feet. Round to the eSolutions Manual - Powered by Cognero Page 10 10-2 Areas of Trapezoids, Rhombi, and Kites 32. 31. SOLUTION: SOLUTION: The figure is a kite because one of the diagonals is a Use the 30-60-90 triangle to find the dimensions of perpendicular bisector. Find the perimeter. Convert the isosceles trapezoid. The base of the triangle is the units to feet. 0.5(12 – 8) = 2.
Recommended publications
  • Build a Tetrahedral Kite
    Aeronautics Research Mission Directorate Build a Tetrahedral Kite Suggested Grades: 8-12 Activity Overview Time: 90-120 minutes In this activity, you will build a tetrahedral kite from Materials household supplies. • 24 straws (8 inches or less) - NOTE: The straws need to be Steps straight and the same length. If only flexible straws are available, 1. Cut a length of yarn/string 4 feet long. then cut off the flexible portion. • Two or three large spools of 2. Take six straws and place them on a flat surface. cotton string or yarn (approximately 100 feet total) 3. Use your piece of string to join three straws • Scissors together in a triangular shape. On the side where • Hot glue gun and hot glue sticks the two strings are extending from it, one end • Ruler or dowel rod for kite bridle should be approximately 20 inches long, and the • Four pieces of tissue paper (24 x other should be approximately 4 inches long. 18 inches or larger) See Figure 1. • All-purpose glue stick Figure 1 4. Tie these two ends of the string tightly together. Make sure there is no room for the triangle to wiggle. 5. The three straws should form a tight triangle. 6. Cut another 4-inch piece of string. 7. Take one end of the 4-inch string, and tie that end to a corner of the triangle that does not have the string ends extending from it. Figure 2. 8. Add two more straws onto the longest piece of string. 9. Next, take the string that holds the two additional straws and tie it to the end of one of the 4-inch strings to make another tight triangle.
    [Show full text]
  • Quadrilateral Theorems
    Quadrilateral Theorems Properties of Quadrilaterals: If a quadrilateral is a TRAPEZOID then, 1. at least one pair of opposite sides are parallel(bases) If a quadrilateral is an ISOSCELES TRAPEZOID then, 1. At least one pair of opposite sides are parallel (bases) 2. the non-parallel sides are congruent 3. both pairs of base angles are congruent 4. diagonals are congruent If a quadrilateral is a PARALLELOGRAM then, 1. opposite sides are congruent 2. opposite sides are parallel 3. opposite angles are congruent 4. consecutive angles are supplementary 5. the diagonals bisect each other If a quadrilateral is a RECTANGLE then, 1. All properties of Parallelogram PLUS 2. All the angles are right angles 3. The diagonals are congruent If a quadrilateral is a RHOMBUS then, 1. All properties of Parallelogram PLUS 2. the diagonals bisect the vertices 3. the diagonals are perpendicular to each other 4. all four sides are congruent If a quadrilateral is a SQUARE then, 1. All properties of Parallelogram PLUS 2. All properties of Rhombus PLUS 3. All properties of Rectangle Proving a Trapezoid: If a QUADRILATERAL has at least one pair of parallel sides, then it is a trapezoid. Proving an Isosceles Trapezoid: 1st prove it’s a TRAPEZOID If a TRAPEZOID has ____(insert choice from below) ______then it is an isosceles trapezoid. 1. congruent non-parallel sides 2. congruent diagonals 3. congruent base angles Proving a Parallelogram: If a quadrilateral has ____(insert choice from below) ______then it is a parallelogram. 1. both pairs of opposite sides parallel 2. both pairs of opposite sides ≅ 3.
    [Show full text]
  • Properties of Equidiagonal Quadrilaterals (2014)
    Forum Geometricorum Volume 14 (2014) 129–144. FORUM GEOM ISSN 1534-1178 Properties of Equidiagonal Quadrilaterals Martin Josefsson Abstract. We prove eight necessary and sufficient conditions for a convex quadri- lateral to have congruent diagonals, and one dual connection between equidiag- onal and orthodiagonal quadrilaterals. Quadrilaterals with both congruent and perpendicular diagonals are also discussed, including a proposal for what they may be called and how to calculate their area in several ways. Finally we derive a cubic equation for calculating the lengths of the congruent diagonals. 1. Introduction One class of quadrilaterals that have received little interest in the geometrical literature are the equidiagonal quadrilaterals. They are defined to be quadrilat- erals with congruent diagonals. Three well known special cases of them are the isosceles trapezoid, the rectangle and the square, but there are other as well. Fur- thermore, there exists many equidiagonal quadrilaterals that besides congruent di- agonals have no special properties. Take any convex quadrilateral ABCD and move the vertex D along the line BD into a position D such that AC = BD. Then ABCD is an equidiagonal quadrilateral (see Figure 1). C D D A B Figure 1. An equidiagonal quadrilateral ABCD Before we begin to study equidiagonal quadrilaterals, let us define our notations. In a convex quadrilateral ABCD, the sides are labeled a = AB, b = BC, c = CD and d = DA, and the diagonals are p = AC and q = BD. We use θ for the angle between the diagonals. The line segments connecting the midpoints of opposite sides of a quadrilateral are called the bimedians and are denoted m and n, where m connects the midpoints of the sides a and c.
    [Show full text]
  • Performance Based Learning and Assessment Task Kite Project
    Performance Based Learning and Assessment Task Kite Project I. ASSESSSMENT TASK OVERVIEW & PURPOSE: The students are instructed to: research the history, science, and design of kites; design a blueprint of their kite and find the measurements, scale factor, area, and perimeter of their blueprint; and construct and fly their kite. II. UNIT AUTHOR: Leslie Hindman, Washington-Lee High School, Arlington Public Schools III. COURSE: Geometry IV. CONTENT STRAND: Geometry, Measurement V. OBJECTIVES: Students will be able to • Design a scale model of a kite • Measure the dimensions and angles of the scale model • Determine the scale factor of the scale model • Compute the area and perimeter of the scale model • Construct and fly a kite VI. REFERENCE/RESOURCE MATERIALS: For Research: computer access For Scale Model Drawing: ruler, protractor, graph paper, calculator, Geometry SOL formula sheet For Kites: tissue paper, plastic table cloths, small wooden dowels, straws, yarn, fishing wire, markers, scissors, tape, glue VII. PRIMARY ASSESSMENT STRATEGIES: The task includes an assessment component that performs two functions: (1) for the student it will be a checklist and provide a self-assessment and (2) for the teacher it will be used as a rubric. The attached assessment list will assess the research section, scale model drawing, and kite construction. VIII. EVALUATION CRITERIA: Assessment List, corresponding rubric. IX. INSTRUCTIONAL TIME: 2 ninety minute class periods for research, scale model drawings, and kite construction. 1/2 ninety minute class period for flying kites. Kite Project Strand Geometry, Measurement Mathematical Objective(s) Students will be able to: • Design a scale model of a kite • Find the measures of the sides and angles of the scale model • Determine the scale factor of the scale model • Compute the area and perimeter of the scale model Related SOL • G.12 The student will make a model of a three-dimensional figure from a two- dimensional drawing and make a two-dimensional representation of a three- dimensional object.
    [Show full text]
  • INTRODUCTION to QUADRILATERALS Square Rectangle Rhombus Parallelogram
    INTRODUCTION TO QUADRILATERALS square rectangle rhombus parallelogram trapezoid kite Mathematicians define regular quadrilaterals according to their attributes. a) Quadrilaterals are two-dimensional closed figures that have four sides and four angles. b) The sum of their four angles is 360 degrees. c) When we trace diagonals from one opposite corner to another in a quadrilateral, these lines always intersect (pass it through) and in some cases they bisect (cut the other line in half). d) Regular quadrilaterals are named square, rectangle, parallelogram, rhombus, trapezoid, and kite. e) VERY IMPORTANT TO REMEMBER THIS! : Although these are the names of the quadrilaterals, these words are also the names of groups of quadrilaterals. Each group has its own characteristics or attributes that distinguish them from the others. For instance, the figure square belongs obviously to the group of squares, but also belongs to the groups of trapezoids, parallelograms, rectangles, rhombuses, and kites, because it shares similar attributes with them. However, the group of squares has only one figure: square. This is because no other quadrilateral shares the attributes of the squares, which are having four equal sides and four right angles. TRAPEZOIDS a) Trapezoids form the largest group of quadrilaterals. They include the figures of square, rectangle, parallelogram, rhombus, and of course, trapezoid. (the figure kite does not belong to the group of trapezoids) b) Trapezoids have only one attribute: they have at least one parallel line. Also, a. They may or may not have two or even four equal in length sides. b. They may or may not have opposite sides of the same length c.
    [Show full text]
  • When Is a Tangential Quadrilateral a Kite?
    Forum Geometricorum b Volume 11 (2011) 165–174. b b FORUM GEOM ISSN 1534-1178 When is a Tangential Quadrilateral a Kite? Martin Josefsson Abstract. We prove 13 necessary and sufficient conditions for a tangential quadri- lateral to be a kite. 1. Introduction A tangential quadrilateral is a quadrilateral that has an incircle. A convex quadrilateral with the sides a, b, c, d is tangential if and only if a + c = b + d (1) according to the Pitot theorem [1, pp.65–67]. A kite is a quadrilateral that has two pairs of congruent adjacent sides. Thus all kites has an incircle since its sides satisfy (1). The question we will answer here concerns the converse, that is, what additional property a tangential quadrilateral must have to be a kite? We shall prove 13 such conditions. To prove two of them we will use a formula for the area of a tangential quadrilateral that is not so well known, so we prove it here first. It is given as a problem in [4, p.29]. Theorem 1. A tangential quadrilateral with sides a, b, c, d and diagonals p,q has the area 1 2 2 K = 2 (pq) − (ac − bd) . p Proof. A convex quadrilateral with sides a, b, c, d and diagonals p,q has the area 1 2 2 2 2 2 2 2 K = 4 4p q − (a − b + c − d ) (2) p according to [6] and [14]. Squaring the Pitot theorem (1) yields 2 2 2 2 a + c + 2ac = b + d + 2bd. (3) Using this in (2), we get 1 2 2 K = 4 4(pq) − (2bd − 2ac) p and the formula follows.
    [Show full text]
  • Cyclic Quadrilaterals
    GI_PAGES19-42 3/13/03 7:02 PM Page 1 Cyclic Quadrilaterals Definition: Cyclic quadrilateral—a quadrilateral inscribed in a circle (Figure 1). Construct and Investigate: 1. Construct a circle on the Voyage™ 200 with Cabri screen, and label its center O. Using the Polygon tool, construct quadrilateral ABCD where A, B, C, and D are on circle O. By the definition given Figure 1 above, ABCD is a cyclic quadrilateral (Figure 1). Cyclic quadrilaterals have many interesting and surprising properties. Use the Voyage 200 with Cabri tools to investigate the properties of cyclic quadrilateral ABCD. See whether you can discover several relationships that appear to be true regardless of the size of the circle or the location of A, B, C, and D on the circle. 2. Measure the lengths of the sides and diagonals of quadrilateral ABCD. See whether you can discover a relationship that is always true of these six measurements for all cyclic quadrilaterals. This relationship has been known for 1800 years and is called Ptolemy’s Theorem after Alexandrian mathematician Claudius Ptolemaeus (A.D. 85 to 165). 3. Determine which quadrilaterals from the quadrilateral hierarchy can be cyclic quadrilaterals (Figure 2). 4. Over 1300 years ago, the Hindu mathematician Brahmagupta discovered that the area of a cyclic Figure 2 quadrilateral can be determined by the formula: A = (s – a)(s – b)(s – c)(s – d) where a, b, c, and d are the lengths of the sides of the a + b + c + d quadrilateral and s is the semiperimeter given by s = 2 . Using cyclic quadrilaterals, verify these relationships.
    [Show full text]
  • Cyclic and Bicentric Quadrilaterals G
    Cyclic and Bicentric Quadrilaterals G. T. Springer Email: [email protected] Hewlett-Packard Calculators and Educational Software Abstract. In this hands-on workshop, participants will use the HP Prime graphing calculator and its dynamic geometry app to explore some of the many properties of cyclic and bicentric quadrilaterals. The workshop will start with a brief introduction to the HP Prime and an overview of its features to get novice participants oriented. Participants will then use ready-to-hand constructions of cyclic and bicentric quadrilaterals to explore. Part 1: Cyclic Quadrilaterals The instructor will send you an HP Prime app called CyclicQuad for this part of the activity. A cyclic quadrilateral is a convex quadrilateral that has a circumscribed circle. 1. Press ! to open the App Library and select the CyclicQuad app. The construction consists DEGH, a cyclic quadrilateral circumscribed by circle A. 2. Tap and drag any of the points D, E, G, or H to change the quadrilateral. Which of the following can DEGH never be? • Square • Rhombus (non-square) • Rectangle (non-square) • Parallelogram (non-rhombus) • Isosceles trapezoid • Kite Just move the points of the quadrilateral around enough to convince yourself for each one. Notice HDE and HE are both inscribed angles that subtend the entirety of the circle; ≮ ≮ likewise with DHG and DEG. This leads us to a defining characteristic of cyclic ≮ ≮ quadrilaterals. Make a conjecture. A quadrilateral is cyclic if and only if… 3. Make DEGH into a kite, similar to that shown to the right. Tap segment HE and press E to select it. Now use U and D to move the diagonal vertically.
    [Show full text]
  • Angle Bisectors in a Quadrilateral Are Concurrent
    Angle Bisectors in a Quadrilateral in the classroom A Ramachandran he bisectors of the interior angles of a quadrilateral are either all concurrent or meet pairwise at 4, 5 or 6 points, in any case forming a cyclic quadrilateral. The situation of exactly three bisectors being concurrent is not possible. See Figure 1 for a possible situation. The reader is invited to prove these as well as observations regarding some of the special cases mentioned below. Start with the last observation. Assume that three angle bisectors in a quadrilateral are concurrent. Join the point of T D E H A F G B C Figure 1. A typical configuration, showing how a cyclic quadrilateral is formed Keywords: Quadrilateral, diagonal, angular bisector, tangential quadrilateral, kite, rhombus, square, isosceles trapezium, non-isosceles trapezium, cyclic, incircle 33 At Right Angles | Vol. 4, No. 1, March 2015 Vol. 4, No. 1, March 2015 | At Right Angles 33 D A D A D D E G A A F H G I H F F G E H B C E Figure 3. If is a parallelogram, then is a B C B C rectangle B C Figure 2. A tangential quadrilateral Figure 6. The case when is a non-isosceles trapezium: the result is that is a cyclic Figure 7. The case when has but A D quadrilateral in which : the result is that is an isosceles ∘ trapezium ( and ∠ ) E ∠ ∠ ∠ ∠ concurrence to the fourth vertex. Prove that this line indeed bisects the angle at the fourth vertex. F H Tangential quadrilateral A quadrilateral in which all the four angle bisectors G meet at a pointincircle is a — one which has an circle touching all the four sides.
    [Show full text]
  • Geometry – Chapter 6 – Notes and Examples Section 6 – Properties of Kites and Trapezoids Properties of Kites a Kite Has
    Geometry – Chapter 6 – Notes and Examples Section 6 – Properties of Kites and Trapezoids King Properties of kites A kite has: Exactly two pairs of __________________ ___________________ sides. Exactly one pair of _________________ ________________ angles. (see diagram) A kite has two diagonals: The diagonals are _________________________ . Exactly one diagonal ___________ one pair of opposite angles. (see diagram) Exactly one diagonal forms two different _________________ triangles. Problem 1 Problem 2 In kite ABCD, mDAB = In kite PQRS, mPQR = 78°, 54°, and mCDF = 52°. and mTRS = 59°. Find mBCD. Find mQRT. ̅̅̅ ̅ ̅̅̅ ̅ so ∆BCD is______________ and ̅̅̅ ̅ ̅̅̅ ̅ so ∆PQR is______________ and CBF CDF (__________________ ) mQPT = mQRT (__________________ ) mBCD + mCBF + mCDF = _______° mPQR + mQRP + mQPR = _______° mBCD + ____° + ____° = _______° 78° + mQRT + mQPT = _______° mBCD = _______° 78° + mQRT + _______= _______° Find mFDA. ____° + 2mQRT = _______° ̅̅̅ ̅ ̅̅̅ ̅ so ∆DAB is ______________ and 2mQRT = _______° ABF ADF (__________________ ) mQRT = _______° mABF + mADF + mDAB = _______° Find mQPS. _________ + _________ + mDAB = _______° mQPR + mTPS = mQPS (______________ ) mADF + mADF + ____° = _______° ____° + ____° = mQPS 2mADF + ____° = _______° _______°= mQPS mADF = ____° Find mQPT. In kite ABCD, Problem 4 Find m∠A. AB = 8, BC = 20, m∠B = 131°, and m∠C = 38°. Problem 3 Find AD and DC . Problem 5 Find the perimeter of kite ABCD. A ___________________ is a quadrilateral with exactly one pair of parallel sides. Each of the parallel sides is called a __________. The nonparallel sides are called ________. ________ _____________ of a trapezoid are two consecutive angles whose common side is a base. If the legs of a trapezoid are congruent, the trapezoid is an _______________ ________________.
    [Show full text]
  • Rhombus Rectangle Square Trapezoid Kite NOTES
    Geometry Notes G.9 Rhombus, Rectangle, Square, Trapezoid, Kite Mrs. Grieser Name: _________________________________________ Date: _________________ Block: _______ Rhombuses, Rectangles, Squares The Venn diagram below describes the relationship between different kinds of parallelograms: A rhombus is a parallelogram with four congruent sides A rectangle is a parallelogram with four right angles A square is a parallelogram with four congruent sides and four right angles Corollaries: A quadrilateral is a rhombus IFF it has four congruent sides A quadrilateral is a rectangles IFF it has four right angles A quadrilateral is a square IFF it is a rhombus and a rectangle. Since rhombuses, squares, and rectangles are parallelograms, they have all the properties of parallelograms (opposite sides parallel, opposite angles congruent, diagonals bisect each other, etc.) In addition… Rhombus Rectangle Square 4 congruent sides 4 right angles 4 congruent sides diagonals bisect angles diagonals congruent diagonals bisect each other diagonals perpendicular diagonals perpendicular 4 right angles diagonals congruent Theorems: A parallelogram is a rhombus IFF its diagonals are perpendicular. A parallelogram is a rhombus IFF each diagonal bisects a pair of opposite angles. A parallelogram is a rectangle IFF its diagonals are congruent. Examples: 1) Given rhombus DEFG, are the statements 2) Classify the parallelogram and find missing sometimes, always, or never true: values: a) b) a) D F b) D E c) DG GF 3) Given rhombus WXYZ 4) Given rectangle PQRS and and mXZY 34, find: mRPS 62 and QS=18, a) mWZV b) WY c) XY find: a) mQPR b) mPTQ c) ST Geometry Notes G.9 Rhombus, Rectangle, Square, Trapezoid, Kite Mrs.
    [Show full text]
  • Two-Dimensional Figures a Plane Is a Flat Surface That Extends Infinitely in All Directions
    NAME CLASS DATE Two-Dimensional Figures A plane is a flat surface that extends infinitely in all directions. A parallelogram like the one below is often used to model a plane, but remember that a plane—unlike a parallelogram—has no boundaries or sides. A plane figure or two-dimensional figure is a figure that lies completely in one plane. When you draw, either by hand or with a computer program, you draw two-dimensional figures. Blueprints are two-dimensional models of real-life objects. Polygons are closed, two-dimensional figures formed by three or more line segments that intersect only at their endpoints. These figures are polygons. These figures are not polygons. This is not a polygon A heart is not a polygon A circle is not a polygon because it is an open because it is has curves. because it is made of figure. a curve. Polygons are named by the number of sides and angles they have. A polygon always has the same number of sides as angles. Listed on the next page are the most common polygons. Each of the polygons shown is a regular polygon. All the angles of a regular polygon have the same measure and all the sides are the same length. SpringBoard® Course 1 Math Skills Workshop 89 Unit 5 • Getting Ready Practice MSW_C1_SE.indb 89 20/07/19 1:05 PM Two-Dimensional Figures (continued) Triangle Quadrilateral Pentagon Hexagon 3 sides; 3 angles 4 sides; 4 angles 5 sides; 5 angles 6 sides; 6 angles Heptagon Octagon Nonagon Decagon 7 sides; 7 angles 8 sides; 8 angles 9 sides; 9 angles 10 sides; 10 angles EXAMPLE A Classify the polygon.
    [Show full text]