Famous Scientists 2008

Total Page:16

File Type:pdf, Size:1020Kb

Famous Scientists 2008 Famous Scientists ! page 1 of 4 1665 Robert Hooke using simple microscope he observes cork structure and calls the small structures “cells”. designs iris diaphram used in cameras. made drawings of lunar craters. 1673 Anton van Leeuwenhoek (Dutch) first observed microbes with elementary (single lens) microscope he designed. described “wee beasties” thought to have better than 20/20 vision. 1796 Edward Jenner (English) In England, he developed and used the first vaccine (crude) in recorded his- tory though he didn’t understand how it worked. the vaccine was against smallpox (right). The practice originated in Turkey. 1838 Schleiden and Schwann (German) The authored the Cell Theory which states ALL living thing made of cells. Schwann also discovered Schwann cells. Schwann cells wrap neural axons. ! page 2 of 4 1861-1880 Louis Pasteur (French) Disproved the theory of “spontaneous generation” using a swan-necked flask (right). Made vaccines against anthrax and rabies. Considered the “Father of Microbiology”. 1867 Joseph Lister (English) Developed techniques for aseptic sur- gery from writings of Semmilweiss. probably saved millions from dying from infections. grew the first pure culture of S. lactis. 1876 - 1883 Robert Koch (German) proved germs cause disease. Studied tuberculosis (right) and cholera. developed Koch’s Postulates. Refined “pure culture” techniques. 1890 Emil VonBehring (German) Discovers the first bacterial toxin from the diphtheria bacillus (right). Develops an anti-toxin against the toxin that can be used for treatment of the disease. Is awarded the first Nobel Prize in Medicine in 1901. ! page 3 of 4 1884 Ilya Mechnikov (Russian) Watches starfish larvae “eat” microbes and discovers “phagocytosis”; later ob- serves white blood cells doing the same. Proposes white blood cells are the central part of our immune systems. Is awarded a Nobel Prize in Medicine in 1908. 1890 Paul Ehrlich (German) Passes “immunity” from one animal to another using serum from infected survivors; Proposes the “humoral Theory of Immunity”; develops treatment for syphilis. Is awarded a Nobel Prize in Medicine in 1908. 1929 Alexander Fleming (English) Discovers the first antibiotic, penicil- lin, from a mold growing on his plate. Discovery Ushers in the “Age of antibiotics”. Is awarded a Nobel Prize in Medicine in 1945 with Florey and Chain. 1928 Frederich Griffith (English) Discovers the process of transformation in bacteria where genes can be trans- fered from dead bacteria to live ones. explains how bacteria acquire pathogenic traits. died in his lab during a London bombing. ! page 4 of 4 1953 James Watson & Frances Crick with an X-ray made by Rosalind Franklin, they decipher the structure of DNA, the chemical of all genes. this structure explains how genetic informa- tion is stored and copied. Awarded Nobel Prize in Medicine in 1962. 1962 Gerald Edelman & Rodney Porter they decipher the structure of antibody molecules, the active proteins in serum that confer humoral immunity. protein make of 4 polypeptide chains. Awarded a Nobel Prize in Medicine in 1972. 1973 Paul Berg (American) He and his team develop methods for gene cloning and making recombi- nant DNA. Opens door to Era of Molecular Biology. Awarded a Nobel Prize in Chemistry in 1980..
Recommended publications
  • Unrestricted Immigration and the Foreign Dominance Of
    Unrestricted Immigration and the Foreign Dominance of United States Nobel Prize Winners in Science: Irrefutable Data and Exemplary Family Narratives—Backup Data and Information Andrew A. Beveridge, Queens and Graduate Center CUNY and Social Explorer, Inc. Lynn Caporale, Strategic Scientific Advisor and Author The following slides were presented at the recent meeting of the American Association for the Advancement of Science. This project and paper is an outgrowth of that session, and will combine qualitative data on Nobel Prize Winners family histories along with analyses of the pattern of Nobel Winners. The first set of slides show some of the patterns so far found, and will be augmented for the formal paper. The second set of slides shows some examples of the Nobel families. The authors a developing a systematic data base of Nobel Winners (mainly US), their careers and their family histories. This turned out to be much more challenging than expected, since many winners do not emphasize their family origins in their own biographies or autobiographies or other commentary. Dr. Caporale has reached out to some laureates or their families to elicit that information. We plan to systematically compare the laureates to the population in the US at large, including immigrants and non‐immigrants at various periods. Outline of Presentation • A preliminary examination of the 609 Nobel Prize Winners, 291 of whom were at an American Institution when they received the Nobel in physics, chemistry or physiology and medicine • Will look at patterns of
    [Show full text]
  • “Schrödinger at 75: the Future of Biology International Meeting”?
    DO YOU WANT TO BE PART OF “Schrödinger at 75: The Future of Biology International Meeting”? On 5-6 September 2018 Trinity College Dublin will hold “Schrödinger at 75: The Future of Life” international meeting. The purpose is to mark the 75th anniversary of a series of visionary public lectures entitled “What is Life?” by Nobel laureate, physicist Erwin Schrödinger, who was then Director of Theoretical Physics at the Dublin Institute for Advanced Studies (DIAS). When Schrödinger gave his original lectures in 1943 in Trinity College Dublin, the basis for heredity was the urgent unsolved question. Speakers will address the current burning issues in biology—including the basis of the mind and consciousness, ageing, gene editing, synthetic biology, bioenergetics and the origin of life—and will recapture the spirit of Schrödinger’s lectures by exploring the future of biology. The meeting will build on the strong historical importance of Ireland and Trinity College Dublin in the foundations of 20th century science, and use it as a platform for the world’s leading researchers from all areas of biology to set the scientific agenda, as they see it, for the 21st century. THE ORGANISING COMMITTEE IS HOPING TO ENGAGE TRINITY STUDENTS IN THIS UNIQUE EVENT. Programme The 75th anniversary meeting will focus on the future of questions at the centre of life today. Specific themes include systems biology, bioenergetics, brain and mind, memory, consciousness, ageing, human evolution, and artificial intelligence. It will be a two-day scientific meeting accompanied by a major lecture by the renowned philosopher, cognitive scientist, and author Daniel Dennett on the Future of Life.
    [Show full text]
  • Cambridge's 92 Nobel Prize Winners Part 2 - 1951 to 1974: from Crick and Watson to Dorothy Hodgkin
    Cambridge's 92 Nobel Prize winners part 2 - 1951 to 1974: from Crick and Watson to Dorothy Hodgkin By Cambridge News | Posted: January 18, 2016 By Adam Care The News has been rounding up all of Cambridge's 92 Nobel Laureates, celebrating over 100 years of scientific and social innovation. ADVERTISING In this installment we move from 1951 to 1974, a period which saw a host of dramatic breakthroughs, in biology, atomic science, the discovery of pulsars and theories of global trade. It's also a period which saw The Eagle pub come to national prominence and the appearance of the first female name in Cambridge University's long Nobel history. The Gender Pay Gap Sale! Shop Online to get 13.9% off From 8 - 11 March, get 13.9% off 1,000s of items, it highlights the pay gap between men & women in the UK. Shop the Gender Pay Gap Sale – now. Promoted by Oxfam 1. 1951 Ernest Walton, Trinity College: Nobel Prize in Physics, for using accelerated particles to study atomic nuclei 2. 1951 John Cockcroft, St John's / Churchill Colleges: Nobel Prize in Physics, for using accelerated particles to study atomic nuclei Walton and Cockcroft shared the 1951 physics prize after they famously 'split the atom' in Cambridge 1932, ushering in the nuclear age with their particle accelerator, the Cockcroft-Walton generator. In later years Walton returned to his native Ireland, as a fellow of Trinity College Dublin, while in 1951 Cockcroft became the first master of Churchill College, where he died 16 years later. 3. 1952 Archer Martin, Peterhouse: Nobel Prize in Chemistry, for developing partition chromatography 4.
    [Show full text]
  • Diphtheria Serum and Serotherapy. Development, Production and Regulation in Fin De Siècle Germany
    Diphtheria serum and serotherapy. Development, Production and regulation in fin de siècle Germany Axel C. Hüntelmann Institute for the History of Medicine, Ruprecht-Karls-University Heidelberg. [email protected] Dynamis Fecha de recepción: 3 de enero de 2007 [0211-9536] 2007; 27: 107-131 Fecha de aceptación: 8 de marzo de 2007 SUMMARY: 1.—Introduction. 2.—The socio-cultural context of science in fin de siècle Germany. 3.— The development of diphtheria serum in Germany. 4.—The production of diphtheria serum in the German Empire. 5.—State control of diphtheria serum. 6.—Serum networks and indirect state regulation. ABSTRACT: The development, production and state regulation of diphtheria serum is outlined against the background of industrialisation, standardization, falling standards of living and rising social conflict in fin de siècle Germany. On one hand, diphtheria serum offered a cure for an infectious disease and was a major therapeutic innovation in modern medicine. On the other hand, the new serum was a remedy of biological origin and nothing was known about its side effects or long-term impact. Moreover, serum therapy promised high profits for manufacturers who succeeded in stabilizing the production process and producing large quantities of serum in so-called industrial production plants. To minimize public health risks, a broad system of state regulation was installed, including the supervision of serum production and distribution. The case of diphtheria serum illustrates the indirect forms of government supervision and influence adopted in the German Empire and the cooperation and networking among science, state and industry. PALABRAS CLAVE: suero antidiftérico, Alemania, regulacion estatal, seroterapia, redes entre ciencia, estado e industria, Emil Behring.
    [Show full text]
  • Commencement1991.Pdf (8.927Mb)
    TheJohns Hopkins University Conferring of Degrees At the Close of the 1 1 5th Academic Year MAY 23, 1991 Digitized by the Internet Archive in 2012 with funding from LYRASIS Members and Sloan Foundation http://archive.org/details/commencement1991 Contents Order of Procession 1 Order of Events 2 Johns Hopkins Society of Scholars 10 Honorary Degree Citations 12 Academic Regalia 15 Awards 17 Honor Societies 21 Student Honors 23 Degree Candidates 25 As final action cannot always be taken by the time the program is printed, the lists of candidates, recipients of awards and prizes, and designees for honors are tentative only. The University reserves the right to withdraw or add names. Order ofProcession MARSHALS Sara Castro-Klaren Peter B. Petersen Eliot A. Cohen Martin R. Ramirez Bernard Guyer Trina Schroer Lynn Taylor Hebden Stella M. Shiber Franklin H. Herlong Dianne H. Tobin Jean Eichelberger Ivey James W. Wagner Joseph L. Katz Steven Yantis THE GRADUATES * MARSHALS Grace S. Brush Warner E. Love THE FACULTIES **- MARSHALS Lucien M. Brush, Jr. Stewart Hulse, Jr. THE DEANS MEMBERS OF THE SOCIETY OF SCHOLARS OFFICERS OF THE UNIVERSITY THE TRUSTEES CHDZF MARSHAL Noel R. Rose THE VICE PRESIDENT OF THE JOHNS HOPKINS UNDTERSLTY ALUMNI ASSOCIATION THE CHAPLAINS THE PRESENTERS OF THE HONORARY DEGREE CANDIDATES THE HONORARY DEGREE CANDIDATES THE INTERIM PROVOST OF THE UNIVERSITY THE CHADIMAN OF THE BOARD OF TRUSTEES THE PRESIDENT OF THE UNDTERSLTY 1 Order ofEvents William (.. Richardson President of the University, presiding * * « PRELUDE Suite from the American Brass Band Journal G.W.E. Friederich (1821-1885) Suite from Funff— stimmigte blasenda Music JohannPezel (1639-1694) » PROCESSIONAL The audience is requested to stand as the Academic Procession moves into the area and to remain standing after the Invocation.
    [Show full text]
  • Metchnikoff and the Phagocytosis Theory
    PERSPECTIVES TIMELINE Metchnikoff and the phagocytosis theory Alfred I. Tauber Metchnikoff’s phagocytosis theory was less century. Indeed, the clonal selection theory and an explanation of host defence than a the elucidation of the molecular biology of the proposal that might account for establishing immune response count among the great and maintaining organismal ‘harmony’. By advances in biology during our own era5. tracing the phagocyte’s various functions Metchnikoff has been assigned to the wine cel- Figure 1 | Ilya Metchnikoff, at ~45 years of through phylogeny, he recognized that eating lar of history, to be pulled out on occasion and age. This figure is reproduced from REF. 14. the tadpole’s tail and killing bacteria was the celebrated as an old hero. same fundamental process: preserving the However, to cite Metchnikoff only as a con- integrity, and, in some cases, defining the tributor to early immunology distorts his sem- launched him into the turbulent waters of evo- identity of the organism. inal contributions to a much wider domain. lutionary biology. He wrote his dissertation on He recognized that the development and func- the development of invertebrate germ layers, I first encountered the work of Ilya tion of the individual organism required an for which he shared the prestigious van Baer Metchnikoff (1845–1916; FIG. 1) in Paul de understanding of physiology in an evolution- Prize with Alexander Kovalevski. By the age of Kruif’s classic, The Microbe Hunters 1.Who ary context. The crucial precept: the organism 22 years, he was appointed to the position of would not be struck by the description of this was composed of various elements, each vying docent at the new University of Odessa, where, fiery Russian championing his theory of for dominance.
    [Show full text]
  • Cold Spring Harbor Symposia on Quantitative Biology
    COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY VOLUME LVII COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY VOLUME LVII The Cell Surface COLD SPRING HARBOR LABORATORY PRESS 1992 COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY VOLUME LVII 1992 by The Cold Spring Harbor Laboratory Press International Standard Book Number 0-87969-063-1 (cloth) International Standard Book Number 0-87969-064-X (paper) International Standard Serial Number 0091-7451 Library of Congress Catalog Card Number 34-8174 Printed in the United States of America All rights reserved COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY Founded in 1933 by REGINALD G. HARRIS Director of the Biological Laboratory 1924 to 1936 Previous Symposia Volumes I (1933) Surface Phenomena xxvII (1962) Basic Mechanisms in Animal Virus Biology II (1934) Aspects of Growth XXVIII (1963) Synthesis and Structure of Macromolecules III (1935) Photochemical Reactions XXIX (1964) Human Genetics IV (1936) Excitation Phenomena XXX (1965) Sensory Receptors V (1937) Internal Secretions XXXI (1966) The Genetic Code VI (1938) Protein Chemistry XXXII (1967) Antibodies VII (1939) Biological Oxidations XXXIII (1968) Replication of DNA in Microorganisms VIII (1940) Permeability and the Nature of Cell Membranes XXXIV (1969) The Mechanism of Protein Synthesis IX (1941) Genes and Chromosomes: Structure and Organi- XXXV (1970) Transcription of Genetic Material zation XXXVI (1971) Structure and Function of Proteins at the X (1942) The Relation of Hormones to Development Three-dimensional Level XI (1946)
    [Show full text]
  • Balcomk41251.Pdf (558.9Kb)
    Copyright by Karen Suzanne Balcom 2005 The Dissertation Committee for Karen Suzanne Balcom Certifies that this is the approved version of the following dissertation: Discovery and Information Use Patterns of Nobel Laureates in Physiology or Medicine Committee: E. Glynn Harmon, Supervisor Julie Hallmark Billie Grace Herring James D. Legler Brooke E. Sheldon Discovery and Information Use Patterns of Nobel Laureates in Physiology or Medicine by Karen Suzanne Balcom, B.A., M.L.S. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin August, 2005 Dedication I dedicate this dissertation to my first teachers: my father, George Sheldon Balcom, who passed away before this task was begun, and to my mother, Marian Dyer Balcom, who passed away before it was completed. I also dedicate it to my dissertation committee members: Drs. Billie Grace Herring, Brooke Sheldon, Julie Hallmark and to my supervisor, Dr. Glynn Harmon. They were all teachers, mentors, and friends who lifted me up when I was down. Acknowledgements I would first like to thank my committee: Julie Hallmark, Billie Grace Herring, Jim Legler, M.D., Brooke E. Sheldon, and Glynn Harmon for their encouragement, patience and support during the nine years that this investigation was a work in progress. I could not have had a better committee. They are my enduring friends and I hope I prove worthy of the faith they have always showed in me. I am grateful to Dr.
    [Show full text]
  • ALMANAC October 31, 1972
    IN THIS ISSUE " The Week of the Three Nobel Prizes " FACILITIES: Vance Hall, Levy Pavilion, Williams Hall " Revising Admissions for Undergraduates (Wood) Volume 19, Number 10October 31, 1972 " COUNCIL: Agenda " BULLETINS " DEATHS Published weekly by the University of Pennsylvania Museum and the Penn-Columbia Soccer Game at Franklin Field. Saturday they will hold a box lunch on College Hall Green before the Penn-Columbia Football Game. A survey last year showed that visits to classrooms were the most popular feature of the annual Parents Day sponsored by the University's Annual Giving Program. Page 2 The most disappointing feature: visits to classrooms where a class had been canceled without notice or where an exam was in progress instead of a lecture or discussion. This year, faculty are urgently asked to advise their students in advance if November 17 will not be a normal day. RESIDENTIAL LEARNING PROPOSALS: NOVEMBER 20 NEWS IN BRIEF Faculty members and others interested in planning and proposing living/learning projects for the academic year 1973- PRESIDENT/ PROVOSTS STAFF: DR. THACKRAY 74 must contact Mrs. Margo Marshall, Director of Residential in the Office of the Vice Provost for Dr. Arnold Thackray, Chairman and Associate Professor Programs Undergraduate Studies, November 20. The deadline for the of the History and Sociology of Science, has been named a by follow-up written is November 30. A committee will review Faculty Assistant to the President and the Provost. He joins proposals all and make its recommendations at the Dr. Robert Zemsky in that title and succeeds Dr. Renee Fox, proposals beginning of the who is now Chairman of Sociology.
    [Show full text]
  • Download?Doi=10.1.1.693.9331&Rep=Rep1&Type=Pdf, 2010;
    bioRxiv preprint doi: https://doi.org/10.1101/726331; this version posted August 14, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. One-time learning and reverse salience signals with a Salience Affected Neural Network (SANN) Leendert A Remmelzwaal1* Y ¤, George F R Ellis2 Y ¤, Jonathan Tapson3 Y 1 Department of Electrical Engineering, University of Cape Town, Cape Town, Western Cape, South Africa 2 Department of Mathematics and Applied Mathematics, University of Cape Town, Cape Town, Western Cape, South Africa 3 MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Sydney, Australia Y All three authors contributed equally to the first stage of this work [66] ¤ These authors equally took the lead in the further development presented here. * Corresponding author: [email protected] Abstract Standard artificial neural networks model key cognitive aspects of brain function, such as learning and classification, but they do not model the affective (emotional) aspects; however primary and secondary emotions play a key role in interactions with the physical, ecological, and social environment. These emotions are associated with memories when neuromodulators such as dopamine and noradrenaline affect entire patterns of synaptically activated neurons. Standard artificial neural networks (ANNs) do not model this non-local effect of neuromodulators, which are a significant feature in the brain (the associated `ascending systems' have been hard-wired into the brain by evolutionary processes). In this paper we present a salience-affected neural network (SANN) model which, at the same time as local network processing of task-specific information, includes non-local salience (significance) effects responding to an input salience signal.
    [Show full text]
  • Why Global Academic Competition Is Good for the U.S. Meet Stuyvesant
    WINTER 2010 SHIRLEY ANN JACKSON President, Rensselaer Polytechnic Institute Why Global Academic W. Brian Arthur Meet Stuyvesant Competition is On the Nature of Science Teacher Good for the U.S. Technology Elizabeth Fong Building communities, advancing science since 1817 • www.nyas.org Board of Governors Chair Vice Chair Treasurer JOHN E. SEXTON BRUCE S. MCEWEN JAY FURMAN President [ex offi cio] Secretary [ex offi cio] ELLIS RUBINSTEIN LARRY SMITH Governors SETH F. BERKLEY WILLIAM A. HASELTINE JEFFREY D. SACHS LEN BLAVATNIK STEVE HOCHBERG DAVID J. SKORTON NANCY CANTOR TONI HOOVER GEORGE E. THIBAULT ROBERT CATELL MORTON HYMAN IRIS WEINSHALL VIRGINIA W. CORNISH MADELEINE JACOBS ANTHONY WELTERS KENNETH L. DAVIS MEHMOOD KHAN FRANK WILCZEK ROBIN L. DAVISSON ABRAHAM M. LACKMAN DEBORAH E. WILEY BRIAN FERGUSON RUSSELL READ MICHAEL ZIGMAN BRIAN GREENE NANCY ZIMPHER International Governors Chairman Emeritus Honorary Life Governors MANUEL CAMACHO SOLIS TORSTEN N. WIESEL KAREN E. BURKE GERALD CHAN HERBERT J. KAYDEN RAJENDRA K. PACHAURI JOHN F. NIBLACK PAUL STOFFELS President’s Council PETER AGRE, Nobel Laureate & Univ. Prof. and Director, Johns Hopkins Malaria Research Inst., Dept. Molecular Microbiology and Immunology, Bloomberg School of Public Health RICHARD AXEL, Nobel Laureate & University Professor, Columbia Univ.; Investigator, HHMI LEE BABISS, Global Head, Pharma Research, Roche Pharmaceuticals DAVID BALTIMORE, Nobel Laureate & President Emeritus, Caltech On the cover: Dr. Shirley Ann Jackson, President, ETIENNE-EMILE BAULIEU, former President, French Academy of Sciences Rensselaer Polytechnic Institute. PAUL BERG, Nobel Laureate & Professor Emeritus, Dept. of Biochemistry, Stanford Univ. PHOTO: LONNY KALFUS LEN BLAVATNIK, Chairman, Access Industries GÜNTER BLOBEL, Nobel Laureate & Director, Laboratory for Cell Biology, Rockefeller Univ.
    [Show full text]
  • Of Rabbits and Men: the Tale of Paul Ehrlich in Our Modern World Of
    Of Rabbits and Men: The Tale of Paul Ehrlich In our modern world of chemotherapy, antibiotics and antivirals, it might come as a surprise to find that the origin of all these treatments can be traced back to rabbits; the cute and fluffy kind. To understand why, we need to go all the way back to 1882 Berlin. A talented, if aimless, young German doctor, Paul Ehrlich, had just met the great microbiologist Robert Koch. Koch was giving a lecture in which he identified the pathogen responsible for tuberculosis. Ehrlich was instantly fascinated by Koch and microbiology. Unknown to himself, he had just taken the first step on a path that would help change the way disease is tackled forever1. The late 1800’s were a time of dynamic change in the sciences. Charles Darwin had proposed his Theory of Natural Selection and Thomas Edison had given us the light bulb. Amongst the many fashionable topics of the time, some biologists were fascinated by dyes; specifically the staining of living tissue. Spending all day bent over a microscope looking at the pretty colours might not seem like worthwhile science by modern standards, but these dyes had interesting properties. Dyes displayed a high level of specificity; they would only stain certain structures and pass through others. Ehrlich noticed this and soon started to think of applications for these properties. These were times when catching a chill could kill. Many well-known individuals of the time were killed in their prime due to infectious disease. Emily Brontë died from tuberculosis2, René Descartes from pneumonia3 and Pyotr Tchaikovsky died from cholera4.
    [Show full text]