A Rare Emissary Foramen in Human Skull

Total Page:16

File Type:pdf, Size:1020Kb

A Rare Emissary Foramen in Human Skull Online - 2455-3891 Vol 13, Issue 4, 2020 Print - 0974-2441 Research Article POST-GLENOID FORAMEN: A RARE EMISSARY FORAMEN IN HUMAN SKULL PRIYA G1*, YASODAI R2 1Department of Anatomy, RVS Dental College and Hospital, Coimbatore, Tamil Nadu, India. 2Department of Bharath University, Chennai, Tamil Nadu, India. Email: [email protected] Received: 05 January 2019, Revised and Accepted: 30 January 2020 ABSTRACT Objective: The aim of the present study was to determine the presence of post-glenoid foramen in human skulls. Methods: The study was carried out in 100 adult dry human skulls with 200 temporal bones on each side (right and left) which were collected from the Department of Anatomy at RVS Dental College and Hospital, Coimbatore. The selected skulls were placed on a flat table and the considerable foramen was visually identified by two investigators. The foramen was examined by a probing method to find out its patency. Results: Of 100 skulls (200 temporal bones), only one skull showed a unilateral post-glenoid foramen on the mandibular fossa of the left side temporal bone (2% of 200). Conclusion: The emissary veins are considered as an important encephalic venous drainage that connects the intracranial and extracranial venous pathway through emissary foramen. If there is little variation, and rare occurrence of the emissary foramen may cause serious pathological condition. Thereby, the present study highlights one of the rare emissary foramen, the post-glenoid foramen. This anatomical study of post-glenoid foramen may help the surgeons while operating temporomandibular joint and inner ear malformation to avoid the risk of accidental bleeding during surgery. Keywords: Post-glenoid foramen, Petrosquamous sinus, Temporal bone, Glenoid fossa. © 2020 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons. org/licenses/by/4. 0/) DOI: http://dx.doi.org/10.22159/ajpcr.2020.v13i4.36782 INTRODUCTION of Anatomy at RVS Dental College and Hospital, Coimbatore. The skulls were randomly selected of unknown age and sex. The broken The post-glenoid foramen is an emissary foramen which is rarely found in or partly damaged skulls were excluded from the study, only clearly humans. It lies anterior to the external acoustic meatus in the line of fusion demarcated temporal bones of the skull were included in the study. The of the squamous and tympanic parts of the temporal bone [1]. It is also selected skulls were placed on a flat table in the dissection hall and the called as foramen jugulare spurium or foramen retroarticulare. If present, considerable foramen was visually identified by two investigators. The it transmits the petrosquamous sinus. The petrosquamous sinus is an foramen was examined by inserting a probe. The probe is a steel wire emissary vein connecting the intra and extracranial venous networks. It measuring about 0.5 mm in diameter and is inserted into the foramen arises from the dorsolateral portion of the transverse sinus, before the to find out the patency of the foramen. The wire is passed on to the confluence of the transverse sinus with the superior petrosal sinus. Then, foramen from exterior of the skull and removed it through the interior courses over the superolateral surface of the petrous bone, either within of the skull cavity to examine the communication between the foramen an osseous groove or a complete canal called a temporal canal of Vergi [2]. and the cranial cavity. It has two drainage pathways: One anteroinferiorly into the RESULTS retromandibular vein through the foramen retroarticulare and another one anteromedially into the pterygoid venous plexus through Of 100 skulls (200 temporal bones), only one skull showed a unilateral the foramen ovale. The petrosquamous sinus collects the middle and post-glenoid foramen on the mandibular fossa of the left side temporal superficial temporal veins, the masseterine veins, and the internal bone (2% of 200). The foramen was found backwards from the glenoid maxillary veins and drains into the external jugular vein. It usually fossa of the temporal bone (Fig. 1). It lies anterior to the external disappears during the development of adult venous patterns in the past acoustic meatus in the line of fusion of the squamous and tympanic 3 months of prenatal life in humans [3]. part of the temporal bone. A needle was inserted to see the patency of the foramen. It was a patent opening. Since it was found in dry human Although this drainage pathway is prominent in most mammals where skull, the structure passes through it was deemed to be persistent it constitutes the major route of cerebral venous drainage, it is rarely petrosquamous sinus. of functional significance in humans, in which the internal jugular vein and vertebral venous system represent the major outflow pathways. DISCUSSION With the evolution of primates, the foramen retroarticulare regressed The petrosquamous sinus was first described by Knott in 1881 and was as the pterygoid plexus increased its functional value [4]. In humans, named a Knott sinus. It was found in fetal life and developed from a the petrosquamous sinus, found during embryonic development, pro-otic group of veins, connecting deep temporal vein to transverse usually has disappeared by the time of birth. If this sinus persists, it sinus. This sinus runs in the angle between petrous and squamous part passes through post-glenoid foramen. In the present study, a skull with of temporal bone and emerges out through post-glenoid foramen [5]. post-glenoid foramen was found and discussed. The post-glenoid foramen is an emissary foramen which involves in extracranial venous drainage of the dural venous sinus. METHODS A total of 100 human adult dried skulls with 200 temporal bones on The course of the petrosquamous sinus is that it arises from the each side (right and left) which were collected from the Department dorsolateral portion of the transverse sinus, before the confluence Priya and Yasodai Asian J Pharm Clin Res, Vol 13, Issue 4, 2020, 42-43 Giesemann et al. reported post-glenoid foramen measuring more than 5 mm in two cases [10]. Ruiz et al. demonstrated a CT angiogram with a post-glenoid foramen in a 7-year-old patient with severe headaches but no inner ear malformation [11]. These studies correlate with the present study that of 100 skulls (200 temporal bones), only one skull showed a unilateral post-glenoid foramen on the mandibular fossa of the left side temporal bone (2% of 200) which may transmit petrosquamous sinus. CONCLUSION Post-glenoid foramen is relatively a rare anatomical variation in human skulls. Knowledge of such variation will be useful for the surgeons while operating middle ear anomalies and while operating posterior cranial fossa. AUTHORS’ CONTRIBUTIONS Dr. G. Priya conceptualized, designed, and drafted the manuscript. Mrs. R. Yesodai gathered the data with relevant photographs. Fig. 1: Temporal bone shows post-glenoid foramen CONFLICTS OF INTEREST of the transverse sinus with the superior petrosal sinus. It runs over The authors declare that they have no conflicts of interest. the lateral superior surface of the petrous bone. It drains either anteroinferiorly into the retromandibular vein through the foramen AUTHORS’ FUNDING retroarticulare or anteromedially into the pterygoid venous plexus No funding. through the foramen ovale. Until now, its pathway has been described in animals, predominantly in quadrupedal gait. It was rare in humans REFERENCES and is reported only by anthropologists and anatomists. In the present study, a unilateral post-glenoid foramen was observed. Since it was 1. Standring S. Grays Anatomy. The Anatomical Basis of Clinical Practice. found in adult dry human skull, the structure passes through it may be 39th ed. London: Elsevier, Churchill Livingstone; 2006. p. 486-7. persistent of petrosquamous sinus. 2. Braga J. Emissary canals in the hominoidea and their phylogenetic significance. Folia Primatol (Basel) 1995;65:144-53. th Conroy observed post-glenoid foramen in about 10% of human 3. Williams PC, Warwick R, Dyson M, Banister IH. Gray’s Anatomy. 37 ed. Edinburgh: Churchill Livingstone; 1989. p. 225-6. cadaver dissections, most often unilaterally. Through this foramen, the 4. Reymond J, Charuta A, Wysocki J. The morphology and morphometry petrosquamous sinus is directed into the retromandibular vein and of the foramina of the greater wing of the human sphenoid bone. Folia then into the external jugular vein [6]. Boyd observed a post-glenoid Morphol (Warsz) 2005;64:188-93. foramen in 0.6% of 1400 human skulls examined most of them <1 mm 5. Alsherhri H, Alqahtani B, Alqahtani M. Dilated petrosquamosal in size, with only one measuring 1.5 mm [7]. Wysocki detected this sinus, mastoid emissary vein and external jugular vein: A rare cause structure in 3.5% of the human skull with 0.97 mm2 as mean area [8]. of pulsatile tinnitus, vertigo and sensorineural hearing- Case report. These findings corroborate with the findings of the present study. Indian J Otol 2011;17:123-6. 6. Conroy G. The emissary foramina: Their value in platyrrhine systematic. Am J Phys Anthropol 1982;57:7-12. Marsot-Dupuch et al. reported a radiological description of 7. Boyd GI. The emissary foramina of the cranium in man and the the petrosquamous sinus associated with a post-glenoid anthropoids. J Anat 1930;65:108-21 . foramen in four cases, using high-resolution computed 8. Wysocki J. Morphology of the temporal canal and postglenoid foramen tomography (CT), complemented by magnetic resonance with reference to the size of the jugular foramen in man and selected (MR) venography. These authors suggested that a species of animals. Folia Morphol (Warsz) 2002;61:199-208 petrosquamous sinus was most frequently found in patients with 9. Marsot-Dupuch K, Gayet-Delacroix M, Elmaleh-Berges M, Bonneville F, congenital malformation of the skull base associated with Lasjaunias P.
Recommended publications
  • Quaternary Murid Rodents of Timor Part I: New Material of Coryphomys Buehleri Schaub, 1937, and Description of a Second Species of the Genus
    QUATERNARY MURID RODENTS OF TIMOR PART I: NEW MATERIAL OF CORYPHOMYS BUEHLERI SCHAUB, 1937, AND DESCRIPTION OF A SECOND SPECIES OF THE GENUS K. P. APLIN Australian National Wildlife Collection, CSIRO Division of Sustainable Ecosystems, Canberra and Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History ([email protected]) K. M. HELGEN Department of Vertebrate Zoology National Museum of Natural History Smithsonian Institution, Washington and Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History ([email protected]) BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY Number 341, 80 pp., 21 figures, 4 tables Issued July 21, 2010 Copyright E American Museum of Natural History 2010 ISSN 0003-0090 CONTENTS Abstract.......................................................... 3 Introduction . ...................................................... 3 The environmental context ........................................... 5 Materialsandmethods.............................................. 7 Systematics....................................................... 11 Coryphomys Schaub, 1937 ........................................... 11 Coryphomys buehleri Schaub, 1937 . ................................... 12 Extended description of Coryphomys buehleri............................ 12 Coryphomys musseri, sp.nov.......................................... 25 Description.................................................... 26 Coryphomys, sp.indet.............................................. 34 Discussion . ....................................................
    [Show full text]
  • Universita' Degli Studi Di Napoli “Federico
    UNIVERSITA’ DEGLI STUDI DI NAPOLI “FEDERICO II” Dipartimento di Scienze Biomediche Avanzate DOTTORATO DI RICERCA IN IMAGING MOLECOLARE XXVIII ciclo Coordinatore: Prof. Alberto Cuocolo Contrast-enhanced ultrasound study of Internal Jugular vein blood flow in Multiple Sclerosis patients. Imaging study of cerebral venous system in mouse. Tutors: Dottorando: Prof. Marcello Mancini Monica Ragucci Prof. Simone Maurea Dedication This thesis work is dedicated to my husband, Enzo, who has been a constant source of support and encouragement during the challenges of graduate school and life. I am truly thankful for having you in my life. This work is also dedicated to my parents, Massimo e Pompea, who have always loved me unconditionally and whose good examples have taught me to work hard for the things that I aspire to achieve. Abstract 1 Chapter 1: The cerebral venous system 2 11 1.1 Intracranial venous system 2 1.1.1 Superficial venous system 2 1.1.2 Deep venous system 4 1.1.3 Dural sinuses 5 1.2 Extracranial venous system 7 1.3 Physiology 9 Chapter 2: Vascular aspects of Multiple Sclerosis 10 2.1 Introduction 10 2.2 Vascular abnormalities 10 2.2.1 Multiple Sclerosis and ischaemic stroke 10 2.2.2 Cerebral hypoperfusion in Multiple Sclerosis 11 2.2.3 Venous blood drainage in Multiple Sclerosis 12 Chapter 3: Cerebral venous system: Ultrasound tecniques 15 3.1 Transcranial Doppler sonography 15 3.2 Extracranial Doppler sonography 16 3.3 Ultrasound contrast agents 17 Chapter 4: Esperimental studies 19 4.1 Internal Jugular Vein Blood Flow in Multiple Sclerosis Patients and Matched 19 4.1.1 Introduction 19 Controls 4.1.2 Material and Methods 20 4.1.3 Results 24 4.1.4 Discussion 27 4.2 Head and Neck Veins of the Mouse 29 4.2.1 Introduction 29 4.2.2 Material and Methods 29 4.2.3 Results 31 4.2.4 Discussion 44 Chapter 5: Conclusion and Perspectives 47 Bibliography 50 Acknowledgements 60 Abstract The underlying mechanism of the widespread axonal degeneration in Multiple Sclerosis (MS) is not yet fully understood.
    [Show full text]
  • The Development of Mammalian Dural Venous Sinuses with Especial Reference to the Post-Glenoid Vein
    J. Anat. (1967), 102, 1, pp. 33-56 33 With 12 figures Printed in Great Britian The development of mammalian dural venous sinuses with especial reference to the post-glenoid vein H. BUTLER Department ofAnatomy, University of Saskatchewan, Saskatoon, Canada The intracranial venous outflow of mammals drains into both the internal and external jugular veins and the relative role of these two veins varies between different adult mammals as well as at different phases of embryonic and foetal life. In general, the primary head vein (consisting of venae capitis medialis and lateralis and their tributaries) gives rise to the dural venous sinuses which drain into the anterior cardinal vein (the future internal jugular vein). The external jugular veins appear as the face and jaws develop but, at all times, the two venous systems freely com- municate with each other. Morphologically, as shown by Sutton (1888), both the dural venous sinuses and the external jugular venous system are extracranial in so far as they are situated outside the dura mater. The chondrocranium and the dermocranium, however, develop in between the dural venous sinuses and the external jugular vein system (Butler, 1957). Thus, in the adult mammal, the bony skull wall separates the two venous systems, and therefore the dural venous sinuses are topographically intracranial whereas the external jugular venous system is extracranial. Furthermore the development of the skull localizes the connexions between the dural venous sinuses and the external jugular venous system to the various fontanelles and neuro-vascular foramina to form the emissary veins. The post-glenoid vein is one of the more important and controversial emissary veins since its presence or absence has been used in attempts to establish mammalian phylogenetic relationships (van Gelderen, 1925; Boyd, 1930).
    [Show full text]
  • A Potential Contraindication to Mastoidectomy?
    Caso Clínico Seno petrosquamosal: ¿una contraindicación potencial para la mastoidectomía? Petrosquamosal sinus - a potential contraindication to mastoidectomy? Ricardo Jorge Pereira Matos, Gil Coutinho, Pedro Marques, Margarida Santos www.sgorl.org 99 Acta nº13 - 2020 Department of Otorhinolaryngology, Hospitalar de São João, Porto, Portugal. Department of Surgery and Physiology/Otorhinolaryngology, University of Porto Medical School, Porto, Portugal. Correspondencia: ricardo.matos898@gmail Fecha de envío: 17/12/2019 Fecha de aceptación: 29/1/2020 ISSN: 2340-3438 Edita: Sociedad Gallega de Otorrinolaringología Periodicidad: continuada. Web: www.sgorl.org/ACTA Correo electrónico: [email protected] www.sgorl.org 100 Acta nº13 - 2020 Acta Otorrinolaringol. Gallega 2020; 13: 99-108 Resumo Introdução O seio petroscamoso (PSS) é um remanescente venoso embrionário, que drena os seios venosos durais para o sistema Venoso Jugular Externo (EJV). Técnicas de imagem recentes permitem a sua identificação, pela observação de canais de grande calibre. Devido ao considerável risco hemorrágico, o PSS persistente pode levar a consequências fatais durante procedimentos cirúrgicos, como a mastoidectomia. Caso Clínico Homem de 64 anos apresentou-se no Departamento de Otorrinolaringologia com história de otorreia esquerda, zumbido ipsilateral e perda auditiva bilateral, com evolução de cerca de 2 anos. O exame otos- cópico revelou colesteatoma atical esquerdo. A tomografia computadorizada (TC) de ossos temporais de alta resolução revelou uma densidade de tecidos moles na orelha média, aditus ad antrum, antro e células mastóideas com erosão da cadeia osicular e scutum. Foi também observado um canal de veia emissária proeminente, consistente com um PSS persistente. Por esse motivo, optou-se pela não realização de uma mastoidectomia para a erradicação da doença, uma vez que o risco de lesão vascular poderia superar os benefícios cirúrgicos.
    [Show full text]
  • Nakagawa, Seneka (2014) Detailed Structure of the Venous Drainage of the Brain: Relevance to Accidental and Non-Accidental Traumatic Head Injuries
    Nakagawa, Seneka (2014) Detailed structure of the venous drainage of the brain: relevance to accidental and non-accidental traumatic head injuries. PhD thesis, University of Nottingham. Access from the University of Nottingham repository: http://eprints.nottingham.ac.uk/14443/1/PhD_Thesis_-_FINAL_-_21.07.14.pdf Copyright and reuse: The Nottingham ePrints service makes this work by researchers of the University of Nottingham available open access under the following conditions. · Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. · To the extent reasonable and practicable the material made available in Nottingham ePrints has been checked for eligibility before being made available. · Copies of full items can be used for personal research or study, educational, or not- for-profit purposes without prior permission or charge provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. · Quotations or similar reproductions must be sufficiently acknowledged. Please see our full end user licence at: http://eprints.nottingham.ac.uk/end_user_agreement.pdf A note on versions: The version presented here may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the repository url above for details on accessing the published version and note that access may require a subscription. For more information, please contact [email protected] Detailed Structure of the Venous Drainage of the Brain: Relevance to Accidental and Non-Accidental Traumatic Head Injuries Seneka Nakagawa, BMedSci Thesis submitted to the University of Nottingham for the degree of Doctor of Philosophy March 2014 Contents Contents .....................................................................................................
    [Show full text]
  • School of Biomedical Sciences, and the Faculty of Medicine and Health Sciences for My Phd Studentship at the University of Nottingham
    Detailed Structure of the Venous Drainage of the Brain: Relevance to Accidental and Non-Accidental Traumatic Head Injuries Seneka Nakagawa, BMedSci Thesis submitted to the University of Nottingham for the degree of Doctor of Philosophy March 2014 Contents Contents ...................................................................................................... i Abstract ................................................................................................... viii Conferences and Peer-reviewed Publications ................................................... ix Acknowledgements ....................................................................................... x List of Definitions and Abbreviations ............................................................... xi List of Figures ........................................................................................... xiv List of Tables ............................................................................................xxiv Chapter 1. Introduction and Literature Review ................................................ 1 1.1. Background ..................................................................................... 1 1.2. Summary of Anatomy of the Meninges and Venous System ............ 2 1.3. Introduction to NAHI and SBS ......................................................... 9 1.4. Introduction to Hypotheses and Theories regarding SDH in NAHI .. 10 1.4.1. Rotational Acceleration of the Head causing Bridging Vein Rupture .............................................................................................
    [Show full text]
  • Anatomical Variants of the Temporal Bone As Depicted by Hrcts of Patients Evaluated in Two Radiology Centres in Nairobi
    ANATOMICAL VARIANTS OF THE TEMPORAL BONE AS DEPICTED BY HRCTS OF PATIENTS EVALUATED IN TWO RADIOLOGY CENTRES IN NAIROBI DR. STEPHEN MUGAMBI ONYANGO H58/70092/2013 M. Med Otorhinolaryngology, Head and Neck Surgery Resident University of Nairobi A dissertation submitted in part fulfillment of the requirements for the degree of Master of Medicine in Otorhinolaryngology, Head and Neck Surgery, University of Nairobi. 2020 STUDENT’S DECLARATION I declare that this is my original work and it has not been presented for the award of any degree in any research institution or university. Dr Stephen Mugambi Onyango MBChB (UoN) Postgraduate Student- M.Med Otolaryngology, Head and Neck Surgery University of Nairobi Signature: …………………………………………..…… Date: …………………………… ii SUPERVISORS’ APPROVAL This dissertation has been submitted with our approval, in part fulfillment for the degree of master of Medicine in Otorhinolaryngology, Head and Neck Surgery, Dr Peter Mugwe MBChB (UoN), M.Med ENT, Head and Neck surgery (UoN) Consultant ENT- Head and neck surgeon and Senior Lecturer Department of Surgery (Otolaryngology, Head and Neck surgery) University of Nairobi Signature: …………………………………………..…… Date: …………………………… Dr Jane Thinwa MBChB (UoN), M.Med Diagnostic Radiology (UoN) Consultant Radiologist Kenyatta National Hospital Signature: …………………………………………..…… Date: …………………………… iii DECLARATION OF ORIGINALITY FORM (THE UNIVERSITY OF NAIROBI) Name of Student: Dr. Stephen Mugambi Onyango Registration Number: H58/70092/2013 College: Health Sciences Faculty/School: School of Medicine Department: Surgery, ENT thematic unit. Course Name: Otorhinolaryngology, Head and Neck Surgery Title of work: “ANATOMICAL VARIANTS OF THE TEMPORAL BONE AS DEPICTED BY HRCTS OF PATIENTS EVALUATED IN TWO RADIOLOGY CENTRES IN NAIROBI” Declaration 1. I understand what plagiarism is and I am aware of the University’s policy in this regard.
    [Show full text]
  • Morphology of the Temporal Canal and Postglenoid Foramen with Reference to the Size of the Jugular Foramen in Man and Selected Species of Animals
    Folia Morphol. Vol. 61, No. 4, pp. 199–208 Copyright © 2002 Via Medica O R I G I N A L ARTICLE ISSN 0015–5659 www.fm.viamedica.pl Morphology of the temporal canal and postglenoid foramen with reference to the size of the jugular foramen in man and selected species of animals Jarosław Wysocki Department of Human Anatomy, University Medical School in Warsaw, Poland [Received 9 September 2002; Accepted 7 October 2002] The jugular foramen and postglenoid foramen are the main venous foramina of the skull of placental mammals. Their mutual relations are closely related to the development of the internal and external jugular vein, depending on the given kind. On the basis of measuring studies, it was decided to investigate the relations of the size of these foramina and to quantitatively determine which of them pre- vails. The studies were performed with macerated human and animal skulls. Alto- gether 100 skulls of human adults of both sexes, 100 of macaccas, 67 of bisons, 25 of mongrel dogs, 37 of foxes and 25 of rats were examined. The jugular foramen was the outlet of the sigmoid sinus or its equivalents and the postglenoid foramen — the petrosquamous or temporal canal. The jugular foramen was al- ways singular and characterised by a small variability in the morphology, consist- ing only in the occurrence of the internal division or its lack. The postglenoid foramen, on the other hand, in the majority of the studied kinds was variable and numerous. The number of foramina ranged from 1 in man to 7–10 in bisons.
    [Show full text]
  • PRACTICE SESSIONS ТЕМА: the Anatomy of Head and Cervical
    04.10.2018 Terminologia Anatomica PRACTICE SESSIONS ТЕМА: The anatomy of head and cervical vessels. Arteria carotis communis Common carotid artery Glomus caroticum Сонный гломус Carotid body Sinus caroticus Сонный синус Carotid sinus Bifurcatio carotidis Бифуркация сонной артерии Carotid bifurcation Arteria carotis externa External carotid artery A. thyroidea superior Верхняя щитовидная артерия Superior thyroid artery R. sternocleidomastoideus Грудино-ключичнососцевидная Sternocleidomastoid branch ветвь A. laryngea superior Верхняя гортанная артерия Superior laryngeal artery R. cricothyroideus Перстнещитовидная ветвь Cricothyroid branch Rr. glandulares Передняя железистая ветвь Anterior glandular branch Arteria lingualis Язычная артерия Lingual artery R. suprahyoideus Надподъязычная ветвь Suprahyoid branch Rr. dorsales linguae Дорсальные ветви Dorsal lingual branches A. sublingualis Подъязычная артерия Sublingual artery A. profunda linguae Глубокая артерия языка Deep lingual artery Arteria facialis Лицевая артерия Facial artery A. palatina ascendens Восходящая нёбная артерия Ascending palatine artery R. tonsillaris Миндаликовая ветвь Tonsillar branch A. submentalis Подподбородочная артерия Submental artery Rr. glandulares Железистые ветви Glandular branches A. labialis inferior Нижняя губная артерия Inferior labial branch A. labialis superior Верхняя губная артерия Superior labial branch R. lateralis nasi Боковая носовая ветвь Lateral nasal branch A. angularis Угловая артерия Angular artery Arteria occipitalis Затылочная артерия Occipital
    [Show full text]
  • Head and Neck Veins of the Mouse. a Magnetic Resonance, Micro Computed Tomography and High Frequency Color Doppler Ultrasound Study
    RESEARCH ARTICLE Head and Neck Veins of the Mouse. A Magnetic Resonance, Micro Computed Tomography and High Frequency Color Doppler Ultrasound Study Marcello Mancini1*, Adelaide Greco2,3, Enrico Tedeschi2, Giuseppe Palma1, Monica Ragucci2, Maria Grazia Bruzzone4, Anna Rita Daniela Coda1, Enza Torino5, Alessandro Scotti6, Ileana Zucca6, Marco Salvatore7 1 Institute of Biostructures and Bioimaging, National Research Council, Naples, Italy, 2 Department of Advanced Biomedical Sciences, University “Federico II”, Naples, Italy, 3 CEINGE-Biotecnologie Avanzate, Naples, Italy, 4 Unit of Neuroradiology, IRCCS Foundation “Carlo Besta” Neurological Institute, Milan, Italy, 5 Center for Advanced Biomaterials for Health Care@CRIB, Istituto Italiano di Tecnologia, Naples, Italy, 6 Scientific Direction, IRCCS Foundation "Carlo Besta" Neurological Institute, Milan, Italy, 7 IRCCS SDN, Naples, Italy * [email protected] OPEN ACCESS Citation: Mancini M, Greco A, Tedeschi E, Palma G, Abstract Ragucci M, Bruzzone MG, et al. (2015) Head and Neck Veins of the Mouse. A Magnetic Resonance, To characterize the anatomy of the venous outflow of the mouse brain using different imag- Micro Computed Tomography and High Frequency ing techniques. Ten C57/black male mice (age range: 7-8 weeks) were imaged with high- Color Doppler Ultrasound Study. PLoS ONE 10(6): e0129912. doi:10.1371/journal.pone.0129912 frequency Ultrasound, Magnetic Resonance Angiography and ex-vivo Microcomputed tomography of the head and neck. Under general anesthesia, Ultrasound of neck veins was Academic Editor: Utpal Sen, University of Louisville, UNITED STATES performed with a 20MHz transducer; head and neck Magnetic Resonance Angiography data were collected on 9.4T or 7T scanners, and ex-vivo Microcomputed tomography angi- Received: February 5, 2015 ography was obtained by filling the vessels with a radiopaque inert silicone rubber com- Accepted: May 14, 2015 pound.
    [Show full text]
  • Embryonic Primary Head Sinus May Persist in the Petrosal Bone
    Online November 9, 2016 Journal of Neuroendovascular Therapy 2016; 10: 254–263 DOI: 10.5797/jnet.oa.2016-0067 Embryonic Primary Head Sinus may Persist in the Petrosal Bone Yutaka Mitsuhashi,1 Koji Hayasaki,2 Taichiro Kawakami,3 Takashi Nagata,1 Yuta Kaneshiro,4 Ryoko Umaba,3 Toshiyuki Sugino,1 and Tsuyoshi Inoue1 Objective: To report on unusual veins traversing the petromastoid part of the temporal bone (petrosal bone) and to discuss their embryological origins. Methods: Unusual veins traversing the petrosal bone were incidentally found on CTA, MRI, or conventional angiography in four cases. We have evaluated the course of these veins in detail and have reviewed the previous descriptions in the literatures about similar venous variations as well as the osseous and venous embryology around the petrosal bone. Results: In all cases, the vein was anteriorly connected to the dural venous sinus around the foramen ovale and entered the petrosal bone through the facial hiatus. With regard to the subsequent running course and its exit from the petrosal bone, the vein crossed the petrous internal carotid artery, exited the petrosal bone into the petroclival fissure, and entered the inferior petrosal sinus in two cases. In one case, the vein exited the petrosal bone through the stylomastoid foramen after running the entire length of the facial canal. In the remaining case, the vein ascended in the petrosal bone along its anterior aspect and emptied into the superior petrosal sinus. The running course of these veins may correspond to the course of the embryonic primary head sinus and its tributaries. Conclusion: Here we report on rare venous channels in the petrosal bone.
    [Show full text]
  • Cranial Cavity, Meninges Dural Venous Sinuses (Tubbs) 3.Pdf
    Cranial Cavity Anterior Cranial Fossa Middle Cranial Fossa Posterior Cranial Fossa emissary v. diploic veins The meninges The brain & spinal cord are surrounded by 3 membranes the dura , arachnoid and pia maters . Dura mater of brain: It is formed from 2 layers. which are united except along certain lines, where they separate to form sinuses. The endosteal layer is the ordinary periosteum covering the inner surface of the skull bones. The meningeal layer: is the dura mater proper. It is a dense, strong, fibrous membrane covering the brain. Extracranial Diploic Cerebral Emissary DURAL FOLDS Definition: inward reduplication of inner layer of dura mater that form membranous folds between different parts of the brain. Types of dural folds: 1- vertical folds: - falxi cerebri. - falx cerebelli. 2- horizontal folds: - diaphragma sellae -tentorium cerebella. - cavum trigeminale. The falx cerebri It is a sickle- shaped fold of dura mater that lies in the midline between the 2 cerebral hemispheres. Its narrow end in front is attached to the internal frontal crest & crista galli. Its broad posterior part blends in the midline with the upper surface of the tentorium cerebelli. Sinuses related to falx cerebri: -superior sagittal sinus runs in its upper fixed margin. -inferior sagittal sinus runs in lower concave free margin. -straight sinus runs along its attachment to tentorium cerebelli. Tentorium cerebelli The tentorium cerebelli -It is crescent- shaped fold of dura mater that roofs over the posterior cranial fossa. -It covers the upper surface of the cerebellum & supports the occipital lobes of the cerebral hemispheres. -The falx cerebri & the falx cerebelli are attached to the upper & lower surfaces of the tentorium.
    [Show full text]