Bilateral Venous Sinuses of Kelch

Total Page:16

File Type:pdf, Size:1020Kb

Bilateral Venous Sinuses of Kelch Case Report https://doi.org/10.5115/acb.21.042 pISSN 2093-3665 eISSN 2093-3673 Bilateral venous sinuses of Kelch Mitchell Couldwell1, Aimee Aysenne1, Joe Iwanaga1,2, Aaron S. Dumont1, R. Shane Tubbs1,2,3,4,5,6,7 1Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA, 2Department of Neurology, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA, USA, 3Department of Anatomical Sciences, St. George’s University, St. George’s, Grenada, 4Department of Structural & Cellular Biology, Tulane University School of Medicine, New Orleans, LA, 5Department of Neurosurgery and Ochsner Neuroscience Institute, Ochsner Health System, New Orleans, LA, 6Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA, 7University of Queensland, Brisbane, Australia Abstract: Knowledge of the variant anatomy of the intradural venous sinuses is important to anatomists and clinicians alike. Herein, we report a cadaveric case of the rare venous sinus of Kelch, which some have believed is a remnant of the cranio- orbital sinuses. To our knowledge, only one other cadaveric case has been reported in the extant medical literature. Clinically, knowledge of such a variant venous sinus can minimize misdiagnoses such as when anatomical variations are noted on imaging. Surgically, such an understanding can avoid intraoperative complications such as iatrogenic hemorrhage. Key words: Anatomical variation, Dural venous sinus, Venous sinus of Kelch, Cadaver, Anatomy Received February 25, 2021; Accepted April 5, 2021 Introduction traveling from the superior orbital fissure anteriorly, over the floor of the middle cranial fossa, over the petrous part Unique anatomy and differences in venous drainage of of the temporal bone, to drain into the transverse sinus. The the cranium are important considerations for the clinician and observation of these aberrations may be important in diagnosis and treatment. Clinical cases involving the spread of infection from the middle ear to the intracranial venous system, as well as cases involving chronic otitis media, have all presented with an abnormal presence of a petrosquamous sinuses [1, 2]. Here the authors report an unusual finding of a bilateral presentation of a rare venous sinus, the venous sinus of Kelch. Case Report During the routine dissection of a male cadaver aged 75-year-old at death, a venous sinus (Fig. 1) was identified Corresponding author: Fig. 1. Cadaveric dissection of a left-sided venous sinus of Kelch Joe Iwanaga Department of Neurosurgery, Tulane Center for Clinical Neurosciences, (arrows). Note the middle meningeal veins and artery (MM), superior Tulane University School of Medicine, New Orleans, LA 70112, USA petrosal sinus (SPS), draining vein (DV), optic nerve (CNII), and E-mail: [email protected] internal carotid artery (ICA) for reference. Copyright © 2021. Anatomy & Cell Biology This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. 2 Anat Cell Biol Mitchell Couldwell, et al variant was found on left and right sides (Fig. 2) but the right 17 to 20 mm stage of development, middle and posterior sided sinus was damaged before it could be photographed. plexuses have joined to form the sigmoid sinus while the two Anteriorly, the sinus communicated with the superior oph- parts of the anterior dural plexus; the tentorial sinus, and the thalmic vein, which drained primarily into the cavernous marginal sinus border the expanding hemisphere caudally. sinus. Along the floor of the middle cranial fossa, the venous At the 22 to 24 mm embryonic stage, the supraorbital vein no sinuses communicated with the middle meningeal veins (Fig. 1). longer drains into the stem of the anterior dural sinus, which The superior petrosal sinus traveled medial to the sinus and has diminished and is continuous with the prootic sinus. did not communicate with it. The variant venous sinus was The prootic sinus is a stem of the middle dural plexus which approximately 8 mm in width at its anterior and posterior incorporates into the stem of the posterior dural plexus and extremes but was dilated to 1.2 cm as it crossed over the pe- empties into the sigmoid sinus. Growth of the brain has trous part of the temporal bone. The sinuses were roughly elongated the tentorial sinus, and the marginal sinus now 7.2 cm long. No additional anatomical variations or intracra- constitutes the medial end of the primitive transverse sinus. nial pathology were noted in this specimen. By the 40 mm stage, the cavernous sinuses are developing, and are medial extensions of the prootic sinus which is now Discussion continuous with the newly developed inferior petrosal sinus. A new lateral tributary of the prootic sinus now anastomoses The dural venous sinus of Kelch is a rare venous sinus of with a primitive temporal emissary vein derived from the the skull base and one which has been infrequently reported. sigmoid sinus to form the petrosquamous sinus. At the 60 It effectively unites the veins of the superior orbital fissure to to 80 mm stage, cerebral growth and the development of the the transverse sinus. To our knowledge, cadaveric findings otic capsule has led to the formation of the superior petrosal of this sinus have only been reported once before and these sinus. The primitive transverse sinus has moved backward were of a variant of the sinus. Moreover, a bilaterally present on the sigmoid sinus and has anastomosed with the tentorial sinus has not been reported. sinus. The prootic sinus is now continuous with the petro- squamous sinus. In the adult, remnants of the tentorial sinus Embryology may persist and anastomose with the cavernous sinus which In the early embryo at the 5 to 8 mm stage, the brain is is now joined with the superior petrosal sinus. It would be covered by a continuous plexus which drains both laterally at this stage that one would expect to find the sinus of Kelch and ventrally through three stems, the anterior, the middle, being formed (Fig. 3). The petrosquamous sinus and the and the posterior. By the 11 to 14 mm embryonic stage, each remnants of the prootic sinus become diploic veins and drain subdivision of the brain is drained laterally into the dural plexuses by primitive pia-arachnoidal vessels. During the * * * * Fig. 3. Fetal development of the intracranial venous sinuses. In this schematic drawing, note that the superior ophthalmic vein are developing and are near the more posteriorly located transverse sinus. Fig. 2. Schematic drawing of the bilateral venous sinuses of Kelch This position would be the most likely stage where communication (asterisk) joining veins of the superior orbital fissure to the transverse (dotted line) could occur between these two systems e.g., the venous sinus. sinus of Kelch. https://doi.org/10.5115/acb.21.042 www.acbjournal.org Bilateral venous sinuses of Kelch Anat Cell Biol 3 the dura and bone when the middle meningeal sinus drain ORCID through the foramen ovale and into the sagittal sinus [3]. Mitchell Couldwell: Comparative anatomy https://orcid.org/0000-0002-9981-0788 In primates, there are large evolutionary differences in the Aimee Aysenne: https://orcid.org/0000-0003-4183-1161 orbitotemporal venous sinuses. In primitive primates, these Joe Iwanaga: https://orcid.org/0000-0002-8502-7952 sinuses are large and drain the brain. The cranio-orbital Aaron S. Dumont: https://orcid.org/0000-0002-8077-8992 sinus empties into the postglenoid emissary vein which also R. Shane Tubbs: https://orcid.org/0000-0003-1317-1047 receives drainage from the petrosquamous sinus. In humans, this network of orbitotemporal sinuses is modified and per- Author Contributions sists as part of the middle meningeal vein system which no longer drains the brain, the orbit, or the temporal fossa, and Conceptualization: RST, JI. Data acquisition: RST, JI. Data the petrosquamous sinus is attenuated or non-existent [4]. analysis or interpretation: MC, AA, RST. Drafting of the Due to these evolutionary differences, the presence of a ve- manuscript: MC, AA, JI. Critical revision of the manuscript: nous sinus of Kelch may indicate the remnant of the cranio- ASD, RST. Approval of the final version of the manuscript: orbital sinus in humans [5]. all authors. Sinus of Kelch Conflicts of Interest Reports of a venous sinus of Kelch are rare in the litera- ture. Knott [6] briefly described such a sinus as an acces- No potential conflict of interest relevant to this article was sory sinus which passes backward from the superior orbital reported. fissure over the upper border of the petrous part of the temporal bone to terminate into the transverse sinus. Hol- Acknowledgements linshead [7] stated similarities between the sinus of Hyrtl and the sinus of Kelch and indicated that they may actually The authors sincerely thank those who donated their describe the same structure. More recently, unilaterally pres- bodies to science so that anatomical research could be per- ent sinus of Hyrtl have been described in the literature and formed. Results from such research can potentially increase bilateral occurrences appear to have not been previously mankind’s overall knowledge that can improve patient care. reported [8-10]. We previously reported a unilateral variant Therefore, these donors and their families deserve our high- of the sinus of Kelch found in an 88-year-old at death female est gratitude [12]. cadaver [11]. In this specimen, the sinus of Kelch, which was approximately 3 mm in diameter posteriorly and 6 mm in References diameter anteriorly, drained posteriorly into the superior petrosal sinus rather than into the transverse sinus. On the 1. Klein NE.
Recommended publications
  • Quaternary Murid Rodents of Timor Part I: New Material of Coryphomys Buehleri Schaub, 1937, and Description of a Second Species of the Genus
    QUATERNARY MURID RODENTS OF TIMOR PART I: NEW MATERIAL OF CORYPHOMYS BUEHLERI SCHAUB, 1937, AND DESCRIPTION OF A SECOND SPECIES OF THE GENUS K. P. APLIN Australian National Wildlife Collection, CSIRO Division of Sustainable Ecosystems, Canberra and Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History ([email protected]) K. M. HELGEN Department of Vertebrate Zoology National Museum of Natural History Smithsonian Institution, Washington and Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History ([email protected]) BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY Number 341, 80 pp., 21 figures, 4 tables Issued July 21, 2010 Copyright E American Museum of Natural History 2010 ISSN 0003-0090 CONTENTS Abstract.......................................................... 3 Introduction . ...................................................... 3 The environmental context ........................................... 5 Materialsandmethods.............................................. 7 Systematics....................................................... 11 Coryphomys Schaub, 1937 ........................................... 11 Coryphomys buehleri Schaub, 1937 . ................................... 12 Extended description of Coryphomys buehleri............................ 12 Coryphomys musseri, sp.nov.......................................... 25 Description.................................................... 26 Coryphomys, sp.indet.............................................. 34 Discussion . ....................................................
    [Show full text]
  • Universita' Degli Studi Di Napoli “Federico
    UNIVERSITA’ DEGLI STUDI DI NAPOLI “FEDERICO II” Dipartimento di Scienze Biomediche Avanzate DOTTORATO DI RICERCA IN IMAGING MOLECOLARE XXVIII ciclo Coordinatore: Prof. Alberto Cuocolo Contrast-enhanced ultrasound study of Internal Jugular vein blood flow in Multiple Sclerosis patients. Imaging study of cerebral venous system in mouse. Tutors: Dottorando: Prof. Marcello Mancini Monica Ragucci Prof. Simone Maurea Dedication This thesis work is dedicated to my husband, Enzo, who has been a constant source of support and encouragement during the challenges of graduate school and life. I am truly thankful for having you in my life. This work is also dedicated to my parents, Massimo e Pompea, who have always loved me unconditionally and whose good examples have taught me to work hard for the things that I aspire to achieve. Abstract 1 Chapter 1: The cerebral venous system 2 11 1.1 Intracranial venous system 2 1.1.1 Superficial venous system 2 1.1.2 Deep venous system 4 1.1.3 Dural sinuses 5 1.2 Extracranial venous system 7 1.3 Physiology 9 Chapter 2: Vascular aspects of Multiple Sclerosis 10 2.1 Introduction 10 2.2 Vascular abnormalities 10 2.2.1 Multiple Sclerosis and ischaemic stroke 10 2.2.2 Cerebral hypoperfusion in Multiple Sclerosis 11 2.2.3 Venous blood drainage in Multiple Sclerosis 12 Chapter 3: Cerebral venous system: Ultrasound tecniques 15 3.1 Transcranial Doppler sonography 15 3.2 Extracranial Doppler sonography 16 3.3 Ultrasound contrast agents 17 Chapter 4: Esperimental studies 19 4.1 Internal Jugular Vein Blood Flow in Multiple Sclerosis Patients and Matched 19 4.1.1 Introduction 19 Controls 4.1.2 Material and Methods 20 4.1.3 Results 24 4.1.4 Discussion 27 4.2 Head and Neck Veins of the Mouse 29 4.2.1 Introduction 29 4.2.2 Material and Methods 29 4.2.3 Results 31 4.2.4 Discussion 44 Chapter 5: Conclusion and Perspectives 47 Bibliography 50 Acknowledgements 60 Abstract The underlying mechanism of the widespread axonal degeneration in Multiple Sclerosis (MS) is not yet fully understood.
    [Show full text]
  • The Development of Mammalian Dural Venous Sinuses with Especial Reference to the Post-Glenoid Vein
    J. Anat. (1967), 102, 1, pp. 33-56 33 With 12 figures Printed in Great Britian The development of mammalian dural venous sinuses with especial reference to the post-glenoid vein H. BUTLER Department ofAnatomy, University of Saskatchewan, Saskatoon, Canada The intracranial venous outflow of mammals drains into both the internal and external jugular veins and the relative role of these two veins varies between different adult mammals as well as at different phases of embryonic and foetal life. In general, the primary head vein (consisting of venae capitis medialis and lateralis and their tributaries) gives rise to the dural venous sinuses which drain into the anterior cardinal vein (the future internal jugular vein). The external jugular veins appear as the face and jaws develop but, at all times, the two venous systems freely com- municate with each other. Morphologically, as shown by Sutton (1888), both the dural venous sinuses and the external jugular venous system are extracranial in so far as they are situated outside the dura mater. The chondrocranium and the dermocranium, however, develop in between the dural venous sinuses and the external jugular vein system (Butler, 1957). Thus, in the adult mammal, the bony skull wall separates the two venous systems, and therefore the dural venous sinuses are topographically intracranial whereas the external jugular venous system is extracranial. Furthermore the development of the skull localizes the connexions between the dural venous sinuses and the external jugular venous system to the various fontanelles and neuro-vascular foramina to form the emissary veins. The post-glenoid vein is one of the more important and controversial emissary veins since its presence or absence has been used in attempts to establish mammalian phylogenetic relationships (van Gelderen, 1925; Boyd, 1930).
    [Show full text]
  • A Potential Contraindication to Mastoidectomy?
    Caso Clínico Seno petrosquamosal: ¿una contraindicación potencial para la mastoidectomía? Petrosquamosal sinus - a potential contraindication to mastoidectomy? Ricardo Jorge Pereira Matos, Gil Coutinho, Pedro Marques, Margarida Santos www.sgorl.org 99 Acta nº13 - 2020 Department of Otorhinolaryngology, Hospitalar de São João, Porto, Portugal. Department of Surgery and Physiology/Otorhinolaryngology, University of Porto Medical School, Porto, Portugal. Correspondencia: ricardo.matos898@gmail Fecha de envío: 17/12/2019 Fecha de aceptación: 29/1/2020 ISSN: 2340-3438 Edita: Sociedad Gallega de Otorrinolaringología Periodicidad: continuada. Web: www.sgorl.org/ACTA Correo electrónico: [email protected] www.sgorl.org 100 Acta nº13 - 2020 Acta Otorrinolaringol. Gallega 2020; 13: 99-108 Resumo Introdução O seio petroscamoso (PSS) é um remanescente venoso embrionário, que drena os seios venosos durais para o sistema Venoso Jugular Externo (EJV). Técnicas de imagem recentes permitem a sua identificação, pela observação de canais de grande calibre. Devido ao considerável risco hemorrágico, o PSS persistente pode levar a consequências fatais durante procedimentos cirúrgicos, como a mastoidectomia. Caso Clínico Homem de 64 anos apresentou-se no Departamento de Otorrinolaringologia com história de otorreia esquerda, zumbido ipsilateral e perda auditiva bilateral, com evolução de cerca de 2 anos. O exame otos- cópico revelou colesteatoma atical esquerdo. A tomografia computadorizada (TC) de ossos temporais de alta resolução revelou uma densidade de tecidos moles na orelha média, aditus ad antrum, antro e células mastóideas com erosão da cadeia osicular e scutum. Foi também observado um canal de veia emissária proeminente, consistente com um PSS persistente. Por esse motivo, optou-se pela não realização de uma mastoidectomia para a erradicação da doença, uma vez que o risco de lesão vascular poderia superar os benefícios cirúrgicos.
    [Show full text]
  • Nakagawa, Seneka (2014) Detailed Structure of the Venous Drainage of the Brain: Relevance to Accidental and Non-Accidental Traumatic Head Injuries
    Nakagawa, Seneka (2014) Detailed structure of the venous drainage of the brain: relevance to accidental and non-accidental traumatic head injuries. PhD thesis, University of Nottingham. Access from the University of Nottingham repository: http://eprints.nottingham.ac.uk/14443/1/PhD_Thesis_-_FINAL_-_21.07.14.pdf Copyright and reuse: The Nottingham ePrints service makes this work by researchers of the University of Nottingham available open access under the following conditions. · Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. · To the extent reasonable and practicable the material made available in Nottingham ePrints has been checked for eligibility before being made available. · Copies of full items can be used for personal research or study, educational, or not- for-profit purposes without prior permission or charge provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. · Quotations or similar reproductions must be sufficiently acknowledged. Please see our full end user licence at: http://eprints.nottingham.ac.uk/end_user_agreement.pdf A note on versions: The version presented here may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the repository url above for details on accessing the published version and note that access may require a subscription. For more information, please contact [email protected] Detailed Structure of the Venous Drainage of the Brain: Relevance to Accidental and Non-Accidental Traumatic Head Injuries Seneka Nakagawa, BMedSci Thesis submitted to the University of Nottingham for the degree of Doctor of Philosophy March 2014 Contents Contents .....................................................................................................
    [Show full text]
  • School of Biomedical Sciences, and the Faculty of Medicine and Health Sciences for My Phd Studentship at the University of Nottingham
    Detailed Structure of the Venous Drainage of the Brain: Relevance to Accidental and Non-Accidental Traumatic Head Injuries Seneka Nakagawa, BMedSci Thesis submitted to the University of Nottingham for the degree of Doctor of Philosophy March 2014 Contents Contents ...................................................................................................... i Abstract ................................................................................................... viii Conferences and Peer-reviewed Publications ................................................... ix Acknowledgements ....................................................................................... x List of Definitions and Abbreviations ............................................................... xi List of Figures ........................................................................................... xiv List of Tables ............................................................................................xxiv Chapter 1. Introduction and Literature Review ................................................ 1 1.1. Background ..................................................................................... 1 1.2. Summary of Anatomy of the Meninges and Venous System ............ 2 1.3. Introduction to NAHI and SBS ......................................................... 9 1.4. Introduction to Hypotheses and Theories regarding SDH in NAHI .. 10 1.4.1. Rotational Acceleration of the Head causing Bridging Vein Rupture .............................................................................................
    [Show full text]
  • Anatomical Variants of the Temporal Bone As Depicted by Hrcts of Patients Evaluated in Two Radiology Centres in Nairobi
    ANATOMICAL VARIANTS OF THE TEMPORAL BONE AS DEPICTED BY HRCTS OF PATIENTS EVALUATED IN TWO RADIOLOGY CENTRES IN NAIROBI DR. STEPHEN MUGAMBI ONYANGO H58/70092/2013 M. Med Otorhinolaryngology, Head and Neck Surgery Resident University of Nairobi A dissertation submitted in part fulfillment of the requirements for the degree of Master of Medicine in Otorhinolaryngology, Head and Neck Surgery, University of Nairobi. 2020 STUDENT’S DECLARATION I declare that this is my original work and it has not been presented for the award of any degree in any research institution or university. Dr Stephen Mugambi Onyango MBChB (UoN) Postgraduate Student- M.Med Otolaryngology, Head and Neck Surgery University of Nairobi Signature: …………………………………………..…… Date: …………………………… ii SUPERVISORS’ APPROVAL This dissertation has been submitted with our approval, in part fulfillment for the degree of master of Medicine in Otorhinolaryngology, Head and Neck Surgery, Dr Peter Mugwe MBChB (UoN), M.Med ENT, Head and Neck surgery (UoN) Consultant ENT- Head and neck surgeon and Senior Lecturer Department of Surgery (Otolaryngology, Head and Neck surgery) University of Nairobi Signature: …………………………………………..…… Date: …………………………… Dr Jane Thinwa MBChB (UoN), M.Med Diagnostic Radiology (UoN) Consultant Radiologist Kenyatta National Hospital Signature: …………………………………………..…… Date: …………………………… iii DECLARATION OF ORIGINALITY FORM (THE UNIVERSITY OF NAIROBI) Name of Student: Dr. Stephen Mugambi Onyango Registration Number: H58/70092/2013 College: Health Sciences Faculty/School: School of Medicine Department: Surgery, ENT thematic unit. Course Name: Otorhinolaryngology, Head and Neck Surgery Title of work: “ANATOMICAL VARIANTS OF THE TEMPORAL BONE AS DEPICTED BY HRCTS OF PATIENTS EVALUATED IN TWO RADIOLOGY CENTRES IN NAIROBI” Declaration 1. I understand what plagiarism is and I am aware of the University’s policy in this regard.
    [Show full text]
  • Morphology of the Temporal Canal and Postglenoid Foramen with Reference to the Size of the Jugular Foramen in Man and Selected Species of Animals
    Folia Morphol. Vol. 61, No. 4, pp. 199–208 Copyright © 2002 Via Medica O R I G I N A L ARTICLE ISSN 0015–5659 www.fm.viamedica.pl Morphology of the temporal canal and postglenoid foramen with reference to the size of the jugular foramen in man and selected species of animals Jarosław Wysocki Department of Human Anatomy, University Medical School in Warsaw, Poland [Received 9 September 2002; Accepted 7 October 2002] The jugular foramen and postglenoid foramen are the main venous foramina of the skull of placental mammals. Their mutual relations are closely related to the development of the internal and external jugular vein, depending on the given kind. On the basis of measuring studies, it was decided to investigate the relations of the size of these foramina and to quantitatively determine which of them pre- vails. The studies were performed with macerated human and animal skulls. Alto- gether 100 skulls of human adults of both sexes, 100 of macaccas, 67 of bisons, 25 of mongrel dogs, 37 of foxes and 25 of rats were examined. The jugular foramen was the outlet of the sigmoid sinus or its equivalents and the postglenoid foramen — the petrosquamous or temporal canal. The jugular foramen was al- ways singular and characterised by a small variability in the morphology, consist- ing only in the occurrence of the internal division or its lack. The postglenoid foramen, on the other hand, in the majority of the studied kinds was variable and numerous. The number of foramina ranged from 1 in man to 7–10 in bisons.
    [Show full text]
  • PRACTICE SESSIONS ТЕМА: the Anatomy of Head and Cervical
    04.10.2018 Terminologia Anatomica PRACTICE SESSIONS ТЕМА: The anatomy of head and cervical vessels. Arteria carotis communis Common carotid artery Glomus caroticum Сонный гломус Carotid body Sinus caroticus Сонный синус Carotid sinus Bifurcatio carotidis Бифуркация сонной артерии Carotid bifurcation Arteria carotis externa External carotid artery A. thyroidea superior Верхняя щитовидная артерия Superior thyroid artery R. sternocleidomastoideus Грудино-ключичнососцевидная Sternocleidomastoid branch ветвь A. laryngea superior Верхняя гортанная артерия Superior laryngeal artery R. cricothyroideus Перстнещитовидная ветвь Cricothyroid branch Rr. glandulares Передняя железистая ветвь Anterior glandular branch Arteria lingualis Язычная артерия Lingual artery R. suprahyoideus Надподъязычная ветвь Suprahyoid branch Rr. dorsales linguae Дорсальные ветви Dorsal lingual branches A. sublingualis Подъязычная артерия Sublingual artery A. profunda linguae Глубокая артерия языка Deep lingual artery Arteria facialis Лицевая артерия Facial artery A. palatina ascendens Восходящая нёбная артерия Ascending palatine artery R. tonsillaris Миндаликовая ветвь Tonsillar branch A. submentalis Подподбородочная артерия Submental artery Rr. glandulares Железистые ветви Glandular branches A. labialis inferior Нижняя губная артерия Inferior labial branch A. labialis superior Верхняя губная артерия Superior labial branch R. lateralis nasi Боковая носовая ветвь Lateral nasal branch A. angularis Угловая артерия Angular artery Arteria occipitalis Затылочная артерия Occipital
    [Show full text]
  • Head and Neck Veins of the Mouse. a Magnetic Resonance, Micro Computed Tomography and High Frequency Color Doppler Ultrasound Study
    RESEARCH ARTICLE Head and Neck Veins of the Mouse. A Magnetic Resonance, Micro Computed Tomography and High Frequency Color Doppler Ultrasound Study Marcello Mancini1*, Adelaide Greco2,3, Enrico Tedeschi2, Giuseppe Palma1, Monica Ragucci2, Maria Grazia Bruzzone4, Anna Rita Daniela Coda1, Enza Torino5, Alessandro Scotti6, Ileana Zucca6, Marco Salvatore7 1 Institute of Biostructures and Bioimaging, National Research Council, Naples, Italy, 2 Department of Advanced Biomedical Sciences, University “Federico II”, Naples, Italy, 3 CEINGE-Biotecnologie Avanzate, Naples, Italy, 4 Unit of Neuroradiology, IRCCS Foundation “Carlo Besta” Neurological Institute, Milan, Italy, 5 Center for Advanced Biomaterials for Health Care@CRIB, Istituto Italiano di Tecnologia, Naples, Italy, 6 Scientific Direction, IRCCS Foundation "Carlo Besta" Neurological Institute, Milan, Italy, 7 IRCCS SDN, Naples, Italy * [email protected] OPEN ACCESS Citation: Mancini M, Greco A, Tedeschi E, Palma G, Abstract Ragucci M, Bruzzone MG, et al. (2015) Head and Neck Veins of the Mouse. A Magnetic Resonance, To characterize the anatomy of the venous outflow of the mouse brain using different imag- Micro Computed Tomography and High Frequency ing techniques. Ten C57/black male mice (age range: 7-8 weeks) were imaged with high- Color Doppler Ultrasound Study. PLoS ONE 10(6): e0129912. doi:10.1371/journal.pone.0129912 frequency Ultrasound, Magnetic Resonance Angiography and ex-vivo Microcomputed tomography of the head and neck. Under general anesthesia, Ultrasound of neck veins was Academic Editor: Utpal Sen, University of Louisville, UNITED STATES performed with a 20MHz transducer; head and neck Magnetic Resonance Angiography data were collected on 9.4T or 7T scanners, and ex-vivo Microcomputed tomography angi- Received: February 5, 2015 ography was obtained by filling the vessels with a radiopaque inert silicone rubber com- Accepted: May 14, 2015 pound.
    [Show full text]
  • Embryonic Primary Head Sinus May Persist in the Petrosal Bone
    Online November 9, 2016 Journal of Neuroendovascular Therapy 2016; 10: 254–263 DOI: 10.5797/jnet.oa.2016-0067 Embryonic Primary Head Sinus may Persist in the Petrosal Bone Yutaka Mitsuhashi,1 Koji Hayasaki,2 Taichiro Kawakami,3 Takashi Nagata,1 Yuta Kaneshiro,4 Ryoko Umaba,3 Toshiyuki Sugino,1 and Tsuyoshi Inoue1 Objective: To report on unusual veins traversing the petromastoid part of the temporal bone (petrosal bone) and to discuss their embryological origins. Methods: Unusual veins traversing the petrosal bone were incidentally found on CTA, MRI, or conventional angiography in four cases. We have evaluated the course of these veins in detail and have reviewed the previous descriptions in the literatures about similar venous variations as well as the osseous and venous embryology around the petrosal bone. Results: In all cases, the vein was anteriorly connected to the dural venous sinus around the foramen ovale and entered the petrosal bone through the facial hiatus. With regard to the subsequent running course and its exit from the petrosal bone, the vein crossed the petrous internal carotid artery, exited the petrosal bone into the petroclival fissure, and entered the inferior petrosal sinus in two cases. In one case, the vein exited the petrosal bone through the stylomastoid foramen after running the entire length of the facial canal. In the remaining case, the vein ascended in the petrosal bone along its anterior aspect and emptied into the superior petrosal sinus. The running course of these veins may correspond to the course of the embryonic primary head sinus and its tributaries. Conclusion: Here we report on rare venous channels in the petrosal bone.
    [Show full text]
  • Cranial Cavity, Meninges Dural Venous Sinuses (Tubbs) 3.Pdf
    Cranial Cavity Anterior Cranial Fossa Middle Cranial Fossa Posterior Cranial Fossa emissary v. diploic veins The meninges The brain & spinal cord are surrounded by 3 membranes the dura , arachnoid and pia maters . Dura mater of brain: It is formed from 2 layers. which are united except along certain lines, where they separate to form sinuses. The endosteal layer is the ordinary periosteum covering the inner surface of the skull bones. The meningeal layer: is the dura mater proper. It is a dense, strong, fibrous membrane covering the brain. Extracranial Diploic Cerebral Emissary DURAL FOLDS Definition: inward reduplication of inner layer of dura mater that form membranous folds between different parts of the brain. Types of dural folds: 1- vertical folds: - falxi cerebri. - falx cerebelli. 2- horizontal folds: - diaphragma sellae -tentorium cerebella. - cavum trigeminale. The falx cerebri It is a sickle- shaped fold of dura mater that lies in the midline between the 2 cerebral hemispheres. Its narrow end in front is attached to the internal frontal crest & crista galli. Its broad posterior part blends in the midline with the upper surface of the tentorium cerebelli. Sinuses related to falx cerebri: -superior sagittal sinus runs in its upper fixed margin. -inferior sagittal sinus runs in lower concave free margin. -straight sinus runs along its attachment to tentorium cerebelli. Tentorium cerebelli The tentorium cerebelli -It is crescent- shaped fold of dura mater that roofs over the posterior cranial fossa. -It covers the upper surface of the cerebellum & supports the occipital lobes of the cerebral hemispheres. -The falx cerebri & the falx cerebelli are attached to the upper & lower surfaces of the tentorium.
    [Show full text]