A Space Tribology Handbook

Total Page:16

File Type:pdf, Size:1020Kb

A Space Tribology Handbook space tribology handbook A Space Tribology Handbook E. Wyn Roberts ESTL, AEA Technology, Warrington, UK M. Eiden Mechanical Systems Division, ESA Directorate for Technical and Operational Support, ESTEC, Noordwijk, The Netherlands The need for a Space Tribology Handbook (European Space Tribology Laboratory), which Tribology (from the Greek ‘tribos’ meaning ‘to is now part of AEA Technology. Since then, rub’) is the study of friction, wear and ESTL has generated a considerable amount of lubrication. Friction and wear are generated at tribological data, advised on tribological design the interface of contacting bodies in relative issues, and tested tribo-components and motion and therefore occur in components mechanisms under space simulated condi- such as bearings, gears, screws and slip-rings. tions. As a consequence, a wealth of If the friction (or adhesion) forces are high, a knowledge has been generated and much of component may prove difficult to drive or, even this has been disseminated to the space worse, may seize; if high wear occurs, a community by way of publications and courses component will lose its precision and, on space tribology. These activities have ultimately, its ability to operate at all. Tribology undoubtedly raised awareness of tribology and is, therefore, an important issue, especially in encouraged mechanism engineers to give due mechanisms intended for use on spacecraft – consideration to tribological issues in their for if spacecraft mechanisms fail, there is designs. However, there was no handbook (usually) no means to repair the damage or to available detailing the tribological performance apply fresh lubrication. Furthermore, if the of materials and providing guidelines on their mechanism in question is critical to the use in mechanisms design. It was for this spacecraft’s operation (as would be the case reason that the Space Tribology Handbook with solar array drives, antenna pointing was produced. With its publication, the space mechanisms and deployment devices), then community now has a unique document which loss of the mission could result. provides a source of information consolidated by test validation. The production of a Space Tribology Handbook forms part of an overall strategy, initiated by ESTEC’s Mechanisms Section, to improve The Handbook has been written with the aim of the quality of space mechanisms through the establishment of a set of assisting designers and engineers in the globally applicable space mechanisms standards and guidelines for implementation of sound tribological practices mechanism design. The standardisation activities are being and to help them determine how best to treat performed under the European Cooperation for Space and lubricate components for a given Standardisation (ECSS); the space mechanism engineering application. Specifically, the Handbook: requirements have been established in an ESA/Industry collaborative – provides a definitive reference manual on effort in 1997. The Space Tribology Handbook provides the essential space tribology guideline for tribology aspects of mechanism engineering, useable in – provides useful data on typical systems the day-to-day work of mechanism engineers. This strategy should where tribology is important either to promote a more standardised approach to mechanism design and performance or reliability testing and achieve reduced schedules, cost-effective developments – specifies guidelines for the selection, use and high-quality mechanisms. and limitations of tribo-materials (encompas- sing lubricants, surface treatments and substrate materials) To avoid such anomalies and to ensure that – aids the designer in the selection of tribo- mechanisms operate to their prescribed components specification, effective designs are required – provides guidance on the ground testing of which incorporate good tribological practice so tribo-components and mechanisms. that friction, adhesion and wear are minimised. In Europe, the importance of tribology in space Figure 1 shows the completed Handbook’s was quickly recognised by the Agency and led, cover with example sheets illustrating the in 1972, to the establishment of ESTL format and style. r bulletin 94 — may 1998 bull Figure 1. The Space Tribology Handbook showing examples of contents The scope and structure of the Handbook Basic Tribology The handbook is arranged in seven chapters, Engineers involved in the design of the titles of which are listed in Figure 2. The first mechanisms need to have an understanding of chapter serves as an introduction to tribology, the basic concepts of tribology so that they can its purpose being to familiarise readers who are recognise the issues which are critical to the new to the subject with the fundamental success, or failure, of their mechanism. concepts of tribology. The remaining chapters Fundamental to this understanding is a form the Handbook’s guidelines and span the knowledge of how engineering surfaces progression from the initial selection of a interact when brought into contact under load tribological component, through its lubrication and how this interaction changes when there is and, finally, to its testing at component and relative motion (which may be separation, mechanism level. sliding or rolling) between the contacting bodies. A flow chart detailing how the various stages of component selection, lubrication and testing This chapter, therefore, looks at what happens are presented and cross-referenced is when real surfaces come into contact and illustrated in Figure 3. explains how contact areas in reality are small and contact stresses high. The manner in Contents of Handbook which surfaces deform is discussed and the The following outlines the contents of the conditions under which these deformations individual chapters of the Handbook. become permanent (plastic deformation) are 1. Basic Tribology 2. Tribo-component Selection, Design and Performance 3. Selection of Lubricant Type 4. Solid Lubricants 5. Fluid Lubricants 6. Materials for Tribological Components and Surfaces Figure 2. Contents of the 7. Component and Mechanism Testing Space Tribology Handbook space tribology handbook identified. The various phenomena, which give what software is available to assist in design Figure 3. Flow-chart rise to friction and wear, are described and the and prediction of performance. showing the Handbook’s structure and logic manner by which these may be reduced (through lubrication) is explained. Finally the Selection of lubricant type unique environment in which space Having identified the component to be mechanisms have to operate is defined and the employed, the next step to address is whether impact such an environment has on tribological to use fluid or dry lubrication (Fig. 5). This systems is outlined. chapter defines the criteria by which this decision should be made and also offers Tribo-component selection, design and guidelines on selection for those cases where, performance in principle, both fluid and dry lubricants are This chapter is intended to assist the designer applicable. Checklists are provided to help in the selection of tribological components – select a specific lubricant once the choice has that is, on how to choose the most suitable been made between fluid and dry. In addition, component for a given application (Fig. 4). The suggestions are made on how to extend the life areas covered are: of space lubricants. The chapter features the following topics: – selection of rotary, rolling-element bearings – selection of plain, spherical and rod-end bearings – selection of ball, roller and plain screws – selection of linear bearings – selection of gears – sliding electrical contacts Figure 4. Effective – other tribo-components: separation mechanism design requires an informed approach to surfaces, end stops, cams, threaded selection, sizing and fasteners, brakes, seals lubrication of tribological – safety factor for tribo-components. components. The Handbook provides guidelines in these areas and helps to ensure For each generic component, advice is given that the most appropriate on which type of component is best suited to component and lubrication an application on the basis of parameters such are chosen for a given application. The photograph as load capacity, stiffness and precision. The shows a type of bearing materials, and their relevant properties, from (angular-contact) which is which the components are manufactured are commonly used in space mechanisms. The races are specified. Examples are given of where specific lubricated with a thin film of components have been used successfully and molybdenum disulphide r bulletin 94 — may 1998 bull Guide to selection; dry versus fluid Solid lubricant coatings: lubrication: – coating types and methods of application – applications where only dry or fluid – guide to selection of solid lubricant coatings lubricants can be used – tribological properties of thin films – choosing between fluid and dry lubrication – lubricant coatings for temperature extremes when both are applicable – effect of environment – checklist when choosing solid lubrication – coatings to prevent static adhesion and – checklist when choosing fluid lubrication fretting damage – labyrinth seal leak-rate calculation. – storage and handling of coated com- ponents. Enhancing lubricant performance: – extending life of perfluorinated lubricants Bulk solid lubricants: – extending life of solid lubricant coatings – polymers and polymer composites – running-in of solid-lubricated components. – non-polymeric composites. The
Recommended publications
  • Lubrication Chemistry Viewed from DFT-Based Concepts and Electronic Structural Principles
    Int. J. Mol. Sci. 2004, 5, 13-34 International Journal of Molecular Sciences ISSN 1422-0067 © 2004 by MDPI www.mdpi.org/ijms/ Lubrication Chemistry Viewed from DFT-Based Concepts and Electronic Structural Principles Li Shenghua*, Yang He and Jin Yuansheng State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, P.R. China Tel.: +86 (10) 62772509, Fax: +86 (10) 62784691, E-mail: [email protected] URL: http://www.pim.tsinghua.edu.cn/sklt/sklt.html *Author to whom correspondence should be addressed. Received: 16 April 2003 / Accepted: 16 October 2003 / Published: 26 December 2003 Abstract: Fundamental molecular issues in lubrication chemistry were reviewed under categories of solution chemistry, contact chemistry and tribochemistry. By introducing the Density Functional Theory(DFT)-derived chemical reactivity parameters (chemical potential, electronegativity, hardness, softness and Fukui function) and related electronic structural principles (electronegativity equalization principle, hard-soft acid-base principle, and maximum hardness principle), their relevancy to lubrication chemistry was explored. It was suggested that DFT, theoretical, conceptual and computational, represents a useful enabling tool to understand lubrication chemistry issues prior to experimentation and the approach may form a key step in the rational design of lubrication chemistry via computational methods. It can also be optimistically anticipated that these considerations will gestate unique DFT-based strategies to understand sophisticated tribology themes, such as origin of friction, essence of wear, adhesion in MEMS/NEMS, chemical mechanical polishing in wafer manufacturing, stress corrosion, chemical control of friction and wear, and construction of designer tribochemical systems. Keywords: Lubrication chemistry, DFT, chemical reactivity indices, electronic structural principle, tribochemistry, mechanochemistry.
    [Show full text]
  • Advanced Tribology Design Tools for Space Mechanisms
    ADVANCED TRIBOLOGY DESIGN TOOLS FOR SPACE MECHANISMS E W Roberts and S D Lewis ESTL, AEA Technology Space RD1/172 Birchwood Technology Park, Warrington, UK WA3 6AT Tel.: +44 1925 253015 Fax.: +44 1925 252415 [email protected] ABSTRACT Handbook offers guidance on the ground testing of tribo-components either in isolation or as part of their The purpose of this paper is to report on the current parent mechanisms. status of, and updates to, three well-established ESTLä design aids and tools which are frequently used in the design of spacecraft mechanisms. The design aids covered are: Space Tribology Handbook DOLLS: a database on space oils and greases CABARET: a ball bearing analysis code The Space Tribology Handbook has become established as the definitive guide to space tribology. This paper reports on updates made to the Handbook and the plans to incorporate it into ECSS Guidelines. The database known as DOLLS provides the fundamental information needed for selection of a fluid lubricant for space applications. The database is being The Handbook was first published in 1997 and the areas upgraded to include details on new oils and greases and, covered were as listed in Table 1. A 2nd edition has where available, new data on the characteristics of listed now been produced with the following additions. fluid lubricants. · New section on solvent cleaning of tribo- The bearing analysis code, CABARET, allows the components prediction of bearing performance for a range of · Additional data on solid lubricants including: applications from low-speed mechanisms to high-speed further tribological properties of bonded lubricants; turbo-pumps.
    [Show full text]
  • Solid Lubricants and Coatings for Extreme Environments: State-Of-The-Art Survey
    https://ntrs.nasa.gov/search.jsp?R=20070010580 2019-08-30T00:35:22+00:00Z View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by NASA Technical Reports Server NASA/TM—2007-214668 Solid Lubricants and Coatings for Extreme Environments: State-of-the-Art Survey Kazuhisa Miyoshi Glenn Research Center, Cleveland, Ohio January 2007 NASA STI Program . in Profile Since its founding, NASA has been dedicated to the • CONFERENCE PUBLICATION. Collected advancement of aeronautics and space science. The papers from scientific and technical NASA Scientific and Technical Information (STI) conferences, symposia, seminars, or other program plays a key part in helping NASA maintain meetings sponsored or cosponsored by NASA. this important role. • SPECIAL PUBLICATION. Scientific, The NASA STI Program operates under the auspices technical, or historical information from of the Agency Chief Information Officer. It collects, NASA programs, projects, and missions, often organizes, provides for archiving, and disseminates concerned with subjects having substantial NASA’s STI. The NASA STI program provides access public interest. to the NASA Aeronautics and Space Database and its public interface, the NASA Technical Reports Server, • TECHNICAL TRANSLATION. English- thus providing one of the largest collections of language translations of foreign scientific and aeronautical and space science STI in the world. technical material pertinent to NASA’s mission. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which Specialized services also include creating custom includes the following report types: thesauri, building customized databases, organizing and publishing research results. • TECHNICAL PUBLICATION. Reports of completed research or a major significant phase For more information about the NASA STI of research that present the results of NASA program, see the following: programs and include extensive data or theoretical analysis.
    [Show full text]
  • The Use of Artificial Intelligence in Tribology—A Perspective
    lubricants Perspective The Use of Artificial Intelligence in Tribology—A Perspective Andreas Rosenkranz 1,*, Max Marian 2,* , Francisco J. Profito 3, Nathan Aragon 4 and Raj Shah 4 1 Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Santiago 7820436, Chile 2 Engineering Design, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), 91058 Erlangen, Germany 3 Department of Mechanical Engineering, Polytechnic School, University of São Paulo, São Paulo 17033360, Brazil; fprofi[email protected] 4 Koehler Instrument Company, Holtsville, NY 11742, USA; [email protected] (N.A.); [email protected] (R.S.) * Correspondence: [email protected] (A.R.); [email protected] (M.M.) Abstract: Artificial intelligence and, in particular, machine learning methods have gained notable attention in the tribological community due to their ability to predict tribologically relevant pa- rameters such as, for instance, the coefficient of friction or the oil film thickness. This perspective aims at highlighting some of the recent advances achieved by implementing artificial intelligence, specifically artificial neutral networks, towards tribological research. The presentation and discussion of successful case studies using these approaches in a tribological context clearly demonstrates their ability to accurately and efficiently predict these tribological characteristics. Regarding future research directions and trends, we emphasis on the extended use of artificial intelligence and machine learning concepts in the field of tribology including the characterization of the resulting surface topography and the design of lubricated systems. Keywords: artificial intelligence; machine learning; artificial neural networks; tribology 1. Introduction and Background Citation: Rosenkranz, A.; Marian, M.; There have been very recent advances in applying methods of deep or machine Profito, F.J.; Aragon, N.; Shah, R.
    [Show full text]
  • TRIBOLOGY Lecture 3: FRICTION
    Video Course on Tribology Prof. Dr Harish Hirani Department of Mechanical Engineering Indian institute of Technology, Delhi Lecture No. # 03 Friction Welcome to the third lecture of video course on Tribology. Topic of this lecture is friction. It is interesting. We experience friction in day to day life when you walk we experience friction, when we cycle we experience friction, when we drive we experience friction. This is very common mode which we experience every day. TRIBOLOGY Lecture 3: FRICTION And often when you go to mall, we find this kind of signal or warning that slippery when the floor is wet. So, you need to be careful when you walk resending the water place as lubricant layer. Some Typical Values of Coefficient of Friction for Metals sliding on themselves Metals Sliding on themselves µ Aluminum 1.5 Copper 1.5 Copper((oxide film not penetrated) 0.5 Gold 2.5 Iron 1.2 Platinum 3 Silver 1.5 Steel(mild steel) 0.8 Steel(tool steel) 0.4 Observations: 1. μ > 1.0 2. Mild steel vs Tool steel 3. μ depends on environment. And it reduces the friction. So, we need to walk with more force. So, the overall the friction force turn out to be same. I have gone through number of books and found number of variation in coefficient of friction. So, I am just showing on the first slide of this course that typical value of coefficient friction which is often quoted in books. We say these values are static coefficient of friction or this value belongs to static coefficient of friction.
    [Show full text]
  • Highlights in Space 2010
    International Astronautical Federation Committee on Space Research International Institute of Space Law 94 bis, Avenue de Suffren c/o CNES 94 bis, Avenue de Suffren UNITED NATIONS 75015 Paris, France 2 place Maurice Quentin 75015 Paris, France Tel: +33 1 45 67 42 60 Fax: +33 1 42 73 21 20 Tel. + 33 1 44 76 75 10 E-mail: : [email protected] E-mail: [email protected] Fax. + 33 1 44 76 74 37 URL: www.iislweb.com OFFICE FOR OUTER SPACE AFFAIRS URL: www.iafastro.com E-mail: [email protected] URL : http://cosparhq.cnes.fr Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law The United Nations Office for Outer Space Affairs is responsible for promoting international cooperation in the peaceful uses of outer space and assisting developing countries in using space science and technology. United Nations Office for Outer Space Affairs P. O. Box 500, 1400 Vienna, Austria Tel: (+43-1) 26060-4950 Fax: (+43-1) 26060-5830 E-mail: [email protected] URL: www.unoosa.org United Nations publication Printed in Austria USD 15 Sales No. E.11.I.3 ISBN 978-92-1-101236-1 ST/SPACE/57 *1180239* V.11-80239—January 2011—775 UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS UNITED NATIONS OFFICE AT VIENNA Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law Progress in space science, technology and applications, international cooperation and space law UNITED NATIONS New York, 2011 UniTEd NationS PUblication Sales no.
    [Show full text]
  • Static Friction at Fractal Interfaces
    Dorian Hanaor, Yixiang Gan and Itai Einav (2016). Static friction at fractal interfaces. Tribology International, 93, 229-238. DOI: 10.1016/j.triboint.2015.09.016 Static friction at fractal interfaces Dorian A. H. Hanaor, Yixiang Gan, Itai Einav School of Civil Engineering, University of Sydney, NSW 2006, Australia https://doi.org/10.1016/j.triboint.2015.09.016 Abstract: Tribological phenomena are governed by combined effects of material properties, topology and surface- chemistry. We study the interplay of multiscale-surface-structures with molecular-scale interactions towards interpreting static frictional interactions at fractal interfaces. By spline-assisted-discretization we analyse asperity interactions in pairs of contacting fractal surface profiles. For elastically deforming asperities, force analysis reveals greater friction at surfaces exhibiting higher fractality, with increasing molecular-scale friction amplifying this trend. Increasing adhesive strength yields higher overall friction at surfaces of lower fractality owing to greater true-contact-area. In systems where adhesive-type interactions play an important role, such as those where cold-welded junctions form, friction is minimised at an intermediate value of surface profile fractality found here to be in the regime 1.3-1.5. Our results have implications for systems exhibiting evolving surface structures. Keywords: Contact mechanics, friction, fractal, surface structures 1 Dorian Hanaor, Yixiang Gan and Itai Einav (2016). Static friction at fractal interfaces. Tribology
    [Show full text]
  • Tribological Characteristic Evaluation of Tungsten Disulfide Solid Lubrication Films
    Trans. JSASS Aerospace Tech. Japan Vol. 12, No. ists29, pp. Tc_13-Tc_16, 2014 Topics Tribological Characteristic Evaluation of Tungsten Disulfide Solid Lubrication Films 1) 1) By Ayaka TAKAHASHI and Keizo HASHIMOTO 1) Graduate School of Science and Engineering, Teikyo University, Utsunomiya, Japan (Received June 13th, 2013) To be used in severe outer space environments, spacecraft may also cause unexpected problems from the ground level. In order to solve the problems, it is important that many of the sliding portions of the spacecraft have been prepared by the lubrication processing. A solid lubricant is suitable in the space environment such as a low pressure and wide temperature changes. Gold film and molybdenum disulfide have been mainly utilized for solid lubricant in spacecraft. These materials have been already examined the tribological characteristics using the variety of additives. Although these lubricants have been applied in the various space environments, tungsten disulfide which has the same crystal structure as molybdenum disulfide has not been studied intensively. In this study, tungsten disulfide has been examined for the application of the solid lubricant in the spacecraft. In order to simulate the deployment friction, the reciprocating tribometer experiments were conducted in a vacuum and air using the aluminum alloy and the stainless steel substrates coated by tungsten disulfide. It was found that the tungsten disulfide lubricant coating have demonstrated the lowest friction coefficient among other solid lubricants. But it also reached its wear life before the end of test duration in a vacuum. To improve the wear life of tungsten disulfide, substrates which coated by mixture of tungsten disulfide powder and polyamideimide have been studied.
    [Show full text]
  • Tribology of Polymer Blends PBT + PTFE
    materials Article Tribology of Polymer Blends PBT + PTFE Constantin Georgescu 1,* , Lorena Deleanu 1,*, Larisa Chiper Titire 1 and Alina Cantaragiu Ceoromila 2 1 Department of Mechanical Engineering, Faculty of Engineering, “Dunarea de Jos” University of Galati, 800008 Galati, Romania; [email protected] 2 Department of Applied Sciences, Cross-Border Faculty, “Dunarea de Jos” University of Galati, 800008 Galati, Romania; [email protected] * Correspondence: [email protected] (C.G.); [email protected] (L.D.); Tel.: +40-743-105-835 (L.D.) Abstract: This paper presents results on tribological characteristics for polymer blends made of polybutylene terephthalate (PBT) and polytetrafluoroethylene (PTFE). This blend is relatively new in research as PBT has restricted processability because of its processing temperature near the degradation one. Tests were done block-on-ring tribotester, in dry regime, the variables being the PTFE concentration (0%, 5%, 10% and 15% wt) and the sliding regime parameters (load: 1, 2.5 and 5 N, the sliding speed: 0.25, 0.5 and 0.75 m/s, and the sliding distance: 2500, 5000 and 7500 m). Results are encouraging as PBT as neat polymer has very good tribological characteristics in terms of friction coefficient and wear rate. SEM investigation reveals a quite uniform dispersion of PTFE drops in the PBT matrix. Either considered a composite or a blend, the mixture PBT + 15% PTFE exhibits a very good tribological behavior, the resulting material gathering both stable and low friction coefficient and a linear wear rate lower than each component when tested under the same conditions. Keywords: polybutylene terephthalate (PBT); polytetrafluoroethylene (PTFE); blend PBT + PTFE; block-on-ring test; linear wear rate; friction coefficient Citation: Georgescu, C.; Deleanu, L.; Chiper Titire, L.; Ceoromila, A.C.
    [Show full text]
  • SELF-LUBRICATING POLYMER COMPOSITES: USING NUMERICAL TRIBOLOGY to HIGHTLIGHT THEIR DESIGN CRITERION Villavicencio M
    SELF-LUBRICATING POLYMER COMPOSITES: USING NUMERICAL TRIBOLOGY TO HIGHTLIGHT THEIR DESIGN CRITERION Villavicencio M. D. (1,2,3,4), Renouf M. (2,6), Saulot A. (1,6), Michel Y. (3), Mahéo Y. (4), Colas G. (5), Filleter T. (5), Berthier Y. (5,6) (1) LaMCoS, Université de Lyon, INSA-Lyon, CNRS, Villeurbanne, France. Email: maria.villavicenciorojas@insa- lyon.fr, [email protected], [email protected] (2) LMGC, Univ. Montpellier, CNRS, Montpellier, France. Email: [email protected] (3) CNES, 18 avenue Edouard Belin, 31401 Toulouse Cedex 9, France. Email: [email protected] (4) SKF Aerospace, F-26300 Châteauneuf-sur-Isère, France. Email: [email protected] (5) Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada. Email: [email protected], [email protected] (6) InTriG, International Tribology Group, Villeurbanne, France. ABSTRACT double transfer (see Fig.1) [3][4][5]. Among those After the cessation of RT/Duroid 5813, manufacturing materials RT/Duroid 5813 and PGM-HT are known for tests were performed by CNES and ESA/ESTL in order their use in space applications. After the cessation of to find an alternative material. Although PGM-HT was RT/Duroid 5813 manufacturing, PGM-HT was selected selected as the best candidate, limitations about its as the best replacement option [6]. Nevertheless, after tribological capabilities to replace RT/Duroid 5813 were tribological expertise on lifetests carried out by Sicre et later pointed out. Today, the predictability of the al [3], it was concluded that the performance of PGM- tribological behaviour of those materials is not fully HT as a replacement for Duroid should be improved.
    [Show full text]
  • The Coupled Effects of Environmental Composition
    THE COUPLED EFFECTS OF ENVIRONMENTAL COMPOSITION, TEMPERATURE AND CONTACT SIZE-SCALE ON THE TRIBOLOGY OF MOLYBDENUM DISULFIDE by Harmandeep S. Khare A dissertation submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mechanical Engineering Spring 2014 © 2014 Harmandeep S. Khare All Rights Reserved UMI Number: 3631183 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMI 3631183 Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 - 1346 THE COUPLED EFFECTS OF ENVIRONMENTAL COMPOSITION, TEMPERATURE AND CONTACT SIZE-SCALE ON THE TRIBOLOGY OF MOLYBDENUM DISULFIDE by Harmandeep S. Khare Approved: __________________________________________________________ Suresh G. Advani, Ph.D. Chair of the Department of Mechanical Engineering Approved: __________________________________________________________ Babatunde Ogunnaike, Ph.D. Dean of the College of Engineering Approved: __________________________________________________________ James G. Richards, Ph.D. Vice Provost for Graduate and Professional Education I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy.
    [Show full text]
  • 3Rd Edition A.R
    WEAR – MATERIALS, MECHANISMS AND PRACTICE Editors: M.J. Neale, T.A. Polak and M. Priest Guide to Wear Problems and Testing for Industry M.J. Neale and M. Gee Handbook of Surface Treatment and Coatings M. Neale, T.A. Polak, and M. Priest (Eds) Lubrication and Lubricant Selection – A Practical Guide, 3rd Edition A.R. Lansdown Rolling Contacts T.A. Stolarski and S. Tobe Total Tribology – Towards an integrated approach I. Sherrington, B. Rowe and R. Wood (Eds) Tribology – Lubrication, Friction and Wear I.V. Kragelsky, V.V. Alisin, N.K. Myshkin and M.I. Petrokovets Wear – Materials, Mechanisms and Practice G. Stachowiak (Ed.) WEAR – MATERIALS, MECHANISMS AND PRACTICE Edited by Gwidon W. Stachowiak Copyright © 2005 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England Telephone (+44) 1243 779777 Chapter 1 Copyright © I.M. Hutchings Email (for orders and customer service enquiries): [email protected] Visit our Home Page on www.wiley.com Reprinted with corrections May 2006 All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to [email protected], or faxed to (+44) 1243 770620.
    [Show full text]