NIFG Newsletter 2017

Total Page:16

File Type:pdf, Size:1020Kb

NIFG Newsletter 2017 Northern Ireland Fungus Group The Northern Ireland Fungus Group organises regular fungus forays with the aim of identifying and recording the species of fungi which can be found across a wide range of habitats in Northern Ireland. The group is open to all who have an interest in fungi and most members are amateurs with a passion for finding, photographing, identifying and sometimes eating fungi, although we do not provide definitive guidance on this! Most forays take place on Saturdays between June and November. Our website www.nifg.org.uk gives details of our activities and has a database of photos of fungi which have been recorded in Northern Ireland. We also have a Facebook page. Interesting Finds from 2016 Chris Stretch Cyathus striatus photo Debbie Nelson We only occasionally come across the Fluted Bird's Nest on our forays, but when we do it can be in large quantities, like this find from flower beds on the Stormont foray. In the picture we can see some nests that still have the white covering, this breaks to expose the eggs (peridoles) inside that contain the spores. The eggs are ejected by rainwater, they have a cord attached to their underside with a sticky end that can attach the ejected eggs to surrounding vegetation. Lycoperdon caudatum photo Lesley Crawshaw The Glenarm nature reserve produced a number of interesting finds this year, however the rarest find from this foray came from outside the reserve behind the car park! Lycoperdon caudatum, the Pedicelled Puffball looks similar to many of the common pear-shaped puffballs. It has spines that rub off in patches as the fruiting body matures. The spines converge in little pyramids and leave a faint pattern on the inner skin. It can be identified by microscopic examination of the spores, they appear to have a long tail (the pedicel) that remains attached to the spore when it is released from the basidia. Like several of our more interesting finds from Glenarm it is associated with chalk or limestone soils. There are only 22 records in the BMS database, none from Ireland. Mycena corynephora This attractive small white Mycena (Bonnet) is probably common but not often recorded. We found it in the Glenarm reserve. It has hairs on both cap and stem which give it the appearance of being “dusted with icing sugar”. There are other similar species but they have a basal disk, (a bulge where the stem attaches to the substrate.) Mycena bulbosa There are a number of species of Mycena that specialise in growing on rushes, grasses and similar plants. They are normally pictured growing out of standing stems and we rarely come across them, so I was surprised when we found Mycena bulbosa growing from a dead leaf of Woodrush (Luzula) in Glenmore. The basal disk can be clearly seen in the picture. Byssocorticium efibulatum At more than one place on the Glenariff Forest foray we came across a strange deep blue resupinate (lying flat on the substrate) fungus. Usually such things are difficult to identify, but the colour suggested the genus Byssocorticium. There are three British species, but a microscopic examination pinned it down to Byssocorticium efibulatum, with no Irish records in the BMS database. The pictured specimen appears to be on soil. But is probably on well rotted wood. Cronartium quercuum The orange spots in the picture are the rust fungus Cronartium quercuum on an acorn that is also afflicted with a knopper gall. The gall is caused by a small wasp that lays its eggs in the buds. Alternate generations of the wasp lay in the acorns of native oaks and the catkins of the Turkey oak. Both trees were present in Kilbroney Forest Park where we found this. The rust fungus has no Irish records in the BMS database. Entoloma incanum Another find from Kilbroney was the Mouspee Pinkgill, Entoloma incanum. With its green stem and powerful smell of mouse pee it is a very distinctive member of the usually difficult genus Entoloma. Hebeloma radicosum photo Debbie Nelson Rooting Poison Pie, Hebeloma radicosum, has a strong smell of almonds. From the bulbous base of the stem a long “tap root” extends to a source of ammonia below. Some books illustrate it growing on buried dead moles, but more modern references have it growing on mole middens. It can also grow on the middens of other burying animals including wood mice, however the absence of moles probably explains why it is uncommon in Ireland. The “tap root” grows up from the midden to fruit at the surface unlike a plant root growing down. Our specimen was found in Parkanaur, close to the river bank. Arrhenia retiruga This small white fungus grows on moss. Its irregular cups have no stem and are connected directly to the moss. It is not uncommon: This year we found it on the Loughanmore Estate foray. Leucoscypha erminea This attractive little white cup fungus is the first ascomycete (spore shooter) on the list. It was spotted on the Glenmore foray. There are several species of Leucoscypha on the British list, none have any Irish records. Ophiocordyceps ditmarii The ascomycete genus Cordyceps, which used to contain many of the fungi growing on insects has been split into several genera including Ophiocordyceps. The most commonly recorded species here is the brightly coloured Cordyceps militaris. Identifying other species has been difficult as the books are inconsistent, however a new key available from the ascofrance web site is much clearer. Our next most common find now keys out to Ophiocordyceps ditmarii, here from Glenmore. This is the teleomorph (sexual form) where spores are produced from the orange pits that can be seen on the fertile head. Some years we only seem to find the anamorph (asexual form) which lacks the head. Isaria farinosa Another Cordyceps growing on insects is Isaria farinosa. A mass of white spores forms on a stem growing from an insect pupa. This is the anamorph (asexual form) of the fruiting body. The teleomorph (sexual form) does not seem to be known. We have found it a few times recently, including this specimen from Glenmore. A related species Isaria fumosorosea has been used for insect control in greenhouses. Hi Fungi Fans.. Its another year and we are back.. Not only for forays but with a new revised newsletter. Due to work commitments and time restraints over the last couple of years have meant that we simply couldn't feature in time for putting a newsletter together.. Determined to get a now digital publication back up and running we would like to welcome Linsday Easson as the Newsletter Editor and thank him for putting together this years Fungi Newsletter. 2016 was a strange year with weather conditions being up and down leading to some poor numbers of species on forays but at the same time some interesting finds. Chris has put together a list of some of the more unusual species for any of you who missed the forays, which can be seen on the first two pages. The NIFG Facebook page has taken off with thanks to all those who post their finds and ask for help with identifying a specimen they have come across. Social media has helped us gain a lot of members online and I would be hopeful some of the followers will join us out on this year’s forays. I am very much looking forward to visiting this years list of sites. We have access to some amazing locations this year and what I hope will be a productive residential that I hope to see everyone attending. Residential Booking 2017 We will be staying in the Tir Navar Holiday Village in Enniskillen on the weekend of the 22nd-24th September and foraying just across the border in Donegal, and also in Castle Coole on Sunday. A meal is arranged for Saturday evening on the accommodation site. If you wish to attend I will need your confirmation asap please to secure numbers. We will be taking payment in advance when you confirm. Please email me at [email protected] for further details. Debbie Nelson than that nice fried mushroom taste. Slice thinly and fry at Mushi Menu a medium-high temperature in the melted oil and butter (the butter is for flavour and the oil stops the butter burning). Louise Borbely Once they are cooked through season with salt and pepper and stir in a couple of tablespoons of cream. What could be more wonderful than a few hours tramping through the woods with friends on a glorious autumnal Slice open the ciabatta (or any bread of your day? Well, returning with a few wild mushrooms would cer- choice) lengthwise and rub with a clove of squashed garlic tainly do that. It's wonderful to return home ravenous, and then butter it. lightly toast this side only under the grill and within a short time be tucking in to something fresh and top with your creamy mushrooms, sprinkle with parsley and tasty, especially when you have been the bounty hunter! enjoy. Here are a couple of very easy recipes to try. Pate of your choice 1 Ciabiatta breadcrumbs Clove of garlic egg Butter Salt and pepper to season Double cream Mushrooms - particularly any of the Agaricus sp. for this parsley one Salt and pepper to season Remove the stipe from the mushroom and stuff with pate Mushrooms - whatever you have gathered on the day, but (back of a teaspoon is good for this), dip in the beaten egg this works really well with Chanterelles and then roll in the breadcrumbs (process can be repeated if you prefer a thicker crisper crumb).
Recommended publications
  • Infection of the Silkworm, Bombyx Mori, with Cordyceps Militaris
    Journal of Insect Biotechnology and Sericology 71, 61-63 (2002) Infection of the Silkworm, Bombyx mori, with Cordyceps militaris Ruiying Chen* and Masatoshi Ichida Faculty of TextileScience, Kyoto Institute of Technology, Saga-ippongi 1, Ukyou-ku,Kyoto 616-8354, Japan (Received April 3, 2001; Accepted December 29, 2001) To develop techniques to produce stromata of Cordyceps militaris (L.) Link on a large scale, the silkworm, Bombyx mori, was infected and the growth of stroma was investigated. The 5th instar larvae and the pupae of the silkworm reared in a sterilized indoor environment on an artificial diet and were inoculated with C. militaris by spraying, dipping, or by hypodermic injection. The rate of infection differed among the three methods; the highest being in the hypodermic injection. The rate of infection was also higher in the pupae than in the larvae. The formation and growth of the stromata were better in the silkworm pupae. A conidial suspension was injected at different sites on the pupal body. Infection rates, however, did not differ significantly among the sites. The formation and growth of the stromata were not affected by the injection site either. Key words: Cordyceps militaris, silkworm, Bombyx mori, infection, artificial inoculation, stromata suspension was adjusted to 10' conidia/ml. This suspension INTRODUCTION was used in the inoculation experiments. Cordyceps militaris (L.) Link. is a parasitic fungus hosted by many species of lepidopteran pupae. It belongs Rearing of host silkworm to the subdivision Ascomycotina whose stroma is The silkworm, Bombyx mori, was reared in a sterilized baculiform (Shimizu, 1997). Recently, many researches indoor environment on an artificial diet (Chen et al., 1992).
    [Show full text]
  • Coupled Biosynthesis of Cordycepin and Pentostatin in Cordyceps Militaris: Implications for Fungal Biology and Medicinal Natural Products
    85 Editorial Commentary Page 1 of 3 Coupled biosynthesis of cordycepin and pentostatin in Cordyceps militaris: implications for fungal biology and medicinal natural products Peter A. D. Wellham1, Dong-Hyun Kim1, Matthias Brock2, Cornelia H. de Moor1,3 1School of Pharmacy, 2School of Life Sciences, 3Arthritis Research UK Pain Centre, University of Nottingham, Nottingham, UK Correspondence to: Cornelia H. de Moor. School of Pharmacy, University Park, Nottingham NG7 2RD, UK. Email: [email protected]. Provenance: This is an invited article commissioned by the Section Editor Tao Wei, PhD (Principal Investigator, Assistant Professor, Microecologics Engineering Research Center of Guangdong Province in South China Agricultural University, Guangzhou, China). Comment on: Xia Y, Luo F, Shang Y, et al. Fungal Cordycepin Biosynthesis Is Coupled with the Production of the Safeguard Molecule Pentostatin. Cell Chem Biol 2017;24:1479-89.e4. Submitted Apr 01, 2019. Accepted for publication Apr 04, 2019. doi: 10.21037/atm.2019.04.25 View this article at: http://dx.doi.org/10.21037/atm.2019.04.25 Cordycepin, or 3'-deoxyadenosine, is a metabolite produced be replicated in people, this could become a very important by the insect-pathogenic fungus Cordyceps militaris (C. militaris) new natural product-derived medicine. and is under intense investigation as a potential lead compound Cordycepin is known to be unstable in animals due for cancer and inflammatory conditions. Cordycepin was to deamination by adenosine deaminases. Much of the originally extracted by Cunningham et al. (1) from a culture efforts towards bringing cordycepin to the clinic have been filtrate of a C. militaris culture that was grown from conidia.
    [Show full text]
  • Cordycepin, a Metabolite of Cordyceps Militaris, Reduces Immune-Related Gene Expression in Insects
    Journal of Invertebrate Pathology xxx (xxxx) xxx Contents lists available at ScienceDirect Journal of Invertebrate Pathology journal homepage: www.elsevier.com/locate/jip Cordycepin, a metabolite of Cordyceps militaris, reduces immune-related gene expression in insects Victoria C. Woolley a,*, Graham R. Teakle a, Gillian Prince a, Cornelia H. de Moor b, David Chandler a a Warwick Crop Centre, School of Life Sciences, University of Warwick, Wellesbourne, Warwick CV35 9EF, UK b School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK ARTICLE INFO ABSTRACT Keywords: Hypocrealean entomopathogenic fungi (EPF) (Sordariomycetes, Ascomycota) are natural regulators of insect Cordycepin populations in terrestrial environments. Their obligately-killing life-cycle means that there is likely to be strong Cordyceps militaris selection pressure for traits that allow them to evade the effects of the host immune system. In this study, we Secondary metabolite 0 quantifiedthe effects of cordycepin (3 -deoxyadenosine), a secondary metabolite produced by Cordyceps militaris Entomopathogenic fungi (Hypocreales, Cordycipitaceae), on insect susceptibility to EPF infection and on insect immune gene expression. Insect immunity µ 1 Galleria mellonella Application of the immune stimulant curdlan (20 g ml , linear beta-1,3-glucan, a constituent of fungal cell walls) to Drosophila melanogaster S2r+ cells resulted in a significant increase in the expression of the immune effector gene metchnikowin compared to a DMSO-only control, but there was no significantincrease when curdlan was co-applied with 25 µg ml 1 cordycepin dissolved in DMSO. Injection of cordycepin into larvae of Galleria mellonella (Lepidoptera: Pyralidae) resulted in dose-dependent mortality (LC50 of cordycepin = 2.1 mg per insect 6 days after treatment).
    [Show full text]
  • Fruit Body Formation on Silkworm by Cordyceps Militaris
    Mycobiology 38(2) : 128-132 (2010) DOI:10.4489/MYCO.2010.38.2.128 © The Korean Society of Mycology Fruit Body Formation on Silkworm by Cordyceps militaris In-Pyo Hong1*, Pil-Don Kang1, Ki-Young Kim1, Sung-Hee Nam1, Man-Young Lee1, Yong-Soo Choi1, Nam-Suk Kim1, Hye-Kyung Kim1, Kwang-Gill Lee1 and Richard A. Humber2 1National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Korea 2USDA-ARS Biological Integrated Pest Management Research Unit, Robert W. Holly Center for Agriculture & Health, Tower Road, Ithaca, NY 14853, USA (Received March 31, 2010. Accepted April 11, 2010) Injection inoculation protocols for fruit body formation of Cordyceps militaris (C. militaris) were investigated to improve the incidence of infection in the silkworm species Bombyx mori (B. mori). Injection, with suspensions of C. militaris hyphal bodies into living silkworm pupae, was used to test for fruit body production. Use of Daeseungjam rather than Baegokjam or Keumokjam varieties of B. mori is thought to be suitable for infection by C. militaris. From mounting, nine-day-old to 11- day-old pupae showed the best incidence of infection with a 100 µL injection volume. Silkworm pupae injected with a hyphal suspension concentration of more than 2 × 105 colony-forming unit (cfu) recorded a greater than 96% incidence of infection. Also, fruit bodies of C. militaris were induced and produced at a light intensity between 500 and 1,000 lx. KEYWORDS : Bombyx mori, Cordyceps militaris, Fruit body, Hyphal bodies, Injection inoculation Cordyceps is entomopathogenic fungi that parasitize insects duction of C. militaris using a silkworm is needed.
    [Show full text]
  • Improvement of Fruiting Body Production in Cordyceps Militaris by Molecular Assessment
    Arch Microbiol (2013) 195:579–585 DOI 10.1007/s00203-013-0904-8 SHORT COMMUNICATION Improvement of fruiting body production in Cordyceps militaris by molecular assessment Guozhen Zhang · Yue Liang Received: 23 January 2013 / Revised: 16 May 2013 / Accepted: 19 May 2013 / Published online: 12 June 2013 © Springer-Verlag Berlin Heidelberg 2013 Abstract Cordyceps militaris is a heterothallic ascomy- Introduction cetous fungus that has been cultivated as a medicinal mush- room. This study was conducted to improve fruiting body Mushrooms have recently drawn considerable attention as production by PCR assessment. Based on single-ascospore attractive and abundant sources of useful natural products isolates selected from wild and cultivated populations, the (Smith et al. 2002). Among others, Cordyceps species have conserved sequences of α-BOX in MAT1-1 and HMG-BOX traditionally been used not only as a folk tonic food and in MAT1-2 were used as markers for the detection of mat- nutraceutical, but also as a restorative drug for longevity ing types by PCR. PCR results indicated that the ratio of and vitality (Paterson and Russell 2008). Mushrooms of mating types is consistent with a theoretical ratio of 1:1 this genus have also been used for dietary fiber, health sup- (MAT1-1:MAT1-2) in wild (66:70) and cultivated (71:60) plements, and maintenance as well as for prevention and populations. Cross-mating between the opposite mating treatment for human diseases for centuries in East Asian types produced over fivefold more well-developed fruiting countries (Paterson and Russell 2008). bodies than self- or cross-mating between strains within the Cordyceps militaris belongs to Cordycipitaceae, Hypo- same mating type.
    [Show full text]
  • Multigene Phylogeny and HPLC Analysis Reveal Fake Ophiocordyceps Sinensis in Markets
    Mycosphere 7 (6): 853–867 (2016) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/7/6/16 Copyright © Guizhou Academy of Agricultural Sciences Multigene phylogeny and HPLC analysis reveal fake Ophiocordyceps sinensis in markets Wen TC1,2, Wei DP1, Long FY1, 2, Zeng XY1, 3, Kang JC1, 2* 1 The Engineering Research Center of Southwest Bio-Pharmaceutical Resources, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, China 2 School of Pharmacy, Guizhou University, Guiyang 550025, Guizhou, China 3 Center of Excellence in Fungal Research, and School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand Wen TC, Wei DP, Long FY, Zeng XY, Kang JC 2016 – Multigene phylogeny and HPLC analysis reveal fake Ophiocordyceps sinensis in markets. Mycosphere 7(6), 853–867, Doi 10.5943/mycosphere/7/6/16 Abstract Ophiocordyceps sinensis (Cordyceps sinensis) has long been a Chinese Traditional Medicine and functional food in China. Because of its valued medicinal effect and improvement in the Chinese economy, market demand for O. sinensis has significantly increased in recent years. Here, we use multigene and High Performance Liquid Chromatography (HPLC) analysis of specimens bought from markets to reveal the sale of fake O. sinensis in Traditional Chinese Medicine markets. The insect larvae (belonging to Lepidopteran) was a different species to that normally infected by O. sinensis. Combined sequence analysis of ITS, nrSSU, EF-1α and RPB1 gene markers also revealed the putative O. sinensis to be Metacordyceps taii. Producers had gone to great lengths to produce remarkably similar fake O. sinensis specimens. The insect body was infected with M.
    [Show full text]
  • CO2 Anesthesia Enhances Infection Rate of Cordyceps Militaris (Hypocreales: Clavicipitaceae) on Pupae of the Silkworm, Bombyx Mori
    Journal of Insect Biotechnology and Sericology 83, 77-81 (2014) CO2 anesthesia enhances infection rate of Cordyceps militaris (Hypocreales: Clavicipitaceae) on pupae of the silkworm, Bombyx mori Shinichi Abe1, 3, Kei-ichiro Yamamoto1,* , Ying An2, Jun Saeki3, Takashi Itagaki3 , Hisayoshi Kofujita2 and Koichi Suzuki4,** 1 United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan 2 Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan 3 Nichihara Research & Development Laboratories, Inc., Tsuwano-cho 699-5207, Shimane, Japan 4 Office of Research Exchange, Iwate University, Morioka 020-8550, Japan (Received August 1, 2014; Accepted October 15, 2014; Accepted in revised form November 25, 2014) An entomogenous fungus, Cordyceps militaris, grows on larvae and pupae of the silkworm, Bombyx mori. To overcome problems in the establishment of fungal infection caused by advancing pupal-adult development, we tested the effects of carbon dioxide (CO2) anesthesia. Pupae inoculated with C. militaris were held in CO2 anes- thesia for 2 days. Almost all pupae exposed to CO2 were infected with C. militaris, but the rate of infection of chilled or untreated pupae decreased with increasing stage of pupal-adult development at inoculation. The re- sults indicate that exposure of silkworm pupae to CO2 enhances infection rate. This treatment will support the mass production of C. militaris for pharmacological uses. Key words: Cordyceps militaris, Bombyx mori pupae, carbon dioxide anesthesia, infection rate Shrestha et al., 2012). INTRODUCTION Although much effort has been applied to scaling up Cordyceps, Ophiocordyceps and Isaria spp. (Luangsa-ard the rate of infection with C. militaris, advancing pupal- et al, 2005; Sung et al., 2007) are entomogenous fungi tra- adult development before injection inoculation reduces ditionally used as treatments for cancer, metabolic diseases infection rate and hinders the mass production of C.
    [Show full text]
  • Fungal Planet Description Sheets: 1112ÂŒ1181
    392 Persoonia – Volume 45, 2020 Tolypocladium flavonigrum Fungal Planet description sheets 393 Fungal Planet 1175 – 19 December 2020 Tolypocladium flavonigrum Noisripoom, Tasanathai, Khonsanit & Luangsa-ard, sp. nov. Etymology. Named after the colour of fresh stromata, from the Latin ‘flavo’ The results of our phylogenetic study using LSU, tef1 and rpb1 meaning yellow, and ‘nigrum’ meaning black. sequences clearly separates T. flavonigrum from other species. Classification — Ophiocordycipitaceae, Hypocreales, Sorda- Based on a megablast search of NCBIs GenBank nucleotide riomycetes. database, the LSU sequence of Tolypocladium flavonigrum had the highest similarity to T. japonicum (strain OSC 110991, Gen- Single or multiple stromata emerging directly from the ground Bank DQ51876.1; Identities = 850/908 (94 %), 33 gaps (3 %)), growing on unidentified Elaphomyces sp., clavate, 15–30 mm the closest hits using the tef1 sequence are T. japonicum (strain long, 1–2 mm wide, yellowish green when immature, black OSC 110991, GenBank DQ522330.1; Identities = 880/921 when mature. Terminal part of the stroma fertile, capitate, (96 %), no gaps), the closest hits using the rpb1 sequence yellow black to black, 2–5 mm diam. Perithecia crowded, or- are T. japonicum (strain OSC 110991, GenBank DQ522375.1; dinal in arrangement, completely immersed, elongate-ovoid, Identities = 534/566 (94 %), 3 gaps (0 %)). (560–)567–697(–750) × (200–)206–248(–250) µm. Asci Tolypocladium flavonigrum BCC 66576 cylindrical, 8-spored, (318–)330–416(–482) × 7–8 µm with 65/100/100 Tolypocladium flavonigrum BCC 66580 thickened ascus caps, 4.5–5 × 5 µm. Ascospores hyaline, -/65/99 Tolypocladium flavonigrum BCC 66578 filiform, (310–)330–375(–395) × 1.5–2 µm, breaking into 64 Tolypocladium japonicum OSC 110991 Tolypocladium fractum OSC 110990 cylindrical part-spores, 2–5 × 1.5–2 µm.
    [Show full text]
  • Therapeutic Potential and Biological Applications of Cordycepin and Metabolic Mechanisms in Cordycepin-Producing Fungi
    Review Therapeutic Potential and Biological Applications of Cordycepin and Metabolic Mechanisms in Cordycepin-Producing Fungi Peng Qin 1, XiangKai Li 2, Hui Yang 1,3, Zhi-Ye Wang 1,3 and DengXue Lu 1,* 1 Institute of Biology, Gansu Academy of Sciences, Lanzhou 730000, Gansu Province, China; [email protected] (P.Q.); [email protected] (H.Y.); [email protected] (Z.-Y.W.) 2 Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China; [email protected] 3 Key Laboratory of Microbial Resources Exploition and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, LanZhou 730000, Gansu Province, China * Correspondence: [email protected]; Tel.: +86-931-8418216 Received: 5 May 2019; Accepted: 6 June 2019; Published: 14 June 2019 Abstract: Cordycepin(3′-deoxyadenosine), a cytotoxic nucleoside analogue found in Cordyceps militaris, has attracted much attention due to its therapeutic potential and biological value. Cordycepin interacts with multiple medicinal targets associated with cancer, tumor, inflammation, oxidant, polyadenylation of mRNA, etc. The investigation of the medicinal drug actions supports the discovery of novel targets and the development of new drugs to enhance the therapeutic potency and reduce toxicity. Cordycepin may be of great value owing to its medicinal potential as an external drug, such as in cosmeceutical, traumatic, antalgic and muscle strain applications. In addition, the biological application of cordycepin, for example, as a ligand, has been used to uncover molecular structures. Notably, studies that investigated the metabolic mechanisms of cordycepin-producing fungi have yielded significant information related to the biosynthesis of high levels of cordycepin.
    [Show full text]
  • A Systematic Review of the Mysterious Caterpillar Fungus Ophiocordyceps Sinensis in Dongchongxiacao (冬蟲夏草 Dōng Chóng Xià Cǎo) and Related Bioactive Ingredients
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Traditional and Complementary Medicine Vo1. 3, No. 1, pp. 16-32 Copyright © 2013 Committee on Chinese Medicine and Pharmacy, Taiwan This is an open access article under the CC BY-NC-ND license. A Systematic Review of the Mysterious Caterpillar Fungus Ophiocordyceps sinensis in DongChongXiaCao (冬蟲夏草 Dōng Chóng Xià Cǎo) and Related Bioactive Ingredients Hui-Chen Lo1, Chienyan Hsieh2, Fang-Yi Lin3 and Tai-Hao Hsu3 1Department of Nutritional Science, Fu Jen Catholic University, Xinzhuang District, New Taipei City, Taiwan. 2Department of Biotechnology, National Kaohsiung Normal University, Yanchao Township, Kao-Hsiung County, Taiwan. 3Department of Medicinal Botanicals and Healthcare and Department of Bioindustry Technology, Da-Yeh University, Changhua, Taiwan. ABSTRACT The caterpillar fungus Ophiocordyceps sinensis (syn.† Cordyceps sinensis), which was originally used in traditional Tibetan and Chinese medicine, is called either “yartsa gunbu” or “DongChongXiaCao (冬蟲夏草 Dōng Chóng Xià Cǎo)” (“winter worm- summer grass”), respectively. The extremely high price of DongChongXiaCao, approximately USD $20,000 to 40,000 per kg, has led to it being regarded as “soft gold” in China. The multi-fungi hypothesis has been proposed for DongChongXiaCao; however, Hirsutella sinensis is the anamorph of O. sinensis. In Chinese, the meaning of “DongChongXiaCao” is different for O. ‡ ƒ sinensis, Cordyceps spp., and Cordyceps sp . Over 30 bioactivities, such as immunomodulatory, antitumor, anti-inflammatory, and antioxidant activities, have been reported for wild DongChongXiaCao and for the mycelia and culture supernatants of O. sinensis. These bioactivities derive from over 20 bioactive ingredients, mainly extracellular polysaccharides, intracellular polysaccharides, cordycepin, adenosine, mannitol, and sterols.
    [Show full text]
  • Universo Tucumano 41
    Universo Tucumano Nº 41 – Noviembre 2019 Universo Tucumano N° 41 Noviembre / 2019 ISSN 2618-3161 Los estudios de la naturaleza tucumana, desde las características geológicas del territorio, los atributos de los diferentes ambien- tes hasta las historias de vida de las criaturas que la habitan, son parte cotidiana del trabajo de los investigadores de nuestras Instituciones. Los datos sobre estos temas están disponibles en textos técnicos, específicos, pero las personas no especializadas no pueden acceder fácilmente a los mismos, ya que se encuentran dispersos en muchas publicaciones y allí se utiliza un lenguaje muy técnico. Por ello, esta serie pretende hacer disponible la información sobre diferentes aspectos de la naturaleza de la provincia de Tucumán, en forma científicamente correcta y al mismo tiempo amena y adecuada para el público en general y particularmente para los maestros, profesores y alumnos de todo nivel educativo. La información se presenta en forma de fichas dedicadas a espe- cies particulares o a grupos de ellas y también a temas teóricos generales o áreas y ambientes de la Provincia. Los usuarios pue- den obtener la ficha del tema que les interese o formar con todas ellas una carpeta para consulta. Fundación Miguel Lillo CONICET – Unidad Ejecutora Lillo Miguel Lillo 251, (4000) San Miguel de Tucumán, Argentina www.lillo.org.ar Dirección editorial: Gustavo J. Scrocchi – Fundación Miguel Lillo y Unidad Ejecutora Lillo Claudia Szumik – Unidad Ejecutora Lillo (CONICET – Fundación Miguel Lillo) Diseño y edición gráfica: Gustavo Sanchez – Fundación Miguel Lillo Editor web: Andrés Ortiz – Fundación Miguel Lillo Imagen de tapa: Sinemas de Cordyceps takaomontana sobre pupa de lepidóptero.
    [Show full text]
  • Biól. Lorena López Rodríguez
    UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO MAESTRÍA Y DOCTORADO EN CIENCIAS AGROPECUARIAS Y RECURSOS NATURALES AISLAMIENTO DE CEPAS Y OBTENCIÓN DE METABOLITOS SECUNDARIOS DEL GÉNERO ENTOMOPATÓGENO Cordyceps sensu lato DEL ESTADO DE MÉXICO TESIS QUE PARA OBTENER EL GRADO DE MAESTRA EN CIENCIAS AGROPECUARIAS Y RECURSOS NATURALES PRESENTA: BIÓL. LORENA LÓPEZ RODRÍGUEZ COMITÉ DE TUTORES: Dra. Cristina Burrola Aguilar. Tutor académico Dra. Tatiana Ibeth Sanjuan Giraldo. Tutor adjunto Dr. Moisés Tejocote Pérez. Tutor adjunto El Cerrillo Piedras Blancas, Estado de México. Diciembre 2017 Tesis de Maestría. Aislamiento de cepas y obtención de metabolitos secundarios del Género entomopatógeno Cordyceps sensu lato en México. Lorena López Rodríguez 2 Tesis de Maestría. Aislamiento de cepas y obtención de metabolitos secundarios del Género entomopatógeno Cordyceps sensu lato en México. Lorena López Rodríguez Dedicatoria Este camino no ha sido fácil por razones personales, académicas y espirituales, pero hoy después de la partida de mi padre y de tantos problemas puedo decir he culminado este ciclo. A ti mi Dios, que aunque nunca había creído completamente en ti, te conocí y te agradezco el permitirme seguir viva. Con todo mi amor, dedico este trabajo a mi ángel, a mi gran motor, mi pequeño Ian. A mi esposo quien ha estado apoyándome todo este camino, a mi mamá que siempre me ha dado lo mejor de ella. Y obviamente a ti mi gran padre, a ti mi maestro, que aunque ya no estás en cuerpo, en mi corazón siempre vivirá tu amor y tus enseñanzas. A mis hermanos que siempre han creído en mí, y aunque les encanta molestarme se que me aman y mucho de lo aprendido es gracias ha ellos.
    [Show full text]