Improvement of Fruiting Body Production in Cordyceps Militaris by Molecular Assessment

Total Page:16

File Type:pdf, Size:1020Kb

Improvement of Fruiting Body Production in Cordyceps Militaris by Molecular Assessment Arch Microbiol (2013) 195:579–585 DOI 10.1007/s00203-013-0904-8 SHORT COMMUNICATION Improvement of fruiting body production in Cordyceps militaris by molecular assessment Guozhen Zhang · Yue Liang Received: 23 January 2013 / Revised: 16 May 2013 / Accepted: 19 May 2013 / Published online: 12 June 2013 © Springer-Verlag Berlin Heidelberg 2013 Abstract Cordyceps militaris is a heterothallic ascomy- Introduction cetous fungus that has been cultivated as a medicinal mush- room. This study was conducted to improve fruiting body Mushrooms have recently drawn considerable attention as production by PCR assessment. Based on single-ascospore attractive and abundant sources of useful natural products isolates selected from wild and cultivated populations, the (Smith et al. 2002). Among others, Cordyceps species have conserved sequences of α-BOX in MAT1-1 and HMG-BOX traditionally been used not only as a folk tonic food and in MAT1-2 were used as markers for the detection of mat- nutraceutical, but also as a restorative drug for longevity ing types by PCR. PCR results indicated that the ratio of and vitality (Paterson and Russell 2008). Mushrooms of mating types is consistent with a theoretical ratio of 1:1 this genus have also been used for dietary fiber, health sup- (MAT1-1:MAT1-2) in wild (66:70) and cultivated (71:60) plements, and maintenance as well as for prevention and populations. Cross-mating between the opposite mating treatment for human diseases for centuries in East Asian types produced over fivefold more well-developed fruiting countries (Paterson and Russell 2008). bodies than self- or cross-mating between strains within the Cordyceps militaris belongs to Cordycipitaceae, Hypo- same mating type. This study may serve as a valuable refer- creales, Sordariomycetes, and Ascomycota (Sung et al. ence for artificial culturing of C. militaris and other edible 2007; Zare and Gams 2001). This fungus is entomopatho- and medicinal mushrooms and may be useful to develop an genic, which invades and proliferates within larvae and efficient process for the selection, domestication, and man- pupae of various insects species (Clarkson and Charn- agement of strains for industrial-scale production. ley 1996). The medicinal properties and pharmacological effects of C. militaris are similar to other Cordyceps spe- Keywords Cordyceps militaris · Fruiting body · cies. Pharmacological studies of C. militaris began with Heterothallism · Mating type · Stroma the purification of cordycepin (3′-deoxyadenosine), a com- pound with a potential antibacterial, antifungal, antiviral, and antineoplastic activities (Cunningham et al. 1950). Since then, numerous other pharmacological components were isolated from C. militaris, and their constitution and biological activity were studied (Paterson and Russell Communicated by Olaf Kniemeyer. 2008; Zhou et al. 2009). The herbal fruiting bodies of wild C. militaris are not G. Zhang readily and abundantly available in nature because of Department of Plant Pathology, China Agricultural University, Beijing 100193, People’s Republic of China host specificity and the requirement of relatively strict e-mail: [email protected] growth environments (Chen 1986). With dramatically increased consumption of complementary medicine (Pat- * Y. Liang ( ) erson and Russell 2008), harvesting adequate quantities of School of Life Sciences, Chongqing University, Chongqing 400045, People’s Republic of China wild C. militaris fruiting bodies for medicinal purposes is e-mail: [email protected] impractical. In artificial cultivation, extremely optimized 1 3 580 Arch Microbiol (2013) 195:579–585 conditions were required (Chen et al. 2002). Moreover, DNA extraction the selection, domestication, and management of C. mili- taris strains affect industrialized production of this mush- A culture plug bearing actively growing mycelia was trans- room (Lin et al. 2006). Thus, single or a small number of ferred onto freshly-prepared modified PDA. When the strains were generally maintained in a cultivation factory growth of the fungus reached the edge of the plate, myce- or farm. Indeed, C. militaris is a bipolar heterothallic fun- lia were scraped from the surface with a sterilized tooth- gus (Shrestha et al. 2004), i.e., it has two different mating pick and transferred into a 1.5-ml microcentrifuge tube. type (MAT) genes to regulate sexual reproduction (Turgeon Samples were immediately frozen in liquid nitrogen and 1998; Turgeon and Yoder 2000; Yokoyama et al. 2004). In stored at 80 °C until used. For DNA extraction, samples − other fungal species, the alpha box (α-BOX) of MAT1-1 were finely ground in liquid nitrogen and then mixed with and the high mobility group box (HMG-BOX) of MAT1-2 500 μl buffer (50 mM Tris-HCl, 150 mM NaCl, 100 mM are highly conserved (Arie et al. 1997). As a result, the two EDTA pH 7.5, 20 μg/ml RNase A) and 50 μl 20 % SDS. conserved genomic regions have been used to character- The mixture was incubated at 37 °C and inverted every ize MAT genes in numerous heterothallic phytopathogenic 10 min for 1 h. The mixture was mixed with 75 μl 5 M fungi such as Cryphonectria parasitica (McGuire et al. NaCl and 65 μl CTAB/NaCl buffer [10 % CTAB, 0.7 M 2001), Gibberella zeae and G. fujikuroi (Yun et al. 2000), NaCl] and subsequently incubated at 65 °C for 20 min. Mycosphaerella graminicola (Waalwijk et al. 2002), Pyr- After cooling to room temperature, an equal volume of enopeziza brassicae (Foster et al. 1999), and Verticillium phenol/chloroform/isoamyl alcohol (v/v/v; 25:24:1) was dahliae (Usami et al. 2008). In at least one Cordyceps spe- added, and the solution was centrifuged at 12,000g, 4 °C cies, C. takaomontana, the structure of mating type genes for 10 min. The supernatant (~600 μl) was transferred to a was determined (Yokoyama et al. 2003). new sterile 1.5-ml microcentrifuge tube, and an equal vol- The literature describing the production of fruiting bod- ume of chloroform/isoamyl alcohol (v/v; 24:1) was added. ies in C. militaris is limited. To the best of our knowledge, The solution was centrifuged at 12,000g, 4 °C for 10 min. the regulation of the mating system of C. militaris remains The water phase (~400 μl) was collected and mixed with largely unknown. In the present study, we used PCR tech- an equal volume of isopropanol. After precipitation at room nique to assess the mating types of a collection of C. mili- temperature for 30 min, the solution was centrifuged at taris isolates and subsequently demonstrated that mating 12,000g, 4 °C for 15 min. After discarding the supernatant, between isolates with alternative mating types could the resulting pellet was washed twice with 70 % ethanol improve the production of fruiting bodies. and air-dried. The pelleted DNA was dissolved in 40 μl of TE buffer (10 mM Tris–HCl, pH 7.5, 1 mM EDTA) and stored at 20 °C. − Materials and methods Polymerase chain reaction (PCR) assay Fungus and cultural conditions The highly conserved sequences of α-BOX in MAT1-1 and Single ascospores were randomly isolated from the dis- HMG-BOX in MAT1-2 have been used as molecular mark- charging fruiting bodies of wild and cultivated C. militaris ers for the detection of mating types in clavicipitaceous and labeled as “cm” followed by an Arabic number. Briefly, fungi (Yokoyama et al. 2004). Therefore, two sets of prim- the freshly collected fruiting body was attached with plastic ers specific for C. militaris were designed and used to deter- tape to the inner side of a sterilized Petri dish (9 cm diam- mine mating types. MAT1-1 (accession no. AB124614) was eter), which was then placed over a 1.6 % (w/v) agar plate, identified using CmM1 (forward, ′5 -CCATCTCATCGCG- so that the fruiting body hung above the agar. The moisture GATG-3′; reverse 5′-GGGCAAAACGACCATTG-3′) accumulated in the Petri dish stimulated the discharge of based on the partial α-BOX sequence in the NCBI data- ascospores from the fruiting body. After 2–3 h of incuba- base. PCR was expected to generate a 233-bp product tion at room temperature under continuous light, a tiny agar using the following reaction conditions: 94 °C for 3 min; piece with a single ascospore was excised using a dissect- 35 cycles of 94 °C for 30 s, 53 °C for 30 s, 72 °C for 30 s; ing needle with the aid of a stereomicroscope (60 mag- and a final extension of 72 °C for 10 min. MAT1-2 (acces- × nification) and transferred to a new Petri dish containing sion no. AB124626) was assayed using CmM2 (forward, modified potato dextrose agar [PDA, 20 % (w/v) potato, 5′-ACATACGCTTGTCAAGA-3′; reverse 5′-AGGAGA- 2 % dextrose, 1.6 % agar, 0.3 % peptone, 0.2 % KH2PO4, GCCTTCTTGAT-3′), which was expected to amplify a 0.1 % MgSO 7H O, 0.0025 % vitamin B, pH 6.5–7.0], 191-bp fragment of the HMG-BOX using the following 4· 2 which was incubated at 23 °C under continuous light reaction conditions: 94 °C for 3 min; 35 cycles of 94 °C for (2,000–2,500 lux) for 2 weeks. 30 s, 48 °C for 30 s, 72 °C for 30 s; and a final extension 1 3 Arch Microbiol (2013) 195:579–585 581 of 72 °C for 10 min. The PCR products were visualized by Statistical analysis 1.8 % agarose gel electrophoresis and purified with a gel extraction kit (SBS Genetech, Beijing, China). The puri- For each population, the ratio of mating types was tested fied amplicons were ligated into the TA vector pMD18-T with a Chi-square goodness of fit test using SAS software (TaKaRa, Dalian, China) at 16 °C overnight according to (version 9.1). The fresh and dry weights of fruiting bodies the manufacturer’s instructions.
Recommended publications
  • Unravelling the Diversity Behind the Ophiocordyceps Unilateralis (Ophiocordycipitaceae) Complex: Three New Species of Zombie-Ant Fungi from the Brazilian Amazon
    Phytotaxa 220 (3): 224–238 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2015 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.220.3.2 Unravelling the diversity behind the Ophiocordyceps unilateralis (Ophiocordycipitaceae) complex: Three new species of zombie-ant fungi from the Brazilian Amazon JOÃO P. M. ARAÚJO1*, HARRY C. EVANS2, DAVID M. GEISER3, WILLIAM P. MACKAY4 & DAVID P. HUGHES1, 5* 1 Department of Biology, Penn State University, University Park, Pennsylvania, United States of America. 2 CAB International, E-UK, Egham, Surrey, United Kingdom 3 Department of Plant Pathology, Penn State University, University Park, Pennsylvania, United States of America. 4 Department of Biological Sciences, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas, United States of America. 5 Department of Entomology, Penn State University, University Park, Pennsylvania, United States of America. * email: [email protected]; [email protected] Abstract In tropical forests, one of the most commonly encountered relationships between parasites and insects is that between the fungus Ophiocordyceps (Ophiocordycipitaceae, Hypocreales, Ascomycota) and ants, especially within the tribe Campono- tini. Here, we describe three newly discovered host-specific species, Ophiocordyceps camponoti-atricipis, O. camponoti- bispinosi and O. camponoti-indiani, on Camponotus ants from the central Amazonian region of Brazil, which can readily be separated using morphological traits, in particular the shape and behavior of the ascospores. DNA sequence data support inclusion of these species within the Ophiocordyceps unilateralis complex. Introduction In tropical forests, social insects (ants, bees, termites and wasps) are the most abundant land-dwelling arthropods.
    [Show full text]
  • Infection of the Silkworm, Bombyx Mori, with Cordyceps Militaris
    Journal of Insect Biotechnology and Sericology 71, 61-63 (2002) Infection of the Silkworm, Bombyx mori, with Cordyceps militaris Ruiying Chen* and Masatoshi Ichida Faculty of TextileScience, Kyoto Institute of Technology, Saga-ippongi 1, Ukyou-ku,Kyoto 616-8354, Japan (Received April 3, 2001; Accepted December 29, 2001) To develop techniques to produce stromata of Cordyceps militaris (L.) Link on a large scale, the silkworm, Bombyx mori, was infected and the growth of stroma was investigated. The 5th instar larvae and the pupae of the silkworm reared in a sterilized indoor environment on an artificial diet and were inoculated with C. militaris by spraying, dipping, or by hypodermic injection. The rate of infection differed among the three methods; the highest being in the hypodermic injection. The rate of infection was also higher in the pupae than in the larvae. The formation and growth of the stromata were better in the silkworm pupae. A conidial suspension was injected at different sites on the pupal body. Infection rates, however, did not differ significantly among the sites. The formation and growth of the stromata were not affected by the injection site either. Key words: Cordyceps militaris, silkworm, Bombyx mori, infection, artificial inoculation, stromata suspension was adjusted to 10' conidia/ml. This suspension INTRODUCTION was used in the inoculation experiments. Cordyceps militaris (L.) Link. is a parasitic fungus hosted by many species of lepidopteran pupae. It belongs Rearing of host silkworm to the subdivision Ascomycotina whose stroma is The silkworm, Bombyx mori, was reared in a sterilized baculiform (Shimizu, 1997). Recently, many researches indoor environment on an artificial diet (Chen et al., 1992).
    [Show full text]
  • Fungal Cannons: Explosive Spore Discharge in the Ascomycota Frances Trail
    MINIREVIEW Fungal cannons: explosive spore discharge in the Ascomycota Frances Trail Department of Plant Biology and Department of Plant Pathology, Michigan State University, East Lansing, MI, USA Correspondence: Frances Trail, Department Abstract Downloaded from https://academic.oup.com/femsle/article/276/1/12/593867 by guest on 24 September 2021 of Plant Biology, Michigan State University, East Lansing, MI 48824, USA. Tel.: 11 517 The ascomycetous fungi produce prodigious amounts of spores through both 432 2939; fax: 11 517 353 1926; asexual and sexual reproduction. Their sexual spores (ascospores) develop within e-mail: [email protected] tubular sacs called asci that act as small water cannons and expel the spores into the air. Dispersal of spores by forcible discharge is important for dissemination of Received 15 June 2007; revised 28 July 2007; many fungal plant diseases and for the dispersal of many saprophytic fungi. The accepted 30 July 2007. mechanism has long been thought to be driven by turgor pressure within the First published online 3 September 2007. extending ascus; however, relatively little genetic and physiological work has been carried out on the mechanism. Recent studies have measured the pressures within DOI:10.1111/j.1574-6968.2007.00900.x the ascus and quantified the components of the ascus epiplasmic fluid that contribute to the osmotic potential. Few species have been examined in detail, Editor: Richard Staples but the results indicate diversity in ascus function that reflects ascus size, fruiting Keywords body type, and the niche of the particular species. ascus; ascospore; turgor pressure; perithecium; apothecium. 2 and 3). Each subphylum contains members that forcibly Introduction discharge their spores.
    [Show full text]
  • Effects of the Fungus Isaria Fumosorosea
    This article was downloaded by: [University of Florida] On: 11 June 2013, At: 06:27 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Biocontrol Science and Technology Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/cbst20 Effects of the fungus Isaria fumosorosea (Hypocreales: Cordycipitaceae) on reduced feeding and mortality of the Asian citrus psyllid, Diaphorina citri (Hemiptera: Psyllidae) Pasco B. Avery a , Vitalis W. Wekesa b c , Wayne B. Hunter b , David G. Hall b , Cindy L. McKenzie b , Lance S. Osborne c , Charles A. Powell a & Michael E. Rogers d a University of Florida, Institute of Food and Agricultural Sciences, Indian River Research and Education Center, 2199 South Rock Road, Fort Pierce, FL, 34945, USA b USDA, ARS, U.S. Horticultural Research Laboratory, Subtropical Insect Research Unit, 2001 South Rock Road, Ft. Pierce, FL, 34945, USA c University of Florida, Institute of Food and Agricultural Sciences, Mid-Florida Research and Education Center, Department of Entomology and Nematology, 2725 Binion Road, Apopka, FL, 32703, USA d University of Florida, Institute of Food and Agricultural Sciences, Citrus Research and Education Center, 700 Experiment Station Road, Lake Alfred, FL, 33850, USA Published online: 25 Aug 2011. To cite this article: Pasco B. Avery , Vitalis W. Wekesa , Wayne B. Hunter , David G. Hall , Cindy L. McKenzie ,
    [Show full text]
  • Coupled Biosynthesis of Cordycepin and Pentostatin in Cordyceps Militaris: Implications for Fungal Biology and Medicinal Natural Products
    85 Editorial Commentary Page 1 of 3 Coupled biosynthesis of cordycepin and pentostatin in Cordyceps militaris: implications for fungal biology and medicinal natural products Peter A. D. Wellham1, Dong-Hyun Kim1, Matthias Brock2, Cornelia H. de Moor1,3 1School of Pharmacy, 2School of Life Sciences, 3Arthritis Research UK Pain Centre, University of Nottingham, Nottingham, UK Correspondence to: Cornelia H. de Moor. School of Pharmacy, University Park, Nottingham NG7 2RD, UK. Email: [email protected]. Provenance: This is an invited article commissioned by the Section Editor Tao Wei, PhD (Principal Investigator, Assistant Professor, Microecologics Engineering Research Center of Guangdong Province in South China Agricultural University, Guangzhou, China). Comment on: Xia Y, Luo F, Shang Y, et al. Fungal Cordycepin Biosynthesis Is Coupled with the Production of the Safeguard Molecule Pentostatin. Cell Chem Biol 2017;24:1479-89.e4. Submitted Apr 01, 2019. Accepted for publication Apr 04, 2019. doi: 10.21037/atm.2019.04.25 View this article at: http://dx.doi.org/10.21037/atm.2019.04.25 Cordycepin, or 3'-deoxyadenosine, is a metabolite produced be replicated in people, this could become a very important by the insect-pathogenic fungus Cordyceps militaris (C. militaris) new natural product-derived medicine. and is under intense investigation as a potential lead compound Cordycepin is known to be unstable in animals due for cancer and inflammatory conditions. Cordycepin was to deamination by adenosine deaminases. Much of the originally extracted by Cunningham et al. (1) from a culture efforts towards bringing cordycepin to the clinic have been filtrate of a C. militaris culture that was grown from conidia.
    [Show full text]
  • AR TICLE a Phylogenetically-Based Nomenclature for Cordycipitaceae
    IMA FUNGUS · 8(2): 335–353 (2017) doi:10.5598/imafungus.2017.08.02.08 A phylogenetically-based nomenclature for Cordycipitaceae (Hypocreales) ARTICLE Ryan M. Kepler1, J. Jennifer Luangsa-ard2, Nigel L. Hywel-Jones3, C. Alisha Quandt4, Gi-Ho Sung5, Stephen A. Rehner6, M. Catherine Aime7, Terry W. Henkel8, Tatiana Sanjuan9, Rasoul Zare10, Mingjun Chen11, Zhengzhi Li3, Amy Y. Rossman12, Joseph W. Spatafora12, and Bhushan Shrestha13 1USDA-ARS, Sustainable Agriculture Systems Laboratory, Beltsville, MD 20705, USA; corresponding author e-mail: [email protected] 2Microbe Interaction and Ecology Laboratory, BIOTEC, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd, Klong Neung, Klong Luang, Pathum Thani, 12120 Thailand 3Zhejiang BioAsia Institute of Life Sciences, 1938 Xinqun Road, Economic and Technological Development Zone, Pinghu, Zhejiang, 314200 China 4Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48104, USA 5Institute for Bio-Medical Convergence, International St Mary’s Hospital and College of Medicine, Catholic Kwandong University, Incheon 22711, Korea 6USDA-ARS, Mycology and Nematology Genetic Diversity and Biology Laboratory, Beltsville, MD 20705, USA 7Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA 8Department of Biological Sciences, Humboldt State University, Arcata, CA, 95521, USA 9Laboratorio de Taxonomía y Ecología de Hongos, Universidad de Antioquia, calle 67 No. 53 – 108, A.A. 1226, Medellin, Colombia
    [Show full text]
  • Genome Studies on Nematophagous and Entomogenous Fungi in China
    Journal of Fungi Review Genome Studies on Nematophagous and Entomogenous Fungi in China Weiwei Zhang, Xiaoli Cheng, Xingzhong Liu and Meichun Xiang * State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Rd., Chaoyang District, Beijing 100101, China; [email protected] (W.Z.); [email protected] (X.C.); [email protected] (X.L.) * Correspondence: [email protected]; Tel.: +86-10-64807512; Fax: +86-10-64807505 Academic Editor: Luis V. Lopez-Llorca Received: 9 December 2015; Accepted: 29 January 2016; Published: 5 February 2016 Abstract: The nematophagous and entomogenous fungi are natural enemies of nematodes and insects and have been utilized by humans to control agricultural and forestry pests. Some of these fungi have been or are being developed as biological control agents in China and worldwide. Several important nematophagous and entomogenous fungi, including nematode-trapping fungi (Arthrobotrys oligospora and Drechslerella stenobrocha), nematode endoparasite (Hirsutella minnesotensis), insect pathogens (Beauveria bassiana and Metarhizium spp.) and Chinese medicinal fungi (Ophiocordyceps sinensis and Cordyceps militaris), have been genome sequenced and extensively analyzed in China. The biology, evolution, and pharmaceutical application of these fungi and their interacting with host nematodes and insects revealed by genomes, comparing genomes coupled with transcriptomes are summarized and reviewed in this paper. Keywords: fungal genome; biological control; nematophagous; entomogenous 1. Introduction Nematophagous fungi infect their hosts using traps and other devices such as adhesive conidia and parasitic hyphae tips [1,2]. Entomogenous fungi are associated with insects, mainly as pathogens or parasites [3]. Both nematophagous and entomogenous fungi are important biocontrol resources [1,3].
    [Show full text]
  • The Mechanism of Ascus Firing
    fungal biology reviews 28 (2014) 70e76 journal homepage: www.elsevier.com/locate/fbr Review The mechanism of ascus firing e Merging biophysical and mycological viewpoints Frances TRAILa,*, Agnese SEMINARAb aDepartment of Plant Biology, Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA bCNRS, Laboratoire de physique de la matiere condensee, Parc Valrose, 06108, Nice, France article info abstract Article history: The actively discharging ascus is the unique spore-bearing cell that is responsible to Received 4 November 2012 dispatch spores into the atmosphere. From a physical perspective, this type of ascus is a Received in revised form sophisticated pressure gun that reliably discharges the spores at an extremely high veloc- 19 March 2014 ity, without breaking apart. We identify four essential steps in discharge of spores whose Accepted 17 July 2014 order and timing may vary across species. First, asci that fire are mature, so a cue must be present that prevents discharge of immature spores and signals maturity. Second, pres- Keywords: sure within the ascus serves to propel the spores forward; therefore a mechanism should Apothecia be present to pressurize the ascus. Third, in ostiolate fruiting bodies (e.g. perithecia), the Ascospore ascus extends through an opening to fire spores into the air. The extension process is a Locule relatively unique aspect of the ascus and must be structurally facilitated. Fourth, the ascus Paraphyses must open at its tip for spore release in a controlled rupture. Here we discuss each of these Perithecia aspects in the context of understanding the process of ascus and fruiting body function.
    [Show full text]
  • Biocontrol Effects of Paecilomyces Variotii Against Fungal Plant Diseases
    Journal of Fungi Article Biocontrol Effects of Paecilomyces variotii against Fungal Plant Diseases Alejandro Moreno-Gavíra, Fernando Diánez , Brenda Sánchez-Montesinos and Mila Santos * Departamento de Agronomía, Escuela Superior de Ingeniería, Universidad de Almería, 04120 Almería, Spain; [email protected] (A.M.-G.); [email protected] (F.D.); [email protected] (B.S.-M.) * Correspondence: [email protected]; Tel.: +34-950-015511 Abstract: The genus Paecilomyces is known for its potential application in the control of pests and diseases; however, its use in agriculture is limited to few species. Research interest in new formula- tions based on microorganisms for the control of pathogens is growing exponentially; therefore, it is necessary to study new isolates, which may help control diseases effectively, and to examine their compatibility with established agricultural control methods. We analysed in vitro and in vivo the antagonistic capacity of Paecilomyces variotii against seven phytopathogens with a high incidence in different crops, and we examined its compatibility with 24 commercial fungicides. P. variotii was applied in the following pathosystems: B. cinereal—melon, Sclerotinia sclerotiorum—pepper, R. solani— tomato, F. solani—zucchini, P. aphanidermatum—melon, M. melonis—melon, and P. xanthii—zucchini. The results showed strong control effects on M. melonis and P. xanthii, reducing the disease severity index by 78% and 76%, respectively. The reduction in disease severity in the other pathosystems ranged from 29% to 44%. However, application of metabolites alone did not cause any significant effect on mycelial growth of phytopathogens, apart from F. solani, in which up to 12% inhibition was Citation: Moreno-Gavíra, A.; Diánez, observed in vitro when the extract was applied at a concentration of 15% in the medium.
    [Show full text]
  • Fungal Pathogens Occurring on <I>Orthopterida</I> in Thailand
    Persoonia 44, 2020: 140–160 ISSN (Online) 1878-9080 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE https://doi.org/10.3767/persoonia.2020.44.06 Fungal pathogens occurring on Orthopterida in Thailand D. Thanakitpipattana1, K. Tasanathai1, S. Mongkolsamrit1, A. Khonsanit1, S. Lamlertthon2, J.J. Luangsa-ard1 Key words Abstract Two new fungal genera and six species occurring on insects in the orders Orthoptera and Phasmatodea (superorder Orthopterida) were discovered that are distributed across three families in the Hypocreales. Sixty-seven Clavicipitaceae sequences generated in this study were used in a multi-locus phylogenetic study comprising SSU, LSU, TEF, RPB1 Cordycipitaceae and RPB2 together with the nuclear intergenic region (IGR). These new taxa are introduced as Metarhizium grylli­ entomopathogenic fungi dicola, M. phasmatodeae, Neotorrubiella chinghridicola, Ophiocordyceps kobayasii, O. krachonicola and Petchia new taxa siamensis. Petchia siamensis shows resemblance to Cordyceps mantidicola by infecting egg cases (ootheca) of Ophiocordycipitaceae praying mantis (Mantidae) and having obovoid perithecial heads but differs in the size of its perithecia and ascospore taxonomy shape. Two new species in the Metarhizium cluster belonging to the M. anisopliae complex are described that differ from known species with respect to phialide size, conidia and host. Neotorrubiella chinghridicola resembles Tor­ rubiella in the absence of a stipe and can be distinguished by the production of whole ascospores, which are not commonly found in Torrubiella (except in Torrubiella hemipterigena, which produces multiseptate, whole ascospores). Ophiocordyceps krachonicola is pathogenic to mole crickets and shows resemblance to O. nigrella, O. ravenelii and O. barnesii in having darkly pigmented stromata. Ophiocordyceps kobayasii occurs on small crickets, and is the phylogenetic sister species of taxa in the ‘sphecocephala’ clade.
    [Show full text]
  • Cordycepin, a Metabolite of Cordyceps Militaris, Reduces Immune-Related Gene Expression in Insects
    Journal of Invertebrate Pathology xxx (xxxx) xxx Contents lists available at ScienceDirect Journal of Invertebrate Pathology journal homepage: www.elsevier.com/locate/jip Cordycepin, a metabolite of Cordyceps militaris, reduces immune-related gene expression in insects Victoria C. Woolley a,*, Graham R. Teakle a, Gillian Prince a, Cornelia H. de Moor b, David Chandler a a Warwick Crop Centre, School of Life Sciences, University of Warwick, Wellesbourne, Warwick CV35 9EF, UK b School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK ARTICLE INFO ABSTRACT Keywords: Hypocrealean entomopathogenic fungi (EPF) (Sordariomycetes, Ascomycota) are natural regulators of insect Cordycepin populations in terrestrial environments. Their obligately-killing life-cycle means that there is likely to be strong Cordyceps militaris selection pressure for traits that allow them to evade the effects of the host immune system. In this study, we Secondary metabolite 0 quantifiedthe effects of cordycepin (3 -deoxyadenosine), a secondary metabolite produced by Cordyceps militaris Entomopathogenic fungi (Hypocreales, Cordycipitaceae), on insect susceptibility to EPF infection and on insect immune gene expression. Insect immunity µ 1 Galleria mellonella Application of the immune stimulant curdlan (20 g ml , linear beta-1,3-glucan, a constituent of fungal cell walls) to Drosophila melanogaster S2r+ cells resulted in a significant increase in the expression of the immune effector gene metchnikowin compared to a DMSO-only control, but there was no significantincrease when curdlan was co-applied with 25 µg ml 1 cordycepin dissolved in DMSO. Injection of cordycepin into larvae of Galleria mellonella (Lepidoptera: Pyralidae) resulted in dose-dependent mortality (LC50 of cordycepin = 2.1 mg per insect 6 days after treatment).
    [Show full text]
  • Fruit Body Formation on Silkworm by Cordyceps Militaris
    Mycobiology 38(2) : 128-132 (2010) DOI:10.4489/MYCO.2010.38.2.128 © The Korean Society of Mycology Fruit Body Formation on Silkworm by Cordyceps militaris In-Pyo Hong1*, Pil-Don Kang1, Ki-Young Kim1, Sung-Hee Nam1, Man-Young Lee1, Yong-Soo Choi1, Nam-Suk Kim1, Hye-Kyung Kim1, Kwang-Gill Lee1 and Richard A. Humber2 1National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Korea 2USDA-ARS Biological Integrated Pest Management Research Unit, Robert W. Holly Center for Agriculture & Health, Tower Road, Ithaca, NY 14853, USA (Received March 31, 2010. Accepted April 11, 2010) Injection inoculation protocols for fruit body formation of Cordyceps militaris (C. militaris) were investigated to improve the incidence of infection in the silkworm species Bombyx mori (B. mori). Injection, with suspensions of C. militaris hyphal bodies into living silkworm pupae, was used to test for fruit body production. Use of Daeseungjam rather than Baegokjam or Keumokjam varieties of B. mori is thought to be suitable for infection by C. militaris. From mounting, nine-day-old to 11- day-old pupae showed the best incidence of infection with a 100 µL injection volume. Silkworm pupae injected with a hyphal suspension concentration of more than 2 × 105 colony-forming unit (cfu) recorded a greater than 96% incidence of infection. Also, fruit bodies of C. militaris were induced and produced at a light intensity between 500 and 1,000 lx. KEYWORDS : Bombyx mori, Cordyceps militaris, Fruit body, Hyphal bodies, Injection inoculation Cordyceps is entomopathogenic fungi that parasitize insects duction of C. militaris using a silkworm is needed.
    [Show full text]