Atriplex Coronata Var. Notatior (San Jacinto Valley Crownscale)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ray Grass Perenne Pdf
Ray grass perenne pdf Continue Published in Temperate Climate and Cold Description: Unlike the annual rye grass, this variety is characterized by lasting over two years, being able to reach up to three or four years. It has a shallow fibrous radical system. It adapts to a temperate climate, does not tolerate high temperatures. Its growth is straight, with bright green leaves. It supports trampling, frost and is well competitive with other species. Soil: Suitable for all soils (except sandy soils), although it prefers fertile and moist soils and ph is close to neutrality. Nutrients and water: Requires irrigation, especially in summer and high fertilization. Shadow: Not suitable. Landing density: 3 to 15 kg / 100 m2. It is preferable to sow in early autumn, but can also be done in summer. Please note that the depth is no more than 2 cm. Cutting: 3 to 5 cm. Frequency: increased. Use: Widely used in parks and sports grounds, in mixes. It belongs to the family of grass, which is widely used all over the world and is considered one of the most valuable species of meadows. It is one of the most commonly used species both alone and in the mix. It has excellent tolerance to use, rapid germination (7 days in spring and 10 days in winter) and excellent installation speed. On the other hand, it is a species that is not drought-tolerant and requires high maintenance. Crossing different varieties has produced a wide range of varieties that differ in their characteristics, such as: tolerance to use, winter strength, color, resistance to disease and tolerance to heat and drought. -
Initial Study Appendix B
Uvas Road at Little Uvas Creek Bridge Replacement Project Biological Assessment Biological Assessment Uvas Road over Little Uvas Creek Bridge Replacement Project (37C-0095/37C-0601 [new]) Near Morgan Hill, Santa Clara County, California 04-SCL-0-CR Federal Project Number BRLO 5937(124) Caltrans District 04 November 2015 Biological Assessment Uvas Road over Little Uvas Creek Bridge Replacement Project (37C-0095/37C-0601 [new]) Near Morgan Hill, Santa Clara County, California 04-SCL-0-CR Federal Project Number BRLO 5937(124) Caltrans District 04 November 2015 STATE OF CALIFORNIA Department of Transportation and Santa Clara County Roads and Airports Department Prepared By: ___________________________________ Date: ____________ Patrick Boursier, Principal (408) 458-3204 H. T. Harvey & Associates Los Gatos, California Approved By: ___________________________________ Date: ____________ Solomon Tegegne, Associate Civil Engineer Santa Clara County Roads and Airports Department Highway and Bridge Design 408-573-2495 Concurred By: ___________________________________ Date: ____________ Tom Holstein Environmental Branch Chief Office of Local Assistance Caltrans, District 4 Oakland, California 510-286-5250 For individuals with sensory disabilities, this document is available in Braille, large print, on audiocassette, or computer disk. To obtain a copy in one of these alternate formats, please call or write to the Santa Clara County Roads and Airports Department: Solomon Tegegne Santa Clara County Roads and Airports Department 101 Skyport Drive San Jose, CA 95110 408-573-2495 Summary of Findings, Conclusions and Determinations Summary of Findings, Conclusions and Determinations The Uvas Road at Little Uvas Creek Bridge Replacement Project (proposed project) is proposed by the County of Santa Clara Roads and Airports Department in cooperation with the Office of Local Assistance of the California Department of Transportation (Caltrans), and this Biological Assessment (BA) has been prepared following Caltrans’ procedures. -
County of Riverside General Plan Reche Canyon/Badlands Area Plan
County of Riverside General Plan Reche Canyon/Badlands Area Plan COUNTY OF RIVERSIDE Transportation and Land Management Agency 4080 Lemon Street, 12th Floor Riverside, CA 92501-3634 Phone: (951) 955-3200, Fax: (951) 955-1811 October 2011 County of Riverside General Plan Reche Canyon/Badlands Area Plan TABLE OF CONTENTS Vision Summary.......................................................................................................................................................... iv Introduction ................................................................................................................................................................. 1 A Special Note on Implementing the Vision ........................................................................................................ 2 Location ........................................................................................................................................................................ 3 Features ........................................................................................................................................................................ 7 Setting ....................................................................................................................................................................... 7 Unique Features ........................................................................................................................................................ 7 Badlands/Norton Younglove Preserve -
(A) Journals with the Largest Number of Papers Reporting Estimates Of
Supplementary Materials Figure S1. (a) Journals with the largest number of papers reporting estimates of genetic diversity derived from cpDNA markers; (b) Variation in the diversity (Shannon-Wiener index) of the journals publishing studies on cpDNA markers over time. Figure S2. (a) The number of publications containing estimates of genetic diversity obtained using cpDNA markers, in relation to the nationality of the corresponding author; (b) The number of publications on genetic diversity based on cpDNA markers, according to the geographic region focused on by the study. Figure S3. Classification of the angiosperm species investigated in the papers that analyzed genetic diversity using cpDNA markers: (a) Life mode; (b) Habitat specialization; (c) Geographic distribution; (d) Reproductive cycle; (e) Type of flower, and (f) Type of pollinator. Table S1. Plant species identified in the publications containing estimates of genetic diversity obtained from the use of cpDNA sequences as molecular markers. Group Family Species Algae Gigartinaceae Mazzaella laminarioides Angiospermae Typhaceae Typha laxmannii Angiospermae Typhaceae Typha orientalis Angiospermae Typhaceae Typha angustifolia Angiospermae Typhaceae Typha latifolia Angiospermae Araliaceae Eleutherococcus sessiliflowerus Angiospermae Polygonaceae Atraphaxis bracteata Angiospermae Plumbaginaceae Armeria pungens Angiospermae Aristolochiaceae Aristolochia kaempferi Angiospermae Polygonaceae Atraphaxis compacta Angiospermae Apocynaceae Lagochilus macrodontus Angiospermae Polygonaceae Atraphaxis -
Birds of the San Jacinto Valley Important Bird Area the San Jacinto Valley
Birds of the San Jacinto Valley Important Bird Area The San Jacinto Valley “Through this beautiful valley runs a good-sized river...on whose banks are large, shady groves... All its plain is full of fl owers, fertile pastures, and other vegetation.” So wrote Juan Bautista De Anza in 1774, describing the San Jacinto Valley as he came down from the mountains on his expedition from Tubac, Arizona, to San Francisco. When he came to what we now call Mystic Lake in the northern part of the valley, he wrote: “We came to the banks of a large and pleasing lake, several leagues in circum- ference and as full of white geese as of water, they being so numerous that it looked like a large, white glove.” It is clear from these early descriptions that the San Jacinto Valley has long been a haven for wildlife. While much of the valley has been developed over the years, the San Jacinto Valley is still amazingly rich with birds and other wildlife, and has the potential to remain so in perpetuity. This pamphlet describes a few of the many birds that make the San Jacinto Valley their home. Some species are rare and need protection, while others are common. Some migrate to the San Jacinto Valley from thousands of miles away, while others spend their entire lives within the confi nes of the valley. Our hope is that you get to know the birds of the San Jacinto Valley, and are moved to help protect them for future generations. 2 The San Jacinto Valley is the fl oodplain of the San Jacinto River in western Riverside County. -
Checklist of the Vascular Plants of Redwood National Park
Humboldt State University Digital Commons @ Humboldt State University Botanical Studies Open Educational Resources and Data 9-17-2018 Checklist of the Vascular Plants of Redwood National Park James P. Smith Jr Humboldt State University, [email protected] Follow this and additional works at: https://digitalcommons.humboldt.edu/botany_jps Part of the Botany Commons Recommended Citation Smith, James P. Jr, "Checklist of the Vascular Plants of Redwood National Park" (2018). Botanical Studies. 85. https://digitalcommons.humboldt.edu/botany_jps/85 This Flora of Northwest California-Checklists of Local Sites is brought to you for free and open access by the Open Educational Resources and Data at Digital Commons @ Humboldt State University. It has been accepted for inclusion in Botanical Studies by an authorized administrator of Digital Commons @ Humboldt State University. For more information, please contact [email protected]. A CHECKLIST OF THE VASCULAR PLANTS OF THE REDWOOD NATIONAL & STATE PARKS James P. Smith, Jr. Professor Emeritus of Botany Department of Biological Sciences Humboldt State Univerity Arcata, California 14 September 2018 The Redwood National and State Parks are located in Del Norte and Humboldt counties in coastal northwestern California. The national park was F E R N S established in 1968. In 1994, a cooperative agreement with the California Department of Parks and Recreation added Del Norte Coast, Prairie Creek, Athyriaceae – Lady Fern Family and Jedediah Smith Redwoods state parks to form a single administrative Athyrium filix-femina var. cyclosporum • northwestern lady fern unit. Together they comprise about 133,000 acres (540 km2), including 37 miles of coast line. Almost half of the remaining old growth redwood forests Blechnaceae – Deer Fern Family are protected in these four parks. -
Appendix C Plant and Animal Species Observed
Appendix C Plant and Animal Species Observed This list includes vascular plants, mammals, birds, reptiles, and amphibians observed in the BSA by biologists during various surveys in 2005 and 2006. This list does not include invertebrate species. Invertebrates that would be most commonly encountered on the site would include butterflies, flies, dragonflies, damselflies, beetles, earwigs, grasshoppers, crickets, termites, true bugs, mantids, lacewings, bees, wasps, ants, and spiders. PLANT SPECIES OBSERVED Scientific Name Common Name Invasive Plant Rating CLUB AND SPIKE MOSSES Selaginellaceae Spike moss family Selaginella cinerascens Mesa spikemoss TRUE FERNS Azollaceae Mosquito fern family Azolla filiculoides Pacific mosquito fern Marsileaceae Marsilea family Marsilea vestita Hairy waterclover Pilularia americana American pillwort Pteridaceae Lip fern family Pellaea andromedifolia Coffee fern Pentagramma triangularis Goldenback fern PINOPHYTA GYMNOSPERMS Cupressaceace Cypress family Juniperus californica California juniper DICOT FLOWERING PLANTS Aizoaceae Carpet weed family Carpobrotus edulis* Hottentot-fig HIGH Mesembryanthemum nodiflorum* Slender-leaved ice plant Trianthema portulacastrum Horse-purslane Amaranthaceae Amaranth family Amaranthus albus* Tumbling pigweed Amaranthus palmeri Palmer’s pigweed Amaranthus sp. Pigweed Anacardiaceae Sumac family Malosma laurina Laurel sumac Rhus ovata Sugar bush Rhus trilobata Skunkbush sumac Schinus molle* Peruvian pepper tree LIMITED Schinus terebinthifolius* Brazilian pepper tree LIMITED Mid -
Hydromodification Susceptibility Documentation Report and Mapping: Santa Ana Region
Hydromodification Susceptibility Documentation Report and Mapping: Santa Ana Region January 18, 2017 Hydromodification Susceptibility Documentation Report and Mapping TABLE OF CONTENTS 1 INTRODUCTION .................................................................................................................................. 1 1.1 Background ................................................................................................................................. 1 1.2 Hydrologic Condition of Concern (HCOC)................................................................................ 1 1.3 Goals and Objectives .................................................................................................................. 3 2 EXISTING CHANNEL DELINEATION MAP .................................................................................... 5 2.1 Research and Data Collection ..................................................................................................... 5 2.2 Delineation of Existing Stream Channels ................................................................................... 5 2.3 Existing Stream Channel Groups ................................................................................................ 5 2.4 Categorization of Existing Stream Channel Groups ................................................................... 6 3 SUSCEPTIBILITY ASSESSMENT ...................................................................................................... 7 3.1 Definition for "Engineered and -
© 2020 Hui Chen ALL RIGHTS RESERVED
© 2020 Hui Chen ALL RIGHTS RESERVED TRAFFIC TOLERANCE OF FINE FESCUES: TECHNIQUES FOR SCREENING GERMPLASM by HUI CHEN A dissertation submitted to the School of Graduate Studies Rutgers, The State University of New Jersey in partial fulfillment of the requirements for the degree of Doctor of Philosophy Graduate Program in Plant Biology written under the direction of James A. Murphy and approved by ________________________ ________________________ ________________________ ________________________ ________________________ New Brunswick, New Jersey JANUARY 2020 ABSTRACT OF THE DISSERTATION Traffic tolerance of fine fescues: Techniques for screening germplasm BY HUI CHEN Dissertation Director: Dr, James A. Murphy The term fine fescue refers to several Festuca spp. that have a very fine leaf texture compared to most other turfgrass species. These species are adapted to low-input management systems and have been used in mixtures with other cool-season grasses. However, fine fescues are not utilized to the same extent as other species partially due to their poor traffic tolerance and recuperative ability. Improvement in traffic tolerance of fine fescues would enable use of these grasses beyond turf systems that experience little to no traffic. The purpose of this dissertation was to develop and evaluate germplasm screening techniques that improve selecting efficiency for traffic tolerant fine fescues. The specific objectives of this research were: i) to evaluate the effect of traffic form (abrasive wear vs. cleated traffic) and season (spring vs. summer vs. autumn) on the assessment of fine fescue traffic tolerance (Chapters 1 and 2); ii) to evaluate the effect of nitrogen fertilization and harvest time on cell wall composition of fine fescues (Chapters 3 and 4); iii) to investigate the correlation between cell wall composition and wear tolerance of fine ii fescues; and iv) to develop near-infrared reflectance spectroscopy (NIRS) models to determine the cell wall composition of fine fescues. -
5.9 BIOLOGICAL RESOURCES the Information Contained Within This
5.9 Biological Resources 5.9 BIOLOGICAL RESOURCES The information contained within this section is summarized from the Moreno Valley General Plan EIR Biological Report (Merkel & Associates, September 2004). The report is provided in Volume II Appendix E of this EIR. The existing biological resources documented in this report were determined through an extensive review of the most current, available biological literature and Geographical Information Systems (GIS) data available for the planning area. Previous biological surveys conducted by Merkel & Associates (M&A) staff, as well as biological information gathered by other consultants for projects within Moreno Valley, were further reviewed. Vegetation communities were primarily identified based on the regional GIS data incorporated into the MSHCP (KTU+A and PSBS 1995). Floral and faunal species potential presence was determined based on vegetation community presence/absence and knowledge of species requirements. The assessment of presence or potential presence of sensitive biological resources was also based on MSHCP data, which incorporated California Natural Diversity Database records for sensitive species. In addition to the MSHCP and vegetation community information, the following sources were consulted to aid in determining faunal presence/absence: USFWS 2000b, Ericksen and Belk 1999, Sauer et al. 1996, Sauer et al. 2000, Zeiner et al. 1988, Zeiner et al. 1990a and 1990b. M&A also contacted individuals with special expertise to determine the likelihood of species presence for certain groups (e.g., bats). Additionally, M&A biologists, Craig Reiser and Diana Jensen, conducted field investigations in April 2001 to ground truth portions of the regional GIS vegetation data and record locations of identified sensitive species. -
Biology Report
MEMORANDUM Scott Batiuk To: Lynford Edwards, GGBHTD From: Plant and Wetland Biologist [email protected] Date: June 13, 2019 Verification of biological conditions associated with the Corte Madera 4-Acre Tidal Subject: Marsh Restoration Project Site, Professional Service Agreement PSA No. 2014- FT-13 On June 5, 2019, a WRA, Inc. (WRA) biologist visited the Corte Madera 4-Acre Tidal Marsh Restoration Project Site (Project Site) to verify the biological conditions documented by WRA in a Biological Resources Inventory (BRI) report dated 2015. WRA also completed a literature review to confirm that special-status plant and wildlife species evaluations completed in 2015 remain valid. Resources reviewed include the California Natural Diversity Database (California Department of Fish and Wildlife 20191), the California Native Plant Society’s Inventory of Rare and Endangered Plants (California Native Plant Society 20192), and the U.S. Fish and Wildlife Service’s Information for Planning and Consultation database (U.S. Fish and Wildlife Service 20193). Biological Communities In general, site conditions are similar to those documented in 2015. The Project Site is a generally flat site situated on Bay fill soil. A maintained berm is present along the western and northern boundaries. Vegetation within the Project Site is comprised of dense, non-native species, characterized primarily by non-native grassland dominated by Harding grass (Phalaris aquatica) and pampas grass (Cortaderia spp.). Dense stands of fennel (Foeniculum vulgare) are present in the northern and western portions on the Project Site. A small number of seasonal wetland depressions dominated by curly dock (Rumex crispus), fat hen (Atriplex prostrata) and brass buttons (Cotula coronopifolia) are present in the northern and western portions of the Project Site, and the locations and extent of wetlands observed are similar to what was documented in 2015. -
Geologic Map of the Lakeview 7.5' Quadrangle, Riverside
Prepared in cooperation with the U.S. DEPARTMENT OF THE INTERIOR Eastern Municipal Water District and the CALIFORNIA DIVISION OF MINES AND GEOLOGY U.S. GEOLOGICAL SURVEY OPEN-FILE REPORT 01-174 Version 1.0 117 7' 30" 117 00' CORRELATION OF MAP UNITS DESCRIPTION OF MAP UNITS 3 52' 30" 33 52' 30" MODERN SURFICIAL DEPOSITS—Sediment recently transported and Kmeg Granite of Mount Eden (Cretaceous)—Granite to monzogranite; white to gray, grain-size, rare schlieren, and more abundant, more attenuated inclusions. Age Qw Qf Qv Qc Qlv deposited in channels and washes, on surfaces of alluvial fans and alluvial plains, leucocratic, medium- to coarse-grained, commonly foliated. Contains relation to Lakeview Mountains pluton is ambiguous. Small mass of tonalite and on hillslopes. Soil-profile development is non-existant. Includes: muscovite, garnet, and almost no mafic minerals. Restricted to northeastern resembling Lakeview Mountains tonalite occurs within the Reinhardt Canyon Qyf6 Qw Very young wash deposits (late Holocene)—Deposits of active alluvium; confined part of quadrangle where it occurs as dikes and irregular masses emplaced pluton near the contact, but is not clear whether it is inclusion or intrusion of to San Jacinto River channel. Consists mostly of unconsolidated sand in along foliation in metamorphic rocks; also as southernmost part of small pluton Lakeview Mountains rock. Similar appearing tonalite north of Lakeview Qyf5 ephemeral, engineered river channel. Prior to agricultural development, that extends into quadrangle to north Mountains is correlated with Reinhardt Canyon pluton Holocene position of river channel was north of current engineered channel. Sediment Mixed metamorphic rocks and granitic rocks (Cretaceous and Qyf4 Klt Tonalite of Laborde Canyon (Cretaceous)—Biotite-hornblende tonalite.