System Information Gathering Across Several Sysplexes Under Z/OS

Total Page:16

File Type:pdf, Size:1020Kb

System Information Gathering Across Several Sysplexes Under Z/OS MASARYK UNIVERSITY FACULTY OF INFORMATICS DIPLOMA THESIS System Information Gathering across Several Sysplexes under z/OS Vlastimil Jeřábek 2014 Statement I declare that this thesis is my original authorial work, which I developed on my own. All sources and literature that I have used in the development are properly quoted in the text and their fully qualified references to the relevant source are mentioned at the end of thesis. In addition I declare that all quoted literature and materials are publicly available which ensures preservation of all IBM policies about confidential material and customer information. Supervisor: doc. RNDr. Tomáš Pitner, Ph.D. I Thanks Primarily I would like to thank doc. RNDr. Tomáš Pitner, Ph.D. for academic guidance, reviews and mainly auspices over my thesis which mainframe theme not regularly taught and the faculty. Next thanks belongs to my colleagues, especially Tomáš Hláč and former colleague Paul Voyner, for all good technical advices and explanation of problems I encountered during programming. I would like to thank also to my employer for possibility of developing my program on test systems and improve my job related skills by working on diploma thesis. II Summary My diploma thesis introduces program developed mostly in REXX programming language under z/OS operation system running on mainframe computer. It consists of theoretical and practical part. Theoretical part is comprehensive due to fact there is only little common awareness about mainframe computers, z/OS environment and tools used for creation of final program. First it contains few words about IBM company as dominating distributor of mainframe computers and its management. Then follows part explaining what mainframe is, summarizing mainframe history, its capabilities, possibilities and finally whole concept of mainframe operating system called z/OS. Practical part contains little close up of programming languages used because they do not belong to commonly used languages. It is Restructured Extended Executor (REXX) and Job Control Language (JCL). Last section of practical part describes program itself. Motivation, usability and particular parts of code are depicted here along with problems encountered during development. End of thesis demonstrates program functionality and conclusion. III Keywords programming, programming language, Restructured Extended Executor (REXX), Job Control Language (JCL), Time Sharing Option (TSO), Interactive System Productivity Facility (ISPF), International Business Machines (IBM), Central Processing Complex (CPC), mainframe computer, IBM System z (zSeries), z/OS operating system, sysplex, data gathering, system settings, remote job executing IV Contents Contents 1 Introduction..................................................................................................................................... 2 2 About IBM Corporation................................................................................................................. 3 2.1 Pre-mainframe history of IBM............................................................................................. 3 2.2 Era of mainframes.................................................................................................................. 6 2.3 Personal computers, IBM near disaster .............................................................................. 8 2.4 IBM resurrection, present..................................................................................................... 9 3 Mainframe computing.................................................................................................................. 10 3.1 Mainframe generations and history .................................................................................. 11 3.2 Hardware configuration...................................................................................................... 15 3.2.1 Processor Book concept............................................................................................. 17 3.2.2 Multiple Chip Module............................................................................................... 18 3.2.3 zEnterprise EC12 models .......................................................................................... 20 3.2.4 System robustness ...................................................................................................... 20 3.3 Mainframe peripherals........................................................................................................ 21 3.3.1 Direct Access Storage Device.................................................................................... 21 3.3.2 Other peripherals........................................................................................................ 23 3.4 Typical mainframe installation.......................................................................................... 27 3.5 Basic operating system principles...................................................................................... 29 3.5.1 Mainframe memory and addressing........................................................................ 30 3.5.2 Data storing................................................................................................................. 32 3.5.3 Important system components and started tasks................................................... 34 3.5.4 Common middleware applications.......................................................................... 36 3.6 Spooling................................................................................................................................. 37 3.7 Batch processing .................................................................................................................. 37 3.8 Mainframe vs. distributed computing .............................................................................. 38 4 Programming under z/OS............................................................................................................ 42 4.1 Restructured Extended Executor....................................................................................... 44 4.2 Job Control Language and job processing........................................................................ 45 5 System information gathering utility.......................................................................................... 48 5.1 Motivation ............................................................................................................................ 48 5.2 How it works ........................................................................................................................ 49 5.2.1 System information gathering part.......................................................................... 50 5.2.2 Main program............................................................................................................. 53 5.3 Problems encountered in the implementation ................................................................ 54 5.4 Utility portability and modifiability.................................................................................. 55 6 Conclusion ..................................................................................................................................... 56 List of references ..................................................................................................................................... 57 List of used abbreviations ...................................................................................................................... 59 Introduction 1 Introduction Main motivation of this diploma thesis is to provide an overview of mainframe computing, currently widely used but invisible to many people. As most of us become daily users of this computer platform by making credit card transactions or means of transport reservations, still most people don’t know what mainframe is and many even don’t know that such platform exists. With each day growing online business and cashless payments is mainframe applied increasingly. The diploma thesis consists from theoretical and practical part. First chapter in theoretical part summarizes history of IBM Corporation as main producer of mainframe hardware, software, platform support and services. It covers history of IBM from its predecessors to the present. Then the most comprehensive chapter follows. Its purpose is to bring closer look at mainframe computing as a whole. At first general view of mainframes, difference between supercomputer and mainframe, mainframe common areas of activity and basic features is given. Further history of mainframes is described including mainframe generations. Next part speaks about mainframe hardware, most used peripherals and typical installation. Description of operating principles and important system components follows. Last part of theoretical chapter forms comparison between mainframes to distributed computing Practical part of the thesis speaks about programming languages under mainframe operating system. It focuses closer on two languages – Restructured Extended Executor and Job Control Language. These two languages were used to implementation of utility used for system information gathering which is described in last chapter. The utility is introduced, its capabilities are described, principles are shown and eventually further usages are discussed. 2 About IBM Corporation 2 About IBM Corporation IBM is an American corporation
Recommended publications
  • Programming Paradigms & Object-Oriented
    4.3 (Programming Paradigms & Object-Oriented- Computer Science 9608 Programming) with Majid Tahir Syllabus Content: 4.3.1 Programming paradigms Show understanding of what is meant by a programming paradigm Show understanding of the characteristics of a number of programming paradigms (low- level, imperative (procedural), object-oriented, declarative) – low-level programming Demonstrate an ability to write low-level code that uses various address modes: o immediate, direct, indirect, indexed and relative (see Section 1.4.3 and Section 3.6.2) o imperative programming- see details in Section 2.3 (procedural programming) Object-oriented programming (OOP) o demonstrate an ability to solve a problem by designing appropriate classes o demonstrate an ability to write code that demonstrates the use of classes, inheritance, polymorphism and containment (aggregation) declarative programming o demonstrate an ability to solve a problem by writing appropriate facts and rules based on supplied information o demonstrate an ability to write code that can satisfy a goal using facts and rules Programming paradigms 1 4.3 (Programming Paradigms & Object-Oriented- Computer Science 9608 Programming) with Majid Tahir Programming paradigm: A programming paradigm is a set of programming concepts and is a fundamental style of programming. Each paradigm will support a different way of thinking and problem solving. Paradigms are supported by programming language features. Some programming languages support more than one paradigm. There are many different paradigms, not all mutually exclusive. Here are just a few different paradigms. Low-level programming paradigm The features of Low-level programming languages give us the ability to manipulate the contents of memory addresses and registers directly and exploit the architecture of a given processor.
    [Show full text]
  • The Operating System Handbook Or, Fake Your Way Through Minis and Mainframes
    The Operating System Handbook or, Fake Your Way Through Minis and Mainframes by Bob DuCharme MVS Table of Contents Chapter 22 MVS: An Introduction.................................................................................... 22.1 Batch Jobs..................................................................................................................1 22.2 Interacting with MVS................................................................................................3 22.2.1 TSO.........................................................................................................................3 22.2.2 ISPF........................................................................................................................3 22.2.3 CICS........................................................................................................................4 22.2.4 Other MVS Components.........................................................................................4 22.3 History........................................................................................................................5 Chapter 23 Getting Started with MVS............................................................................... 23.1 Starting Up.................................................................................................................6 23.1.1 VTAM.....................................................................................................................6 23.1.2 Logging On.............................................................................................................6
    [Show full text]
  • Chapter 1 Introduction to Computers, Programs, and Java
    Chapter 1 Introduction to Computers, Programs, and Java 1.1 Introduction • The central theme of this book is to learn how to solve problems by writing a program . • This book teaches you how to create programs by using the Java programming languages . • Java is the Internet program language • Why Java? The answer is that Java enables user to deploy applications on the Internet for servers , desktop computers , and small hand-held devices . 1.2 What is a Computer? • A computer is an electronic device that stores and processes data. • A computer includes both hardware and software. o Hardware is the physical aspect of the computer that can be seen. o Software is the invisible instructions that control the hardware and make it work. • Computer programming consists of writing instructions for computers to perform. • A computer consists of the following hardware components o CPU (Central Processing Unit) o Memory (Main memory) o Storage Devices (hard disk, floppy disk, CDs) o Input/Output devices (monitor, printer, keyboard, mouse) o Communication devices (Modem, NIC (Network Interface Card)). Bus Storage Communication Input Output Memory CPU Devices Devices Devices Devices e.g., Disk, CD, e.g., Modem, e.g., Keyboard, e.g., Monitor, and Tape and NIC Mouse Printer FIGURE 1.1 A computer consists of a CPU, memory, Hard disk, floppy disk, monitor, printer, and communication devices. CMPS161 Class Notes (Chap 01) Page 1 / 15 Kuo-pao Yang 1.2.1 Central Processing Unit (CPU) • The central processing unit (CPU) is the brain of a computer. • It retrieves instructions from memory and executes them.
    [Show full text]
  • OS/390 Introduction to ISPF
    z/OS Basic Skills Information Center: ISPF Course Module Module 1: Main Features of ISPF © Copyright IBM Corp., 2005. All rights reserved. z/OS Basic Skills Information Center: ISPF Course Module Introduction This module, Main Features of ISPF, introduces you to the z/OS Interactive System Productivity Facility, or ISPF, with special emphasis on the Program Development Facility, or PDF. Time to complete: 10 – 15 minutes © Copyright IBM Corp., 2005. All rights reserved. Page 2 of 15 z/OS Basic Skills Information Center: ISPF Course Module Main Features of ISPF - Objectives Upon completion of this module, you should be able to: • Describe the purpose of ISPF and its relationship to TSO • List the four major components of ISPF • Explain the function of each of the four components © Copyright IBM Corp., 2005. All rights reserved. Page 3 of 15 z/OS Basic Skills Information Center: ISPF Course Module Main Features of ISPF – Purpose of ISPF The Interactive System Productivity Facility, or ISPF, is a development tool set for the z/OS operating system. It has been used since 1975 to increase the productivity of the development of mainframe applications, because it provides an extensive set of programmer oriented facilities. © Copyright IBM Corp., 2005. All rights reserved. Page 4 of 15 z/OS Basic Skills Information Center: ISPF Course Module Main Features of ISPF – The Time Sharing Option/Extended (TSO/E) The Time Sharing Option/Extended, or TSO/E, is a base element of IBM's mainframe z/OS operating system. TSO/E allows you to communicate interactively with the MVS operating system by typing commands (one line at a time) on a computer terminal.
    [Show full text]
  • 15-150 Lectures 27 and 28: Imperative Programming
    15-150 Lectures 27 and 28: Imperative Programming Lectures by Dan Licata April 24 and 26, 2012 In these lectures, we will show that imperative programming is a special case of functional programming. We will also investigate the relationship between imperative programming and par- allelism, and think about what happens when the two are combined. 1 Mutable Cells Functional programming is all about transforming data into new data. Imperative programming is all about updating and changing data. To get started with imperative programming, ML provides a type 'a ref representing mutable memory cells. This type is equipped with: • A constructor ref : 'a -> 'a ref. Evaluating ref v creates and returns a new memory cell containing the value v. Pattern-matching a cell with the pattern ref p gets the contents. • An operation := : 'a ref * 'a -> unit that updates the contents of a cell. For example: val account = ref 100 val (ref cur) = account val () = account := 400 val (ref cur) = account 1. In the first line, evaluating ref 100 creates a new memory cell containing the value 100, which we will write as a box: 100 and binds the variable account to this cell. 2. The next line pattern-matches account as ref cur, which binds cur to the value currently in the box, in this case 100. 3. The next line updates the box to contain the value 400. 4. The final line reads the current value in the box, in this case 400. 1 It's important to note that, with mutation, the same program can have different results if it is evaluated multiple times.
    [Show full text]
  • Functional and Imperative Object-Oriented Programming in Theory and Practice
    Uppsala universitet Inst. för informatik och media Functional and Imperative Object-Oriented Programming in Theory and Practice A Study of Online Discussions in the Programming Community Per Jernlund & Martin Stenberg Kurs: Examensarbete Nivå: C Termin: VT-19 Datum: 14-06-2019 Abstract Functional programming (FP) has progressively become more prevalent and techniques from the FP paradigm has been implemented in many different Imperative object-oriented programming (OOP) languages. However, there is no indication that OOP is going out of style. Nevertheless the increased popularity in FP has sparked new discussions across the Internet between the FP and OOP communities regarding a multitude of related aspects. These discussions could provide insights into the questions and challenges faced by programmers today. This thesis investigates these online discussions in a small and contemporary scale in order to identify the most discussed aspect of FP and OOP. Once identified the statements and claims made by various discussion participants were selected and compared to literature relating to the aspects and the theory behind the paradigms in order to determine whether there was any discrepancies between practitioners and theory. It was done in order to investigate whether the practitioners had different ideas in the form of best practices that could influence theories. The most discussed aspect within FP and OOP was immutability and state relating primarily to the aspects of concurrency and performance. ​ ​ ​ ​ ​ ​ This thesis presents a selection of representative quotes that illustrate the different points of view held by groups in the community and then addresses those claims by investigating what is said in literature.
    [Show full text]
  • Big Blue in the Bottomless Pit: the Early Years of IBM Chile
    Big Blue in the Bottomless Pit: The Early Years of IBM Chile Eden Medina Indiana University In examining the history of IBM in Chile, this article asks how IBM came to dominate Chile’s computer market and, to address this question, emphasizes the importance of studying both IBM corporate strategy and Chilean national history. The article also examines how IBM reproduced its corporate culture in Latin America and used it to accommodate the region’s political and economic changes. Thomas J. Watson Jr. was skeptical when he The history of IBM has been documented first heard his father’s plan to create an from a number of perspectives. Former em- international subsidiary. ‘‘We had endless ployees, management experts, journalists, and opportunityandlittleriskintheUS,’’he historians of business, technology, and com- wrote, ‘‘while it was hard to imagine us getting puting have all made important contributions anywhere abroad. Latin America, for example to our understanding of IBM’s past.3 Some seemed like a bottomless pit.’’1 However, the works have explored company operations senior Watson had a different sense of the outside the US in detail.4 However, most of potential for profit within the world market these studies do not address company activi- and believed that one day IBM’s sales abroad ties in regions of the developing world, such as would surpass its growing domestic business. Latin America.5 Chile, a slender South Amer- In 1949, he created the IBM World Trade ican country bordered by the Pacific Ocean on Corporation to coordinate the company’s one side and the Andean cordillera on the activities outside the US and appointed his other, offers a rich site for studying IBM younger son, Arthur K.
    [Show full text]
  • Facility/370: Introduction
    File No. S370-20 Order No. GC20-1800=9 IDl\n \/:u+ •• ".1 I\n"n"': ..... ft IDIVI V IIlUQI .Via"'lllIlv Facility/370: Systems Introduction Release 6 PLC 4 This publication introduces VM/370, and is intended for anyone who is interested in VM/370. However, the reader should have a basic understanding of I BM data processing. VM/370 (Virtual Machine Facility/370) is a system control program (SCP) that tailors the resources and capabilities of a single System/370 computer to provide concurrent users their one unique (virtual) machine. VM/370 consists of a Control Program (CP), which manages the real computer, a Conversational Monitor System (CMS), which is a general-purpose conversational time-sharing system that executes in a virtual machine, a Remote Spooling Communications Subsystem (RSCS), which spools files to and from geographically remote locations, and a Interactive Problem Control System (I PCS), which provides problem analysis and management faci I ities. The first section of the publication is an introduction; it describes what VM/370 can do. The second, third, fourth, and fifth sections describe the Control Program, Conversational Monitor System, Remote Spooling Communications Subsystem, and Interactive Problem Control System respectively. The appendixes include information about VM/370 publication-to-audience relationship and VM/370-related publications for CMS users. , This publication is a prerequisite for the VM/370 system library. --...- --- ---.-- ------- ------ --..- --------- -~-y- Page of GC20-1800-9 As Updated Aug 1, 1979 by TNL GN25-0U89 ~b Edition (Karch 1919) This edition (GC20-1800-~ together with Technical Newsletter GN25-0489. dated August 1, 1919, applies to Release 6 PLC 4 (Program Level Change) of IBM Virtual Machine Facility/310 and to all subsequent releases until otherwise indicated in new editions or Technical Newsletters.
    [Show full text]
  • The Advent of Recursion in Programming, 1950S-1960S
    The Advent of Recursion in Programming, 1950s-1960s Edgar G. Daylight?? Institute of Logic, Language, and Computation, University of Amsterdam, The Netherlands [email protected] Abstract. The term `recursive' has had different meanings during the past two centuries among various communities of scholars. Its historical epistemology has already been described by Soare (1996) with respect to the mathematicians, logicians, and recursive-function theorists. The computer practitioners, on the other hand, are discussed in this paper by focusing on the definition and implementation of the ALGOL60 program- ming language. Recursion entered ALGOL60 in two novel ways: (i) syn- tactically with what we now call BNF notation, and (ii) dynamically by means of the recursive procedure. As is shown, both (i) and (ii) were in- troduced by linguistically-inclined programmers who were not versed in logic and who, rather unconventionally, abstracted away from the down- to-earth practicalities of their computing machines. By the end of the 1960s, some computer practitioners had become aware of the theoreti- cal insignificance of the recursive procedure in terms of computability, though without relying on recursive-function theory. The presented re- sults help us to better understand the technological ancestry of modern- day computer science, in the hope that contemporary researchers can more easily build upon its past. Keywords: recursion, recursive procedure, computability, syntax, BNF, ALGOL, logic, recursive-function theory 1 Introduction In his paper, Computability and Recursion [41], Soare explained the origin of computability, the origin of recursion, and how both concepts were brought to- gether in the 1930s by G¨odel, Church, Kleene, Turing, and others.
    [Show full text]
  • Unit 2 — Imperative and Object-Oriented Paradigm
    Programming Paradigms Unit 2 — Imperative and Object-oriented Paradigm J. Gamper Free University of Bozen-Bolzano Faculty of Computer Science IDSE PP 2018/19 Unit 2 – Imperative and Object-oriented Paradigm 1/38 Outline 1 Imperative Programming Paradigm 2 Abstract Data Types 3 Object-oriented Approach PP 2018/19 Unit 2 – Imperative and Object-oriented Paradigm 2/38 Imperative Programming Paradigm Outline 1 Imperative Programming Paradigm 2 Abstract Data Types 3 Object-oriented Approach PP 2018/19 Unit 2 – Imperative and Object-oriented Paradigm 3/38 Imperative Programming Paradigm Imperative Paradigm/1 The imperative paradigm is the oldest and most popular paradigm Based on the von Neumann architecture of computers Imperative programs define sequences of commands/statements for the computer that change a program state (i.e., set of variables) Commands are stored in memory and executed in the order found Commands retrieve data, perform a computation, and assign the result to a memory location Data ←→ Memory CPU (Data and Address Program) ←→ The hardware implementation of almost all Machine code computers is imperative 8B542408 83FA0077 06B80000 Machine code, which is native to the C9010000 008D0419 83FA0376 computer, and written in the imperative style B84AEBF1 5BC3 PP 2018/19 Unit 2 – Imperative and Object-oriented Paradigm 4/38 Imperative Programming Paradigm Imperative Paradigm/2 Central elements of imperative paradigm: Assigment statement: assigns values to memory locations and changes the current state of a program Variables refer
    [Show full text]
  • IBM Global Services: a Brief History
    IBM Global Services: A Brief History IBM Corporate Archives May 2002 2405SH01 2 OVERVIEW Background In 1991 IBM was a $64.8 billion company, of which less than $6 billion was derived from non-maintenance services. Ten short years later, the business of information technology (IT) services alone generated more than 40 percent of IBM’s $86 billion in sales and had become the single largest source of revenue in IBM’s portfolio. How did that happen? It was partly the result of old-fashioned hard work and serious commitment: growing customer by customer; building disciplined management and financial systems; and investing to hire and train experts in everything from IT consulting to systems architecture and Web services. IBM used its financial strength to fund the expensive push into outsourcing, and the company placed informed bets on the future in areas such as IT utility services (“e-business on demand”) and hosted storage. But most important, the success of IBM Global Services came from something very simple: a clear understanding of customers’ needs. IBM saw that technology and business were converging to create something new and challenging for every kind of enterprise. And IBM had the deep experience in both areas to help its customers bring them together most effectively. The following pages offer a brief look at the history and growth of the organization that is today IBM’s top revenue generator. Definitions What are “services?” In the IT world, that broad term has encompassed dozens of offerings and meanings, including consulting, custom programming, systems integration (designing, building and installing complex information systems), systems operations (in which a vendor runs part or all of a company’s information systems), business innovation services (such as supply chain management), strategic outsourcing, application management services, integrated technology services (such as business recovery), networking services, learning services, security services, storage services and wireless services.
    [Show full text]
  • Language Translators
    Student Notes Theory LANGUAGE TRANSLATORS A. HIGH AND LOW LEVEL LANGUAGES Programming languages Low – Level Languages High-Level Languages Example: Assembly Language Example: Pascal, Basic, Java Characteristics of LOW Level Languages: They are machine oriented : an assembly language program written for one machine will not work on any other type of machine unless they happen to use the same processor chip. Each assembly language statement generally translates into one machine code instruction, therefore the program becomes long and time-consuming to create. Example: 10100101 01110001 LDA &71 01101001 00000001 ADD #&01 10000101 01110001 STA &71 Characteristics of HIGH Level Languages: They are not machine oriented: in theory they are portable , meaning that a program written for one machine will run on any other machine for which the appropriate compiler or interpreter is available. They are problem oriented: most high level languages have structures and facilities appropriate to a particular use or type of problem. For example, FORTRAN was developed for use in solving mathematical problems. Some languages, such as PASCAL were developed as general-purpose languages. Statements in high-level languages usually resemble English sentences or mathematical expressions and these languages tend to be easier to learn and understand than assembly language. Each statement in a high level language will be translated into several machine code instructions. Example: number:= number + 1; 10100101 01110001 01101001 00000001 10000101 01110001 B. GENERATIONS OF PROGRAMMING LANGUAGES 4th generation 4GLs 3rd generation High Level Languages 2nd generation Low-level Languages 1st generation Machine Code Page 1 of 5 K Aquilina Student Notes Theory 1. MACHINE LANGUAGE – 1ST GENERATION In the early days of computer programming all programs had to be written in machine code.
    [Show full text]