This Book Is a Guide to Families and Genera of Gorgonians in Indonesian Waters

Total Page:16

File Type:pdf, Size:1020Kb

This Book Is a Guide to Families and Genera of Gorgonians in Indonesian Waters This book is a guide to families and genera of gorgonians in Indonesian waters. Gorgonians and sea fans are common names for animals grouped under Alcyonacea (soft corals). Together with Helioporacea (blue coral) and Pennatulacea (sea pens) they belong to the larger animal group Octocorallia. Characteristic of this group is that their polyps always have eight tentacles (octo-coral). These animals do not have massive bones like hard corals, but microscopic sclerites to support their bodies, consequently the colonies are soft and flexible and therefore they have a popular name “soft coral”. Pusat Penelitian Oseanografi-LIPI Jl. Pasir Putih No. 1, Ancol Timur, Jakarta 11048. Indonesia Telp. : 021-64712287, 6452425, 64713850 Fax. : 021-64711948, 64712287 E-mail : [email protected] Url. http://www.oseanografi.lipi.go.id http://coremap.oseanografi.lipi.go.id/ Gorgonians in Indonesian waters Yosephine Tuti Leen P van Ofwegen c PROGRAM COREMAP-CTI PUSAT PENELITIAN OSEANOGRAFI LEMBAGA ILMU PENGETAHUAN INDONESIA Gorgonians in Indonesian waters Yosephine Tuti Leen P van Ofwegen Gorgonians in Indonesian waters ISBN : 978-602-6504-23-4 Authors Yosephine Tuti Coral Reef Researcher Research Centre for Oceanography Indonesian Institute of Sciences Email : [email protected] Url. http://www.oseanografi.lipi.go.id http://coremap.oseanografi.lipi.go.id/ Leen P van Ofwegen Senior Researcher Naturalis Biodiversity Center NBC · Department of Marine Zoology Postbus 9517, 2300 RA Leiden Email. [email protected] Url. www.naturalis.nl Layout by Dewirina Zulfianita Backcover Picture (Gorgonian as a host of ovulid) by Bastian T Reijnen PT. Media Sains Nasional Ruko Bangbarung Grande No. K-9 Bogor Member of IKAPI No. 276/JB/2015 Telp. : 0251-7160668, 7550470 Fax. : 0251-7550470 Email : [email protected] Copyright © 2018 COREMAP CTI - LIPI This book is dedicated to : My family A. M. Suryanto S, Anastasia, Florentina and Vinsensia whose support me very much. To my parent M. I. Minarni and late J. Hermanlimianto to introduce me to love the sea since I was a child. CONTENTS LIST OF FAMILIES AND GENERA ii ACKNOWLEDGEMENTS iii FOREWORD iv INTRODUCTION 1 AN OVERVIEW OF THE CLASSIFICATION SYSTEM 2 COELENTERATA 2 BIOLOGY OF OCTOCORALS 3 ECOLOGY OF OCTOCORALS 7 SAMPLING TEHNIQUES AND IDENTIFYING GORGONIANS 7 REFFERENCE GUIDE TO THE FAMILIES AND GENERA 8 KEY TO THE GROUPS OF OCTOCORALLIA 8 KEY TO FAMILY 9 KEY TO GENERA 11 Family Briareidae Gray, 1859 16 Family Anthothelidae Broch, 1916 18 Family Subergorgiidae Gray, 1859 24 Family Melithaeidae Gray, 1870 28 Family Acanthogorgiidae Gray, 1859 34 Family Plexauridae Gray, 1859 40 Family Gorgoniidae Lamouroux, 1812 50 Family Ellisellidae Gray, 1859 66 Family Ifalukellidae Bayer, 1955 78 Family Chrysogorgiidae Verrill, 1883. 80 Family Isididae Lamouroux, 1812 82 LITERATURE 85 GLOSSARY 86 INDEX 88 ABOUT THE AUTHORS 89 i LIST OF FAMILY AND GENERA THE SCLERAXONIA GROUP SUBORDER HOLAXONIA SUBORDER CALCAXONIA Family Briareidae Family Acanthogorgiidae Family Ellisellidae Briareum Acanthogorgia Ellisella Family Anthothelidae Anthogorgia Viminella Iciligorgia Muricella Ctenocella Solenocaulon Family Plexauridae Junceella Alertigorgia Euplexaura Dichotella Family Subergorgiidae Bebryce Verrucella Subergorgia Echinomuricea Family Ifalukellidae Annella Trimuricea Plumigorgia Family Melithaeidae Villogorgia Family Chrysogorgiidae Melithaea Echinogorgia Stephanogorgia Mopsella Menella Family Isididae Acabaria Paraplexaura Isis Astrogorgia Family Gorgoniidae Rumphella Hicksonella Guaiagorgia Pinnigorgia ii ACKNOWLEDGEMENTS We are extremely grateful with the cooperation of the Research Centre for Oceanography- Indonesian Institute of Sciences and the Naturalis Biodiversity Center (NBC), Leiden. Most of the underwater photos and samples were taken from the collaboration Expeditions in Indonesia and identified in Leiden, funded by Naturalis. We would like to thank Dr. Bert Hoeksema and Prof. Dr. Suharsono for their effort and patience in the preparation, during and after fieldwork; including administration paperwork for coordination and expeditions in Indonesia. We thank The Zee team of NBC-Naturalis for the cooperation and friendship during and after fieldwork. We also thank the crews of the Pari Island LIPI’s Station and Ternate LIPI’s Station as the base camp and working field laboratory. Appreciation also to LIPI’s Research Vessel Baruna Jaya VIII and the crews for their tremendous support in carrying out the surveys and research equipment and samples in Raja Ampat Expedition. LIPI team, my colleagues and volunteers, too numerous to list here, are also greatly thanked for their help and encouragement. All of the presented gorgonian genera occur in Indonesian waters. Most of the pictures were taken by the writers at Raja Ampat, Wakatobi and Ternate. Coral Reef Research Foundation also contributed several photos to enhance quality of the pictures in this book, therefore we also thank Dr. Bert Hoeksema, Dr. Bastian Theodoor Reijnen and Drs. Frank Stokvis MSc. for contributing their valuable photographs. All of the Scanning Electron Microscopy was done by Dr. Leen P van Ofwegen. We are extremely grateful for their contribution on providing these valuable images. We would like to thank Dr. Giyanto, Dra. Sasanti R.S. MSc, Dra. Inayat A. H. MSi. and Tri Aryono SSi. M.Sc for their strong encouragement on finishing this book. Our gratitude goes to Dewirina M.IKom , M. Rizkie S.Si., Siti Sulha SE. and Agus Budiyanto for helping with technical aspects of publication and layout. We would like to particularly acknowledge the contribution of Dr. Suharsono for his great help in editing, providing suggestions and ongoing support which helped improving this book. Lastly, we are extremely greatful of COREMAP CTI LIPI support, in publishing this book. iii FOREWORD Indonesian water is known to be rich with very diverse fauna and flora. This mega biodiversity also the case for gorgonians (octocorals), of which we do not yet know very much, even though Siboga and Rumphius Expeditions took place many years ago. Nowadays we still have a cooperation between the Research Centre for Oceanography - Indonesian Institute of Sciences (LIPI) and the Naturalis Biodiversity Center (NBC Naturalis) - Leiden to examine more of this marine mega biodiversity. This book provides non taxonomists with a simple field guide to generic level identification of shallow water to 40 meter gorgonians. Written in informal and non technical terms, it provides a comprehensive introduction to biology, ecology and classification of gorgonians. It is also a simple guide for preservation and preparation of specimen to study. Photographs are mostly from Indonesian waters. With information about colony shape, specific characters among genera and the sclerite characteristics of diverse genera this field guide will make non taxonomists more comfortable in identifying the gorgonian to genus level. I am extremely proud of the writers’ hard work and to publish this book being the first Gorgonian book in Indo-Pacific waters. Let this book be the first step of introducing gorgonians in Indonesian waters, with more still remain to be studied. Dr. Dirhamsyah, MA Director of Research Centre for Oceanography Indonesian Institute of Sciences (LIPI) iv Introduction About This Book This book is a guide to families and genera of gorgonians in Indonesian waters. Gorgonians and sea fans are common names for animals grouped under Alcyonacea (soft corals). Together with Helioporacea (blue coral) and Pennatulacea (sea pens) they belong to the larger animal group Octocorallia. Characteristic of this group is that their polyps always have eight tentacles (octo-coral), with rows of pinnules along both sides of the tentacles. These animals do not have massive bones like hard corals, but microscopic sclerites to support their bodies, consequently the colonies are soft and flexible and therefore they have a popular name “soft coral”. We try to make this book a user friendly field guide, and we try to minimize the technical words, but we can not avoid some of them (See Bayer et al. 1983). In describing the individual genera, we present: - Under water photographs of the colonies - Representative characteristics of sclerites (microscopic bones that support the body/ colonies) - Detailed text describing colony shapes, polyps, sclerites, the colour of the colonies and sclerites, also the habitat and abundance. 1 Introduction An Overview Of The Classification System COELENTERATA Systematic: The phylum Coelenterata, animals having tentacles, more or less radial symmetry, and only one major internal cavity. This cavity has only one opening, the mouth. Gorgonians are a small part of these Invertebrates (animal without backbones). Class Anthozoa Ehrenberg, 1831: This class contains hard, soft, blue and black corals, anemones, sea pens, zoanthids, and corallimorpharians. No medusa stages and the polyps are solitary or colonial. The class has 3 subclasses and 9 orders. Subclass: Octocorallia Haeckel, 1866 or Alcyonaria; each polyp bears eight hollow tentacles, which have pinnules on two sides. • Order: Helioporacea (blue coral) • Order: Pennatulacea (sea pens) • Order: Alcyonacea (Soft corals and sea fans) Subclass: Hexacorallia (or Zoantharia); each polyp bears six or multiple of six tentacles without pinnules • Order: Actiniaria (sea anemones) • Order: Scleractinia (hard corals) • Order: Zoantharia (zoanthids) • Order: Corallimorpharia (mushroom anemones) Subclass: Ceriantipatharia; Anemone like
Recommended publications
  • MARINE FAUNA and FLORA of BERMUDA a Systematic Guide to the Identification of Marine Organisms
    MARINE FAUNA AND FLORA OF BERMUDA A Systematic Guide to the Identification of Marine Organisms Edited by WOLFGANG STERRER Bermuda Biological Station St. George's, Bermuda in cooperation with Christiane Schoepfer-Sterrer and 63 text contributors A Wiley-Interscience Publication JOHN WILEY & SONS New York Chichester Brisbane Toronto Singapore ANTHOZOA 159 sucker) on the exumbrella. Color vari­ many Actiniaria and Ceriantharia can able, mostly greenish gray-blue, the move if exposed to unfavorable condi­ greenish color due to zooxanthellae tions. Actiniaria can creep along on their embedded in the mesoglea. Polyp pedal discs at 8-10 cm/hr, pull themselves slender; strobilation of the monodisc by their tentacles, move by peristalsis type. Medusae are found, upside­ through loose sediment, float in currents, down and usually in large congrega­ and even swim by coordinated tentacular tions, on the muddy bottoms of in­ motion. shore bays and ponds. Both subclasses are represented in Ber­ W. STERRER muda. Because the orders are so diverse morphologically, they are often discussed separately. In some classifications the an­ Class Anthozoa (Corals, anemones) thozoan orders are grouped into 3 (not the 2 considered here) subclasses, splitting off CHARACTERISTICS: Exclusively polypoid, sol­ the Ceriantharia and Antipatharia into a itary or colonial eNIDARIA. Oral end ex­ separate subclass, the Ceriantipatharia. panded into oral disc which bears the mouth and Corallimorpharia are sometimes consid­ one or more rings of hollow tentacles. ered a suborder of Scleractinia. Approxi­ Stomodeum well developed, often with 1 or 2 mately 6,500 species of Anthozoa are siphonoglyphs. Gastrovascular cavity compart­ known. Of 93 species reported from Ber­ mentalized by radially arranged mesenteries.
    [Show full text]
  • In the Long Island and It's Adjacent Areas in Middle Andaman, India
    Indian Journal of Geo Marine Sciences Vol. 47 (01), January 2018, pp. 96-102 Diversity and distribution of gorgonians (Octocorallia) in the Long Island and it’s adjacent areas in Middle Andaman, India J. S. Yogesh Kumar1*, S. Geetha2, C. Raghunathan3 & R. Sornaraj2 1Marine Aquarium and Regional Centre, Zoological Survey of India, (Ministry of Environment, Forest and Climate Change), Government of India, Digha – 721428, West Bengal, India. 2Research Department of Zoology, Kamaraj College (Manonmaniam Sundaranar University), Thoothukudi – 628003, Tamil Nadu, India. 3Zoological Survey of India (Ministry of Environment, Forest and Climate Change), Government of India, M Block, New Alipore, Kolkata - 700 053,West Bengal, India. [E.mail: [email protected] ] Received 05 November 2015 ; revised 17 November 2016 The diversity and distribution of gorgonian were assessed at seven sites at Long Island and it’s adjusting areas in Middle Andaman during 2013 to 2015. A total of 28 species of gorgonians are reported in shallow reef areas. Maximum life form was observed in Guaiter Island and Minimum in Headlamp Patch. A significant positive correlation was observed between the Islands, the species diversity was high for the genera Junceella, Subergorgia and Ellisella. Principal Component Analysis also supported for this three genes. [Keywords: Diversity, Gorgonian, Octocoral, Long Island, Middle Andaman, Andaman and Nicobar, India] Introduction The gorgonians popularly called as sea In India, the study on gorgonians fans and sea whips are marine sessile taxonomy initiated by Thomson and coelenterates with colonial skeleton and living Henderson15,16 and 50 species were reported of polyps1. They are exceptionally productive and a which 26 species were new from oyster banks of valuable natural asset.
    [Show full text]
  • Preliminary Report on the Octocorals (Cnidaria: Anthozoa: Octocorallia) from the Ogasawara Islands
    国立科博専報,(52), pp. 65–94 , 2018 年 3 月 28 日 Mem. Natl. Mus. Nat. Sci., Tokyo, (52), pp. 65–94, March 28, 2018 Preliminary Report on the Octocorals (Cnidaria: Anthozoa: Octocorallia) from the Ogasawara Islands Yukimitsu Imahara1* and Hiroshi Namikawa2 1Wakayama Laboratory, Biological Institute on Kuroshio, 300–11 Kire, Wakayama, Wakayama 640–0351, Japan *E-mail: [email protected] 2Showa Memorial Institute, National Museum of Nature and Science, 4–1–1 Amakubo, Tsukuba, Ibaraki 305–0005, Japan Abstract. Approximately 400 octocoral specimens were collected from the Ogasawara Islands by SCUBA diving during 2013–2016 and by dredging surveys by the R/V Koyo of the Tokyo Met- ropolitan Ogasawara Fisheries Center in 2014 as part of the project “Biological Properties of Bio- diversity Hotspots in Japan” at the National Museum of Nature and Science. Here we report on 52 lots of these octocoral specimens that have been identified to 42 species thus far. The specimens include seven species of three genera in two families of Stolonifera, 25 species of ten genera in two families of Alcyoniina, one species of Scleraxonia, and nine species of four genera in three families of Pennatulacea. Among them, three species of Stolonifera: Clavularia cf. durum Hick- son, C. cf. margaritiferae Thomson & Henderson and C. cf. repens Thomson & Henderson, and five species of Alcyoniina: Lobophytum variatum Tixier-Durivault, L. cf. mirabile Tixier- Durivault, Lohowia koosi Alderslade, Sarcophyton cf. boletiforme Tixier-Durivault and Sinularia linnei Ofwegen, are new to Japan. In particular, Lohowia koosi is the first discovery since the orig- inal description from the east coast of Australia.
    [Show full text]
  • New 9-Hydroxybriarane Diterpenoids from a Gorgonian Coral Briareum Sp
    International Journal of Molecular Sciences Article New 9-Hydroxybriarane Diterpenoids from a Gorgonian Coral Briareum sp. (Briareidae) Yin-Di Su 1,2,†, Chun-Sung Sung 3,4,†, Zhi-Hong Wen 1,5, Yu-Hsin Chen 2,6, Yu-Chia Chang 2,5, Jih-Jung Chen 7, Lee-Shing Fang 8, Yang-Chang Wu 9,10,11,12,*, Jyh-Horng Sheu 1,5,* and Ping-Jyun Sung 1,2,10,12,13,* Received: 30 November 2015; Accepted: 5 January 2016; Published: 9 January 2016 Academic Editor: Vassilios Roussis 1 Department of Marine Biotechnology & Resources and Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung 804, Taiwan; [email protected] (Y.-D.S.); [email protected] (Z.-H.W.) 2 National Museum of Marine Biology & Aquarium, Pingtung 944, Taiwan; [email protected] (Y.-H.C.); [email protected] (Y.-C.C.) 3 Department of Anesthesiology, Taipei Veterans General Hospital, Taipei 112, Taiwan; [email protected] 4 School of Medicine, National Yang-Ming University, Taipei 112, Taiwan 5 Doctoral Degree Program of Marine Biotechnology, National Sun Yat-sen University & Academia Sinica, Kaohsiung 804, Taiwan 6 Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 974, Taiwan 7 Department of Pharmacy & Graduate Institute of Pharmaceutical Technology, Tajen University, Pingtung 907, Taiwan; [email protected] 8 Department of Sport, Health and Leisure, Cheng Shiu University, Kaohsiung 833, Taiwan; [email protected] 9 School of Pharmacy, College of Pharmacy, China Medical University, Taichung 404, Taiwan 10 Chinese Medicine
    [Show full text]
  • Biodiversity of the Kermadec Islands and Offshore Waters of the Kermadec Ridge: Report of a Coastal, Marine Mammal and Deep-Sea Survey (TAN1612)
    Biodiversity of the Kermadec Islands and offshore waters of the Kermadec Ridge: report of a coastal, marine mammal and deep-sea survey (TAN1612) New Zealand Aquatic Environment and Biodiversity Report No. 179 Clark, M.R.; Trnski, T.; Constantine, R.; Aguirre, J.D.; Barker, J.; Betty, E.; Bowden, D.A.; Connell, A.; Duffy, C.; George, S.; Hannam, S.; Liggins, L..; Middleton, C.; Mills, S.; Pallentin, A.; Riekkola, L.; Sampey, A.; Sewell, M.; Spong, K.; Stewart, A.; Stewart, R.; Struthers, C.; van Oosterom, L. ISSN 1179-6480 (online) ISSN 1176-9440 (print) ISBN 978-1-77665-481-9 (online) ISBN 978-1-77665-482-6 (print) January 2017 Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries websites at: http://www.mpi.govt.nz/news-resources/publications.aspx http://fs.fish.govt.nz go to Document library/Research reports © Crown Copyright - Ministry for Primary Industries TABLE OF CONTENTS EXECUTIVE SUMMARY 1 1. INTRODUCTION 3 1.1 Objectives: 3 1.2 Objective 1: Benthic offshore biodiversity 3 1.3 Objective 2: Marine mammal research 4 1.4 Objective 3: Coastal biodiversity and connectivity 5 2. METHODS 5 2.1 Survey area 5 2.2 Survey design 6 Offshore Biodiversity 6 Marine mammal sampling 8 Coastal survey 8 Station recording 8 2.3 Sampling operations 8 Multibeam mapping 8 Photographic transect survey 9 Fish and Invertebrate sampling 9 Plankton sampling 11 Catch processing 11 Environmental sampling 12 Marine mammal sampling 12 Dive sampling operations 12 Outreach 13 3.
    [Show full text]
  • Table B – Subclass Octocorallia
    Table B – Subclass Octocorallia BINOMEN ORDER SUBORDER FAMILY SUBFAMILY GENUS SPECIES SUBSPECIES COMN_NAMES AUTHORITY SYNONYMS #Records Acanella arbuscula Alcyonacea Calcaxonia Isididae n/a Acanella arbuscula n/a n/a n/a n/a 59 Acanthogorgia armata Alcyonacea Holaxonia Acanthogorgiidae n/a Acanthogorgia armata n/a n/a Verrill, 1878 n/a 95 Anthomastus agassizii Alcyonacea Alcyoniina Alcyoniidae n/a Anthomastus agassizii n/a n/a (Verrill, 1922) n/a 35 Anthomastus grandiflorus Alcyonacea Alcyoniina Alcyoniidae n/a Anthomastus grandiflorus n/a n/a Verrill, 1878 Anthomastus purpureus 37 Anthomastus sp. Alcyonacea Alcyoniina Alcyoniidae n/a Anthomastus sp. n/a n/a Verrill, 1878 n/a 1 Anthothela grandiflora Alcyonacea Scleraxonia Anthothelidae n/a Anthothela grandiflora n/a n/a (Sars, 1856) n/a 24 Capnella florida Alcyonacea n/a Nephtheidae n/a Capnella florida n/a n/a (Verrill, 1869) Eunephthya florida 44 Capnella glomerata Alcyonacea n/a Nephtheidae n/a Capnella glomerata n/a n/a (Verrill, 1869) Eunephthya glomerata 4 Chrysogorgia agassizii Alcyonacea Holaxonia Acanthogorgiidae Chrysogorgiidae Chrysogorgia agassizii n/a n/a (Verrill, 1883) n/a 2 Clavularia modesta Alcyonacea n/a Clavulariidae n/a Clavularia modesta n/a n/a (Verrill, 1987) n/a 6 Clavularia rudis Alcyonacea n/a Clavulariidae n/a Clavularia rudis n/a n/a (Verrill, 1922) n/a 1 Gersemia fruticosa Alcyonacea Alcyoniina Alcyoniidae n/a Gersemia fruticosa n/a n/a Marenzeller, 1877 n/a 3 Keratoisis flexibilis Alcyonacea Calcaxonia Isididae n/a Keratoisis flexibilis n/a n/a Pourtales, 1868 n/a 1 Lepidisis caryophyllia Alcyonacea n/a Isididae n/a Lepidisis caryophyllia n/a n/a Verrill, 1883 Lepidisis vitrea 13 Muriceides sp.
    [Show full text]
  • Deep-Sea Origin and In-Situ Diversification of Chrysogorgiid Octocorals
    Deep-Sea Origin and In-Situ Diversification of Chrysogorgiid Octocorals Eric Pante1*¤, Scott C. France1, Arnaud Couloux2, Corinne Cruaud2, Catherine S. McFadden3, Sarah Samadi4, Les Watling5,6 1 Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, United States of America, 2 GENOSCOPE, Centre National de Se´quenc¸age, Evry, France, 3 Department of Biology, Harvey Mudd College, Claremont, California, United States of America, 4 De´partement Syste´matique et Evolution, UMR 7138 UPMC-IRD-MNHN- CNRS (UR IRD 148), Muse´um national d’Histoire naturelle, Paris, France, 5 Department of Biology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America, 6 Darling Marine Center, University of Maine, Walpole, Maine, United States of America Abstract The diversity, ubiquity and prevalence in deep waters of the octocoral family Chrysogorgiidae Verrill, 1883 make it noteworthy as a model system to study radiation and diversification in the deep sea. Here we provide the first comprehensive phylogenetic analysis of the Chrysogorgiidae, and compare phylogeny and depth distribution. Phylogenetic relationships among 10 of 14 currently-described Chrysogorgiidae genera were inferred based on mitochondrial (mtMutS, cox1) and nuclear (18S) markers. Bathymetric distribution was estimated from multiple sources, including museum records, a literature review, and our own sampling records (985 stations, 2345 specimens). Genetic analyses suggest that the Chrysogorgiidae as currently described is a polyphyletic family. Shallow-water genera, and two of eight deep-water genera, appear more closely related to other octocoral families than to the remainder of the monophyletic, deep-water chrysogorgiid genera. Monophyletic chrysogorgiids are composed of strictly (Iridogorgia Verrill, 1883, Metallogorgia Versluys, 1902, Radicipes Stearns, 1883, Pseudochrysogorgia Pante & France, 2010) and predominantly (Chrysogorgia Duchassaing & Michelotti, 1864) deep-sea genera that diversified in situ.
    [Show full text]
  • Guide to the Identification of Precious and Semi-Precious Corals in Commercial Trade
    'l'llA FFIC YvALE ,.._,..---...- guide to the identification of precious and semi-precious corals in commercial trade Ernest W.T. Cooper, Susan J. Torntore, Angela S.M. Leung, Tanya Shadbolt and Carolyn Dawe September 2011 © 2011 World Wildlife Fund and TRAFFIC. All rights reserved. ISBN 978-0-9693730-3-2 Reproduction and distribution for resale by any means photographic or mechanical, including photocopying, recording, taping or information storage and retrieval systems of any parts of this book, illustrations or texts is prohibited without prior written consent from World Wildlife Fund (WWF). Reproduction for CITES enforcement or educational and other non-commercial purposes by CITES Authorities and the CITES Secretariat is authorized without prior written permission, provided the source is fully acknowledged. Any reproduction, in full or in part, of this publication must credit WWF and TRAFFIC North America. The views of the authors expressed in this publication do not necessarily reflect those of the TRAFFIC network, WWF, or the International Union for Conservation of Nature (IUCN). The designation of geographical entities in this publication and the presentation of the material do not imply the expression of any opinion whatsoever on the part of WWF, TRAFFIC, or IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The TRAFFIC symbol copyright and Registered Trademark ownership are held by WWF. TRAFFIC is a joint program of WWF and IUCN. Suggested citation: Cooper, E.W.T., Torntore, S.J., Leung, A.S.M, Shadbolt, T. and Dawe, C.
    [Show full text]
  • Deep‐Sea Coral Taxa in the U.S. Gulf of Mexico: Depth and Geographical Distribution
    Deep‐Sea Coral Taxa in the U.S. Gulf of Mexico: Depth and Geographical Distribution by Peter J. Etnoyer1 and Stephen D. Cairns2 1. NOAA Center for Coastal Monitoring and Assessment, National Centers for Coastal Ocean Science, Charleston, SC 2. National Museum of Natural History, Smithsonian Institution, Washington, DC This annex to the U.S. Gulf of Mexico chapter in “The State of Deep‐Sea Coral Ecosystems of the United States” provides a list of deep‐sea coral taxa in the Phylum Cnidaria, Classes Anthozoa and Hydrozoa, known to occur in the waters of the Gulf of Mexico (Figure 1). Deep‐sea corals are defined as azooxanthellate, heterotrophic coral species occurring in waters 50 m deep or more. Details are provided on the vertical and geographic extent of each species (Table 1). This list is adapted from species lists presented in ʺBiodiversity of the Gulf of Mexicoʺ (Felder & Camp 2009), which inventoried species found throughout the entire Gulf of Mexico including areas outside U.S. waters. Taxonomic names are generally those currently accepted in the World Register of Marine Species (WoRMS), and are arranged by order, and alphabetically within order by suborder (if applicable), family, genus, and species. Data sources (references) listed are those principally used to establish geographic and depth distribution. Only those species found within the U.S. Gulf of Mexico Exclusive Economic Zone are presented here. Information from recent studies that have expanded the known range of species into the U.S. Gulf of Mexico have been included. The total number of species of deep‐sea corals documented for the U.S.
    [Show full text]
  • The Genetic Identity of Dinoflagellate Symbionts in Caribbean Octocorals
    Coral Reefs (2004) 23: 465-472 DOI 10.1007/S00338-004-0408-8 REPORT Tamar L. Goulet • Mary Alice CofFroth The genetic identity of dinoflagellate symbionts in Caribbean octocorals Received: 2 September 2002 / Accepted: 20 December 2003 / Published online: 29 July 2004 © Springer-Verlag 2004 Abstract Many cnidarians (e.g., corals, octocorals, sea Introduction anemones) maintain a symbiosis with dinoflagellates (zooxanthellae). Zooxanthellae are grouped into The cornerstone of the coral reef ecosystem is the sym- clades, with studies focusing on scleractinian corals. biosis between cnidarians (e.g., corals, octocorals, sea We characterized zooxanthellae in 35 species of Caribbean octocorals. Most Caribbean octocoral spe- anemones) and unicellular dinoñagellates commonly called zooxanthellae. Studies of zooxanthella symbioses cies (88.6%) hosted clade B zooxanthellae, 8.6% have previously been hampered by the difficulty of hosted clade C, and one species (2.9%) hosted clades B and C. Erythropodium caribaeorum harbored clade identifying the algae. Past techniques relied on culturing and/or identifying zooxanthellae based on their free- C and a unique RFLP pattern, which, when se- swimming form (Trench 1997), antigenic features quenced, fell within clade C. Five octocoral species (Kinzie and Chee 1982), and cell architecture (Blank displayed no zooxanthella cladal variation with depth. 1987), among others. These techniques were time-con- Nine of the ten octocoral species sampled throughout suming, required a great deal of expertise, and resulted the Caribbean exhibited no regional zooxanthella cla- in the differentiation of only a small number of zoo- dal differences. The exception, Briareum asbestinum, xanthella species. Molecular techniques amplifying had some colonies from the Dry Tortugas exhibiting zooxanthella DNA encoding for the small and large the E.
    [Show full text]
  • A Possible Method for Improving the Conservation Status of a Ellisella
    Research Article Mediterranean Marine Science Indexed in WoS (Web of Science, ISI Thomson) and SCOPUS The journal is available on line at http://www.medit-mar-sc.net http://dx.doi.org/10.12681/mms.2076 Pruning treatment: A possible method for improving the conservation status of a Ellisella paraplexauroides Stiasny, 1936 (Anthozoa, Alcyonacea) population in the Chafarinas Islands? LUIS SÁNCHEZ -TOCINO1, ANTONIO DE LA LINDE RUBIO2, M SOL LIZANA ROSAS1, TEODORO PÉREZ GUERRA1 and JOSE MANUEL TIERNO DE FIGUEROA1 1 Departamento de Zoología. Facultad de Ciencias. Universidad de Granada. Campus Fuentenueva s/n, 18071, Granada, Spain 2 Urbanización los Delfines, Pl 4, 2º, 11207, Algeciras, Cádiz, Spain Corresponding author: [email protected] Handling Editor: Emma Cebrian Received: 7 December 2017; Accepted: 11 July 2017; Published on line: 11 December 2017 Abstract In the present paper, the results of a four-year conservation study on the giant gorgonian Ellisella paraplexauroides in the Chafarinas Islands are reported. This species, currently protected in Spain, is present as isolated colonies or as a low number of them, except in the Chafarinas Islands, where higher densities can be found below a depth of 20 m. Nevertheless, as revealed by a previous study, a great number of colonies are partially covered by epibionts or totally dead. As a first objective of the present work, seven transects were performed in 2013 and 2014 to evaluate the percentage of colonies affected in areas that had not been previously sampled. Approximately between 35% and 95% of the colonies had different degrees of epibiosis or were dead. In 2015, ten transects were performed to specifically locate young colonies smaller than 15 cm, which could be indicative of popula- tion regeneration by sexual reproduction.
    [Show full text]
  • Deep-Sea Coral Taxa in the U. S. Caribbean Region: Depth And
    Deep‐Sea Coral Taxa in the U. S. Caribbean Region: Depth and Geographical Distribution By Stephen D. Cairns1 1. National Museum of Natural History, Smithsonian Institution, Washington, DC An update of the status of the azooxanthellate, heterotrophic coral species that occur predominantly deeper than 50 m in the U.S. Caribbean territories is not given in this volume because of lack of significant additional data. However, an updated list of deep‐sea coral species in Phylum Cnidaria, Classes Anthozoa and Hydrozoa, from the Caribbean region (Figure 1) is presented below. Details are provided on depth ranges and known geographic distributions within the region (Table 1). This list is adapted from Lutz & Ginsburg (2007, Appendix 8.1) in that it is restricted to the U. S. territories in the Caribbean, i.e., Puerto Rico, U. S. Virgin Islands, and Navassa Island, not the entire Caribbean and Bahamian region. Thus, this list is significantly shorter. The list has also been reordered alphabetically by family, rather than species, to be consistent with other regional lists in this volume, and authorship and publication dates have been added. Also, Antipathes americana is now properly assigned to the genus Stylopathes, and Stylaster profundus to the genus Stenohelia. Furthermore, many of the geographic ranges have been clarified and validated. Since 2007 there have been 20 species additions to the U.S. territories list (indicated with blue shading in the list), mostly due to unpublished specimens from NMNH collections. As a result of this update, there are now known to be: 12 species of Antipatharia, 45 species of Scleractinia, 47 species of Octocorallia (three with incomplete taxonomy), and 14 species of Stylasteridae, for a total of 118 species found in the relatively small geographic region of U.
    [Show full text]