Evolutionary Shifts Associated with Substrate Endemism in the Western American Flora

Total Page:16

File Type:pdf, Size:1020Kb

Evolutionary Shifts Associated with Substrate Endemism in the Western American Flora Evolutionary Shifts Associated with Substrate Endemism in the Western American Flora By Adam Christopher Schneider A dissertation submitted in partial satisfaction of the Requirements for the degree of Doctor of Philosophy in Integrative Biology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Bruce Baldwin, Chair Professor Brent Mishler Professor Kip Will Summer 2017 Evolutionary Shifts Associated with Substrate Endemism in the Western American Flora Copyright © 2017 by Adam Christopher Schneider Abstract Evolutionary Shifts Associated with Substrate Endemism in the Western American Flora by Adam Christopher Schneider Doctor of Philosophy in Integrative Biology University of California, Berkeley Professor Bruce G. Baldwin, Chair This study investigated how habitat specialization affects the evolution and ecology of flowering plants. Specifically, a phylogenetic framework was used to investigate how trait evolution, lineage diversification, and biogeography of the western American flora are affected by two forms of substrate endemism: (1) edaphic specialization onto serpentine soils, and (2) host specialization of non-photosynthetic, holoparasitic Orobanchaceae. Previous studies have noted a correlation between presence on serpentine soils and a suite of morphological and physiological traits, one of which is the tendency of several serpentine-tolerant ecotypes to flower earlier than nearby closely related populations not growing on serpentine. A phylogenetically uncorrected ANOVA supports this hypothesis, developed predominantly through previously published comparisons of conspecific or closely related ecotypes. However, comparisons among three models of trait evolution, as well as phylogenetic independent contrasts across 24 independent clades of plants that include serpentine tolerant species in California and with reasonably resolved phylogenies, revealed no significant affect of flowering time in each of these genera. Taken together, these results suggest eco-evolutionary scale dependence of flowering time, and that flowering time may be an exaptation that facilitates colonization of serpentine habitats. To better understand the role that different substrates may play in diversification of the western American flora, additional studies were performed on a clade of parasitic plants in the Orobanchaceae endemic to the New World, long recognized as Orobanche sections Gymnocaulis and Nothaphyllon. First, a densely sampled phylogeny from specimens across the native geographic and host ranges of this clade was inferred using ribosomal nuclear DNA, a portion of the low-copy nuclear gene waxy, and three plastid regions. Several taxonomic species were found to be either non-monophyletic, or monophyletic but including several strongly supported sub-clades. In each case, these least-inclusive clades showed unique host associations, suggesting that host-switching may be an important driver of diversification. At a deeper phylogenetic scale, the monophyly of New World 1 broomrapes, coupled with phylogenetic evidence that the Eurasian genus Diphelypaea is nested within Orobanche sensu lato supports the resurrection of the genus Aphyllon to include all New World taxa traditionally recognized as Orobanche and diagnosable by a five-toothed calyx. Finally, comparisons between the ranges of Aphyllon species and those of their hosts suggest that host specificity can also constrain biogeographic patterns in parasitic plants. Most strikingly, the closely related species A. ludovicianum and A. chilense both parasitize species of Grindelia in North and South America, respectively. Chronograms for both the tribe Orobancheae (Aphyllon and its holoparasitic relatives) and Grindelia were constructed using fossil and secondary calibration points, one of which was an inferred horizontal gene transfer event from an ancient leguminous host into the common ancestor of Orobanche and Phelipanche. These chronograms were used to reconstruct the historic biogeography using a dispersal-extinction-cladogenesis model. The dispersal of host and parasite lineages were both found to be from North America to South America, recapitulating a biogeographical pattern seen in many other lineages of land plants, with the dispersal of the Aphyllon lineage parasitic on Grindelia taking place somewhat after Grindelia began to diversify in South America. From a methodological standpoint, this study also demonstrates the general utility of using horizontal gene transfer events from well-dated clades to calibrate phylogenies in the absence of a fossil record. 2 TABLE OF CONTENTS Abstract .......................................................................................................................................................... 1 Table of Contents ......................................................................................................................................... i Acknowledgements .................................................................................................................................. iii CHAPTER 1: Flowering time evolution of the California flora is independent of serpentine endemism Abstract .......................................................................................................................................................... 1 Introduction ................................................................................................................................................. 2 Materials and Methods ............................................................................................................................ 3 Results ............................................................................................................................................................ 6 Discussion ..................................................................................................................................................... 7 Conclusions ................................................................................................................................................ 10 Acknowledgements ................................................................................................................................. 11 Literature Cited ......................................................................................................................................... 11 Tables ............................................................................................................................................................ 16 Figures .......................................................................................................................................................... 19 CHAPTER 2: Host-endemism and cryptic host-specific diversity among New World broomrapes Abstract ........................................................................................................................................................ 23 Introduction ............................................................................................................................................... 24 Materials and Methods .......................................................................................................................... 25 Results .......................................................................................................................................................... 26 Discussion ................................................................................................................................................... 28 Conclusions ................................................................................................................................................ 32 Acknowledgements ................................................................................................................................. 32 Literature Cited ......................................................................................................................................... 33 Tables ............................................................................................................................................................ 37 Figures .......................................................................................................................................................... 38 i CHAPTER 3: Resurrection of the genus Aphyllon Abstract ........................................................................................................................................................ 43 Introduction ............................................................................................................................................... 44 Materials and Methods .......................................................................................................................... 44 Results and Discussion .......................................................................................................................... 45 Key to sections of Aphyllon .................................................................................................................. 46 Taxonomic Treatment ........................................................................................................................... 46 Acknowledgements ................................................................................................................................
Recommended publications
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • Plant Species of Special Concern and Vascular Plant Flora of the National
    Plant Species of Special Concern and Vascular Plant Flora of the National Elk Refuge Prepared for the US Fish and Wildlife Service National Elk Refuge By Walter Fertig Wyoming Natural Diversity Database The Nature Conservancy 1604 Grand Avenue Laramie, WY 82070 February 28, 1998 Acknowledgements I would like to thank the following individuals for their assistance with this project: Jim Ozenberger, ecologist with the Jackson Ranger District of Bridger-Teton National Forest, for guiding me in his canoe on Flat Creek and for providing aerial photographs and lodging; Jennifer Whipple, Yellowstone National Park botanist, for field assistance and help with field identification of rare Carex species; Dr. David Cooper of Colorado State University, for sharing field information from his 1994 studies; Dr. Ron Hartman and Ernie Nelson of the Rocky Mountain Herbarium, for providing access to unmounted collections by Michele Potkin and others from the National Elk Refuge; Dr. Anton Reznicek of the University of Michigan, for confirming the identification of several problematic Carex specimens; Dr. Robert Dorn for confirming the identification of several vegetative Salix specimens; and lastly Bruce Smith and the staff of the National Elk Refuge for providing funding and logistical support and for allowing me free rein to roam the refuge for plants. 2 Table of Contents Page Introduction . 6 Study Area . 6 Methods . 8 Results . 10 Vascular Plant Flora of the National Elk Refuge . 10 Plant Species of Special Concern . 10 Species Summaries . 23 Aster borealis . 24 Astragalus terminalis . 26 Carex buxbaumii . 28 Carex parryana var. parryana . 30 Carex sartwellii . 32 Carex scirpoidea var. scirpiformis .
    [Show full text]
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • Vascular Plant and Vertebrate Inventory of Chiricahua National Monument
    In Cooperation with the University of Arizona, School of Natural Resources Vascular Plant and Vertebrate Inventory of Chiricahua National Monument Open-File Report 2008-1023 U.S. Department of the Interior U.S. Geological Survey National Park Service This page left intentionally blank. In cooperation with the University of Arizona, School of Natural Resources Vascular Plant and Vertebrate Inventory of Chiricahua National Monument By Brian F. Powell, Cecilia A. Schmidt, William L. Halvorson, and Pamela Anning Open-File Report 2008-1023 U.S. Geological Survey Southwest Biological Science Center Sonoran Desert Research Station University of Arizona U.S. Department of the Interior School of Natural Resources U.S. Geological Survey 125 Biological Sciences East National Park Service Tucson, Arizona 85721 U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark Myers, Director U.S. Geological Survey, Reston, Virginia: 2008 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS-the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web:http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested Citation Powell, B.F., Schmidt, C.A., Halvorson, W.L., and Anning, Pamela, 2008, Vascular plant and vertebrate inventory of Chiricahua National Monument: U.S. Geological Survey Open-File Report 2008-1023, 104 p. [http://pubs.usgs.gov/of/2008/1023/]. Cover photo: Chiricahua National Monument. Photograph by National Park Service. Note: This report supersedes Schmidt et al. (2005). Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S.
    [Show full text]
  • Wild Plants of Round Valley Regional Preserve Common Name Version
    Wild Plants of Round Valley Regional Preserve Common Name Version A Photographic Guide Sorted by Form, Color and Family with Habitat Descriptions and Identification Notes Photographs and text by Wilde Legard District Botanist, East Bay Regional Park District New Revised and Expanded Edition - Includes the latest scientific names, habitat descriptions and identification notes Decimal Inches .1 .2 .3 .4 .5 .6 .7 .8 .9 1 .5 2 .5 3 .5 4 .5 5 .5 6 .5 7 .5 8 .5 9 1/8 1/4 1/2 3/4 1 1/2 2 1/2 3 1/2 4 1/2 5 1/2 6 1/2 7 1/2 8 1/2 9 English Inches Notes: A Photographic Guide to the Wild Plants of Round Valley Regional Preserve More than 2,000 species of native and naturalized plants grow wild in the San Francisco Bay Area. Most are very difficult to identify without the help of good illustrations. This is designed to be a simple, color photo guide to help you identify some of these plants. This guide is published electronically in Adobe Acrobat® format so that it can easily be updated as additional photographs become available. You have permission to freely download, distribute and print this guide for individual use. Photographs are © 2014 Wilde Legard, all rights reserved. In this guide, the included plants are sorted first by form (Ferns & Fern-like, Grasses & Grass-like, Herbaceous, Woody), then by most common flower color, and finally by similar looking flowers (grouped by genus within each family). Each photograph has the following information, separated by '-': COMMON NAME According to The Jepson Manual: Vascular Plants of California, Second Edition (JM2) and other references (not standardized).
    [Show full text]
  • Anti Alzheimer's Disease Related Activities of Israeli Medicinal Plants
    Central JSM Alzheimer’s Disease and Related Dementia Research Article *Corresponding author Hanna Rosenmann, Department of Neurology, Hadassah University Hospital, Ein Karem, Jerusalem 91120, Anti Alzheimer’s Disease Israel, Tel: 972-2-6776954; Fax: 972-3-7256022; Email: Related Activities of Israeli Submitted: 03 December 2014 Accepted: 24 February 2015 Published: 26 February 2015 Medicinal Plants Copyright Lea Tsalkovich1, Sarah Sallon2, Helen Paavilainen2 and Hanna © 2015 Rosenmann et al. Rosenmann1* OPEN ACCESS 1Department of Neurology, Hadassah Hebrew University Medical Center, Israel 2The Louis Borick Natural Medicine Research Center, Hadassah Hebrew University Medical Center, Israel Abstract Medicinal plants may provide a potential source of therapeutic agents against Alzheimer’s-disease (AD) and other dementias. In the current study medical plants with an historical/traditional use for improving memory were evaluated for anti-AD activity. Plants were collected mainly from wild species growing in Israel and tested for their protective properties against toxicity of amyloid-beta (Aβ) and a decrease in its secretion by neuronal cells (SHSY5Y and PC12). Of 20 plants tested, 5 plants: Citrullus colocynthis, Cistanche tubulosa, Paronychia argentea, Sisymbrium irio and Origanum dayi Post, showed rescue of cells from amyloid toxicity of 205%, 177%, 42.5%, 40%, and22.7%, respectively. Citrullus colocynthis and Cistanche tubulosa also demonstrated a decreasing trend of 19% and 25%, respectively in Aβ levels secreted by cells. Two additional plants, Varthemia iphionoides and Anchusa strigosa, showed a decreasing trend in secreted amyloid levels of 32% and 34% and a decrease of 23 and 31% in γ-secretase activity respectively. These results point to a potential therapeutic use of medicinal plantssome of which has a long historical/ traditional use for improving memory and should be the basis of further investigation for neurodegenerative diseases such as AD.
    [Show full text]
  • Tidal Marsh Recovery Plan Habitat Creation Or Enhancement Project Within 5 Miles of OAK
    U.S. Fish & Wildlife Service Recovery Plan for Tidal Marsh Ecosystems of Northern and Central California California clapper rail Suaeda californica Cirsium hydrophilum Chloropyron molle Salt marsh harvest mouse (Rallus longirostris (California sea-blite) var. hydrophilum ssp. molle (Reithrodontomys obsoletus) (Suisun thistle) (soft bird’s-beak) raviventris) Volume II Appendices Tidal marsh at China Camp State Park. VII. APPENDICES Appendix A Species referred to in this recovery plan……………....…………………….3 Appendix B Recovery Priority Ranking System for Endangered and Threatened Species..........................................................................................................11 Appendix C Species of Concern or Regional Conservation Significance in Tidal Marsh Ecosystems of Northern and Central California….......................................13 Appendix D Agencies, organizations, and websites involved with tidal marsh Recovery.................................................................................................... 189 Appendix E Environmental contaminants in San Francisco Bay...................................193 Appendix F Population Persistence Modeling for Recovery Plan for Tidal Marsh Ecosystems of Northern and Central California with Intial Application to California clapper rail …............................................................................209 Appendix G Glossary……………......................................................................………229 Appendix H Summary of Major Public Comments and Service
    [Show full text]
  • HAUSTORIUM 76 1 HAUSTORIUM Parasitic Plants Newsletter ISSN 1944-6969 Official Organ of the International Parasitic Plant Society (
    HAUSTORIUM 76 1 HAUSTORIUM Parasitic Plants Newsletter ISSN 1944-6969 Official Organ of the International Parasitic Plant Society (http://www.parasiticplants.org/) July 2019 Number 76 CONTENTS MESSAGE FROM THE IPPS PRESIDENT (Julie Scholes)………………………………………………..………2 MEETING REPORTS 15th World Congress on Parasitic Plants, 30 June – 5 July 2019, Amsterdam, the Netherlands.………….……..2 MISTLETOE (VISCUM ALBUM) AND ITS HOSTS IN BRITAIN (Brian Spooner)……………………………10 PHELIPANCHE AEGYPTIACA IN WESTERN IRAN (Alireza Taab)……………………………………………12 NEW AND CURRENT PROJECTS Delivering high-yielding, disease-resistant finger millet to farmers…………………………………………….…..13 N2AFRICA – new Striga project – update……………………………………………………………………….…...14 Striga asiatica Madagascar fieldwork summary 2019……………………………………………………………......14 Pea (Pisum sativum) breeding for disease and pest resistance ………………………………………………….......15 REQUEST FOR SEEDS OF OROBANCHE CRENATA (Gianniantonio Domina)…………………………...…..15 PRESS REPORTS Metabolite stimulates a crop while suppressing a weed………………………………………………………….…..16 Dodder plant poses threat to trees and crops (in Kenya)………………………………………………………...….17 PhD OPPORTUNITY AT NRI (Jonne Rodenburg)…………………………………………………………………18 THESIS Sarah Huet. An overview of Phelipanche ramosa seeds: sensitivity to germination stimulants and microbiome profile. …………………………………………………………………………………………………………………..18 BOOK REVIEW Strigolactones – Biology and Applications. Ed. by Hinanit Koltai and Cristina Prandi. (Koichi Yoneyama) …………………………………………………………………………………………………………………………....19
    [Show full text]
  • Kenai National Wildlife Refuge Species List, Version 2018-07-24
    Kenai National Wildlife Refuge Species List, version 2018-07-24 Kenai National Wildlife Refuge biology staff July 24, 2018 2 Cover image: map of 16,213 georeferenced occurrence records included in the checklist. Contents Contents 3 Introduction 5 Purpose............................................................ 5 About the list......................................................... 5 Acknowledgments....................................................... 5 Native species 7 Vertebrates .......................................................... 7 Invertebrates ......................................................... 55 Vascular Plants........................................................ 91 Bryophytes ..........................................................164 Other Plants .........................................................171 Chromista...........................................................171 Fungi .............................................................173 Protozoans ..........................................................186 Non-native species 187 Vertebrates ..........................................................187 Invertebrates .........................................................187 Vascular Plants........................................................190 Extirpated species 207 Vertebrates ..........................................................207 Vascular Plants........................................................207 Change log 211 References 213 Index 215 3 Introduction Purpose to avoid implying
    [Show full text]
  • 01 Innerfrontcover40 2.Indd 1 8/27/2010 2:27:58 PM BOTHALIA
    ISSN 0006 8241 = Bothalia Bothalia A JOURNAL OF BOTANICAL RESEARCH Vol. 40,2 Oct. 2010 TECHNICAL PUBLICATIONS OF THE SOUTH AFRICAN NATIONAL BIODIVERSITY INSTITUTE PRETORIA Obtainable from the South African National Biodiversity Institute (SANBI), Private Bag X101, Pretoria 0001, Republic of South Africa. A catalogue of all available publications will be issued on request. BOTHALIA Bothalia is named in honour of General Louis Botha, first Premier and Minister of Agriculture of the Union of South Africa. This house journal of the South African National Biodiversity Institute, Pretoria, is devoted to the furtherance of botanical science. The main fields covered are taxonomy, ecology, anatomy and cytology. Two parts of the journal and an index to contents, authors and subjects are published annually. Three booklets of the contents (a) to Vols 1–20, (b) to Vols 21–25, (c) to Vols 26–30, and (d) to Vols 31–37 (2001– 2007) are available. STRELITZIA A series of occasional publications on southern African flora and vegetation, replacing Memoirs of the Botanical Survey of South Africa and Annals of Kirstenbosch Botanic Gardens. MEMOIRS OF THE BOTANICAL SURVEY OF SOUTH AFRICA The memoirs are individual treatises usually of an ecological nature, but sometimes dealing with taxonomy or economic botany. Published: Nos 1–63 (many out of print). Discontinued after No. 63. ANNALS OF KIRSTENBOSCH BOTANIC GARDENS A series devoted to the publication of monographs and major works on southern African flora.Published: Vols 14–19 (earlier volumes published as supplementary volumes to the Journal of South African Botany). Discontinued after Vol. 19. FLOWERING PLANTS OF AFRICA (FPA) This serial presents colour plates of African plants with accompanying text.
    [Show full text]
  • Greek Island Odyssey Holiday Report 2013
    Greek Island Odyssey Holiday Report 2013 Day 1: Saturday 20th April As our plane came in to land at Rhodes airport the wildlife spotting began! We had a good view of a female Marsh Harrier and Little Egret over the nearby river. Then, on the drive to the hotel, we saw a Wood Sandpiper on the same river by the road bridge. Upon our arrival in the medieval old town Andy and Denise made a quick foray into the moat and town and found Starred Agamas, Oertzen’s Rock Lizards, a Dahl’s Whip Snake and Large Wall Brown butterflies. It was late evening by then and so we sat at a local taverna for our first traditional Greek mezedes meal and discussed plans for the week ahead over a civilized glass of wine. Day 2: Sunday 21st April After a hearty breakfast at the hotel we set off on our first Anatolian Worm Lizard full day of exploration. Our first stop was the archaeological park at Monte Smith. After parking the car and with lots of butterflies flying around us, it was hard to know just what to look at first. Andy diverted our attention, announcing that he had found an Anatolian Worm Lizard, a strange creature looking more like a worm than a lizard and which is found in Turkey and Greece. On Rhodes it is recorded only in the northern parts of the island. Lesser Fiery Copper We then moved on to watch the butterflies. The first two we identified were male and female Lesser Fiery Coppers, soon followed by Eastern Bath White, and Clouded yellow.
    [Show full text]
  • Palinotaxonomía De Scrophulariaceae Sensu Lato
    Bol. Soc. Argent. Bot. 51 (2) 2016 M. M. Sosa y C. R. Salgado - Palinotaxonomía de ScrophulariaceaeISSN sensu 0373-580 lato X Bol. Soc. Argent. Bot. 51 (2): 299-321. 2016 VALOR TAXONÓMICO DEL POLEN EN SCROPHULARIACEAE SENSU LATO MARÍA DE LAS MERCEDES SOSA1,3 y CRISTINA R. SALGADO2,3 Resumen: Este trabajo es el resultado del estudio palinomorfológico de 32 especies pertenecientes a 19 géneros de Scrophulariaceae sensu lato. Además se realizó un registro exhaustivo de la información bibliográfica existente sobre la morfología polínica con el objetivo de analizar las relaciones entre las variables palinológicas y la clasificación sistemática actual. Los granos de polen analizados son: mónades, radiosimétricos e isopolares, de tamaño variable desde pequeños (11 µm) hasta medianos (51 µm), predominantemente esferoidales (P/E= 1), a veces suboblatos (P/E= 0,76), oblato-esferoidales (P/E= 0,95), prolatos (P/E=1,63) y perprolatos (P/E= 2,63). Inaperturados, 3-(4-5) colpados, 3-(4-5) colporados, espiraperturados, 2-8 sincolpados, 3-diploporados y pantoporados. La exina puede ser semitectada (retipilada, reticulada o estriada perforada) y tectada (psilada, foveolada, perforada, escábrida, rugulada, verrugosa, granulada, estriada o equinulada). Se realizó un análisis estadístico en base a una matriz de datos, compuesta por los caracteres palinológicos de 32 especies estudiadas sumado a la recopilación bibliográfica de 140 géneros y 218 especies pertenecientes a Scrophulariaceae sensu lato. El análisis de agrupamiento (UPGMA), confirmó que las diferencias palinomorfológicas apoyan la clasificación sistemática actual. Palabras clave: Morfología del polen, sistemática, euripolínico, Scrophulariaceae. Summary: Taxonomic value of pollen in Scrophulariaceae sensu lato. This paper is result of a study of pollen morphology of 32 species belonging to 19 genera of Scrophulariaceae sensu lato.
    [Show full text]