Survey of Macrofungi at the BFS Upper Research Site

Total Page:16

File Type:pdf, Size:1020Kb

Survey of Macrofungi at the BFS Upper Research Site Survey of macrofungi at the BFS Upper Research Site Kayla A. Dolce1 ABSTRACT Fungi present in an ecosystem are often overlooked, though they play vital roles in forest health and recovery. Analyzing and recording the fungal community of a forest can be a long and widespread effort, and surveys often require up to 10 years to thoroughly describe all species of macrofungi present in a forest community. This survey attempts to add to the data collected by Currie D. Marr between the summers of 1969 and 1971 (Marr 1970, 1971), as well as to add to the fungi collection in the Jewell and Arline Moss Settle Herbarium at SUNY Oneonta. INTRODUCTION Fungal communities are often overlooked in forest ecosystems, since they predominantly lie underground. Their presence is often only recognized by their aboveground fruiting body, the reproductive structure produced by the mycelium, or the vegetative body of the fungus, in the soil. Mycological efforts have been expanding greatly, as it is the least studied kingdom of the eukaryotes. It is estimated that there are up to 1.5 million fungal species in existence, however, only a fraction of these have been discovered and named (Blackwell 2011). Many of these species hold particular importance to humans, with multiple local species holding edible and/or medicinal value. Fungi play major roles in ecosystems in being the primary decomposers of dead and decaying matter and in cycling nutrients back into the ecosystem. They also hold important relationships with various animals as a source of food and shelter, including multiple vertebrates, arthropods, and gastropods. They are of significance to plant life as well, as they form positive mycorrhizal relationships with various tree species that aid in forest health, and provide nutrients to various parasitic plants. Even if a fungus is present in an ecosystem, it may be hard to detect. Various factors play into the production of a fruiting body, including substrate, host availability, and climate (Van Norman and Huff 2012). The time of year is another important factor. Temperature, humidity, and air composition make it so certain mushrooms reliably fruit at different times of the year. (Bellettini et al. 2016). For these reasons, it is important to carry out surveys over long periods of time each year, and for an estimated minimum of at least 10 years (Halme and Kotiaho 2012). 1 SUNY Oneonta Biological Field Station Intern, summer 2017. Current affiliation: SUNY Oneonta. Funding provided by the Otsego County Conservation Association. Similar surveys were carried out by Marr during the summers of 1969, 1970, and 1971, (the resultant collections being curated in the Jewell and Arline Moss Settle Herbarium on the SUNY Oneonta campus) (Marr 1969, 1970, 1971). It is with a goal of establishing a permanent record of the species located at the BFS Upper Research Site that collections were made and surveys were carried out on the same property, 46 years later. It is also possible that new species of fungi were introduced to the property since that time. These data will provide information to support future studies on the property, including herbarium specimens, for future genetic and/or taxonomic research. METHODS Macrofungi were sampled weekly beginning on 13 June and ending on 10 August, excluding the week of July 16. In order to maximize collections of fruiting bodies, fungi were often collected after major rain/moisture events, in order to take into consideration the conditions in which fruiting bodies are most likely to be produced. A total of 8 surveys were carried out throughout the summer. Collection sites were defined using the map of the Upper Site property developed by C.D. Marr in 1970, pictured in Figure 1. The areas collected from represent a variety of different ecosystems, including bog habitats, grasslands, and a variety of different forest types (Table 1). An interactive map based on Marr’s map was generated using Google’s MyMaps to keep track of the subsection in which each fruiting body was located. This map was accessed via the MyMaps Android application. Greater detail regarding location was not recorded, since the vegetative body of a fungus spans over a much larger area than the area in which its fruiting body is found. Notes and photos were taken in the field and in the lab regarding numbered site in which the fruiting body was found, substrate, and a general description of important properties of the fruiting body. Since there are many factors taken into account in terms of identification of fungi, including taste, smell, color of spores, bruising, chemical tests, color of fruiting body, substrate, nearby trees, hymenium, cap/stipe appearance, and various microscopic elements, identification was often done in the lab and not in the field. Identification in the lab was achieved using Arora (1986), and Bessette (2010). Following identification, specimens were given collection numbers and dried using an industrial oven with the heat off overnight for storage in the Jewell and Arline Moss Settle Herbarium. They were also recorded on Mushroom Observer, a widely utilized online mushroom database. Figure 1. Map of Upper Site sampling areas, 2017. Key found in Table 1. Table 1. Site descriptions of sampling areas. Corresponding map can be found in Figure 1. Site number Description I Open Area, Herbaceous Flora II Bog, Swamp III West of Moe (Mixed Eastern Hemlock and Hardwoods) IV Red Pine V North of Moe (Mixed Eastern Hemlock and Hardwoods) VI European Larch VII East of Moe (Spruce) VIII East of Moe (Mixed Eastern Hemlock and Hardwoods) IX South of Moe (Spruce) X South of Moe (Mixed Eastern Hemlock and Hardwoods) RESULTS A complete list of fungi species found and collected is displayed in Table 2. A total of 94 different species were found, the majority of these being Basidiomycetes (93.617%). Only 6 different species of ascomycetes were recorded. A total of 32 different families were represented by the species found. The families found in greatest abundance include Amanitaceae and Polyporaceae. In total, 61 species found in this survey were recorded previously by Marr. This takes into account species whose names have been changed since the onset of Marr’s research. This indicates that 33 species found were either not found by Marr or introduced to the property, contributing data to the total comprehensive list of fungi present on the property. These numbers take into account the multiple species whose names have changed since Marr identified them. Over the course of the survey, numerous mushrooms were found that hold potential anthropogenic importance, whether as a source of food or those with medicinal antiviral/antibacterial properties. Mushrooms found on the property considered choice edibles include all members of the genus Cantharellus, Pluteus cervinus, and Laetiporus sulphureus. Mushrooms found on the property that are considered widely known and traditional medicinal mushrooms include Ganoderma tsugae and Inonotus obliquus. One fungus found on the property that is considered a harmful pathogenic facultative parasite that should be monitored is Kretzschmaria deusta, which acts as a wood decay fungus of living trees. Table 2. Complete list of fungi found at the BFS Upper Site, summer 2017. Collection Division Family Species number Date Location Ascomycota Geoglossaceae Trichoglossum sp. 8/3/2017 X Hypocreaceae Hypomyces chrysospermus 7/26/2017 X Leotiaceae Leotia lubrica KD00041 7/13/2017 X 7/26/2017 X Pyronemataceae Scutellinia scutellata KD00096 8/3/2017 III Xylariaceae Kretzschmaria deusta 6/13/2017 III 6/22/2017 IV Xylaria polymorpha KD00012 6/28/2017 IV KD00021 6/28/2017 VIII Basidiomycota Agaricaceae Agaricus sp. 8/3/2017 X Amanitaceae Amanita amerifulva 6/22/2017 IV Amanita bisporigera 8/3/2017 X Amanita rubescens KD00045 7/13/2017 X Collection Division Family Species number Date Location KD00087 8/3/2017 IV KD00086 8/3/2017 X Amanita brunnescens var. pallida KD00044 7/13/2017 III Amanita cokeri KD00060 7/26/2017 X Amanita flavoconia KD00031 7/6/2017 III KD00030 7/6/2017 IV 7/13/2017 X Amanita frostiana KD00058 7/13/2017 III Amanita muscaria var. guessowii KD00059 7/13/2017 III Amanita rubescens 7/6/2017 III 7/13/2017 X 8/3/2017 X 8/3/2017 IV Amanita sp. 7/6/2017 III Amanita sp. 7/26/2017 VIII Amanita vaginata KD00032 7/6/2017 V KD00049 7/13/2017 X KD00054 7/13/2017 III 7/26/2027 X KD00075 7/26/2017 VIII Auriscalpiaceae Artomyces pyxidatus 6/22/2017 III KD00017 6/28/2017 IV 7/6/2017 V Auriscalpium sp. KD00095 8/3/2017 III Bankeraceae Hydnellum caeruleum KD00061 7/26/2017 X Hydnellum concrescens KD00036 7/13/2017 X 8/3/2017 X Bolbitiaceae Conocybe sp. KD00039 7/13/2017 X Boletaceae Boletinellus merulioides KD00068 7/26/2017 VIII KD00088 8/3/2017 II Boletus atkinsonii 7/26/2017 X Boletus bicolor 7/6/2017 III Boletus sp. KD00028 7/6/2017 III Boletus sp. KD00054 7/13/2017 X Boletus sp. 7/26/2017 X Boletus sp. KD00089 8/3/2017 II Leccinum sp. 8/3/2017 IV Collection Division Family Species number Date Location Strobilomyces sp. 8/3/2017 X Tylopilus felleus KD00052 7/13/2017 III Cantharellaceae Cantharellus cibarius KD00035 7/13/2017 X KD00027 7/6/2017 III KD00033 7/6/2017 V Cantharellus deceptivus 7/13/2017 III Cantharellus latentius KD00022 6/28/2017 III Craterellus ignicolor KD00063 7/26/2017 X Cantharellus sp. KD00076 7/26/2017 VIII Cantharellus sp. KD00093 8/3/2017 III Clavariaceae Clavaria vermicularis KD00025 7/6/2017 III 7/6/2017 IV Clavaria zollingeri KD00091 8/3/2017 III Clavulinopsis fusiformis KD00067 7/26/2017 X Cortinariaceae Cortinarius iodes KD00070 7/26/2017 VIII Cortinarius sp.
Recommended publications
  • Diversity, Abundance, and Distribution of Wood-Decay Fungi in Major Parks of Hong Kong
    Article Diversity, Abundance, and Distribution of Wood-Decay Fungi in Major Parks of Hong Kong Shunping Ding 1,2,* , Hongli Hu 2,3 and Ji-Dong Gu 2,4,* 1 Wine and Viticulture, California Polytechnic State University, 1 Grand Ave., San Luis Obispo, CA 93407, USA 2 Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China; [email protected] 3 Ministry of Agriculture Key Laboratory of Subtropical Agro-Biological Disaster and Management, Fujian Agriculture and Forestry University, Fuzhou 350002, China 4 Environmental Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou 515041, China * Correspondence: [email protected] (S.D.); [email protected] (J.-D.G.) Received: 15 August 2020; Accepted: 21 September 2020; Published: 24 September 2020 Abstract: Wood-decay fungi are one of the major threats to the old and valuable trees in Hong Kong and constitute a main conservation and management challenge because they inhabit dead wood as well as living trees. The diversity, abundance, and distribution of wood-decay fungi associated with standing trees and stumps in four different parks of Hong Kong, including Hong Kong Park, Hong Kong Zoological and Botanical Garden, Kowloon Park, and Hong Kong Observatory Grounds, were investigated. Around 4430 trees were examined, and 52 fungal samples were obtained from 44 trees. Twenty-eight species were identified from the samples and grouped into twelve families and eight orders. Phellinus noxius, Ganoderma gibbosum, and Auricularia polytricha were the most abundant species and occurred in three of the four parks.
    [Show full text]
  • How Many Fungi Make Sclerotia?
    fungal ecology xxx (2014) 1e10 available at www.sciencedirect.com ScienceDirect journal homepage: www.elsevier.com/locate/funeco Short Communication How many fungi make sclerotia? Matthew E. SMITHa,*, Terry W. HENKELb, Jeffrey A. ROLLINSa aUniversity of Florida, Department of Plant Pathology, Gainesville, FL 32611-0680, USA bHumboldt State University of Florida, Department of Biological Sciences, Arcata, CA 95521, USA article info abstract Article history: Most fungi produce some type of durable microscopic structure such as a spore that is Received 25 April 2014 important for dispersal and/or survival under adverse conditions, but many species also Revision received 23 July 2014 produce dense aggregations of tissue called sclerotia. These structures help fungi to survive Accepted 28 July 2014 challenging conditions such as freezing, desiccation, microbial attack, or the absence of a Available online - host. During studies of hypogeous fungi we encountered morphologically distinct sclerotia Corresponding editor: in nature that were not linked with a known fungus. These observations suggested that Dr. Jean Lodge many unrelated fungi with diverse trophic modes may form sclerotia, but that these structures have been overlooked. To identify the phylogenetic affiliations and trophic Keywords: modes of sclerotium-forming fungi, we conducted a literature review and sequenced DNA Chemical defense from fresh sclerotium collections. We found that sclerotium-forming fungi are ecologically Ectomycorrhizal diverse and phylogenetically dispersed among 85 genera in 20 orders of Dikarya, suggesting Plant pathogens that the ability to form sclerotia probably evolved 14 different times in fungi. Saprotrophic ª 2014 Elsevier Ltd and The British Mycological Society. All rights reserved. Sclerotium Fungi are among the most diverse lineages of eukaryotes with features such as a hyphal thallus, non-flagellated cells, and an estimated 5.1 million species (Blackwell, 2011).
    [Show full text]
  • Studies on the Diversity of Macrofungus in Kodaikanal Region of Western Ghats, Tamil Nadu, India
    BIODIVERSITAS ISSN: 1412-033X Volume 19, Number 6, November 2018 E-ISSN: 2085-4722 Pages: 2283-2293 DOI: 10.13057/biodiv/d190636 Studies on the diversity of macrofungus in Kodaikanal region of Western Ghats, Tamil Nadu, India BOOBALAN THULASINATHAN1, MOHAN RASU KULANTHAISAMY1,2, ARUMUGAM NAGARAJAN1, SARAVANAN SOORANGKATTAN3, JOTHI BASU MUTHURAMALINGAM3, JEYAKANTHAN JEYARAMAN4, ALAGARSAMY ARUN 1, 1Department of Microbiology, Alagappa University, College Road, Alagappa Puram, Karaikudi – 630003, Tamil Nadu, India. Tel.: +91-4565-223 100, email: [email protected] 2Department of Energy Science, Alagappa University. Karaikudi 630003, Tamil Nadu, India 3Department of Botany (DDE), Alagappa University. Karaikudi 630003, Tamil Nadu, India 4Department of Bioinformatics, Alagappa University. Karaikudi 630003, Tamil Nadu, India Manuscript received: 22 October 2018. Revision accepted: 13 November 2018. Abstract. Boobalan T, Mohan Rasu K, Arumugam N, Saravanan S, Jothi Basu M, Jeyakanthan J, Arun A. 2018. Studies on the diversity of macrofungus in Kodaikanal region of Western Ghats, Tamil Nadu, India. Biodiversitas 19: 2283-2293. We have demonstrated the distribution of macro fungal communities in the selected forest territory of Kodaikanal (Poondi) region, which houses about 100 mushrooms species diverse forms of mushrooms including both the soil-inhabiting (n = 45) and wood-inhabiting (n = 55) species. Kodaikanal is situated on a plateau between the Parappar and Gundar valleys; this area experiences peculiar lower temperature between 8.2°C and 19.7°C, higher humidity between 92% and 95%, which in turn enhances the growth of different types of mushrooms throughout the year. However, the peak production and macro fungal flushes were observed during the winter season followed by the northeast monsoon (Oct-Dec 2015).
    [Show full text]
  • Russulas of Southern Vancouver Island Coastal Forests
    Russulas of Southern Vancouver Island Coastal Forests Volume 1 by Christine Roberts B.Sc. University of Lancaster, 1991 M.S. Oregon State University, 1994 A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY in the Department of Biology © Christine Roberts 2007 University of Victoria All rights reserved. This dissertation may not be reproduced in whole or in part, by photocopying or other means, without the permission of the author. Library and Bibliotheque et 1*1 Archives Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A0N4 Ottawa ON K1A0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-47323-8 Our file Notre reference ISBN: 978-0-494-47323-8 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library permettant a la Bibliotheque et Archives and Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par Plntemet, prefer, telecommunication or on the Internet, distribuer et vendre des theses partout dans loan, distribute and sell theses le monde, a des fins commerciales ou autres, worldwide, for commercial or non­ sur support microforme, papier, electronique commercial purposes, in microform, et/ou autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in et des droits moraux qui protege cette these.
    [Show full text]
  • Key to Alberta Edible Mushrooms Note: Key Should Be Used With"Mushrooms of Western Canada"
    Key to Alberta Edible Mushrooms Note: Key should be used with"Mushrooms of Western Canada". The key is designed to help narrow the field of possibilities. Should never be used without more detailed descriptions provided in field guides. Always confirm your choice with a good field guide. Go A Has pores or sponge like tubes on underside 2 to 1 Go B Does not have visible pores or sponge like tubes 22 to Leatiporus sulphureous A Bright yellow top, brighter pore surface, shelf like growth on wood "Chicken of the woods" 2 Go B not as above with pores or sponge like tubes 3 to Go A Has sponge like tube layer easily separated from cap 4 to 3 B Has shallow pore layer not easily separated from cap Not described in this key A Medium to large brown cap, thick stalk, fine embossed netting on stalk Boletus edulis 4 Go B Not as above with sponge like tube layer 5 to A Dull brown to beige cap, fine embossed netting on stalk Not described in this key 5 Go B Not as above with sponge like tube layer 6 to Go A Dry cap, rough ornamented stem, with flesh staining various shades of pink to gray 7 to 6 Go B Not as above 12 to Go A Cap orange to red, never brown or white 8 to 7 Go B Cap various shades of dark or light brown to beige/white 10 to A Dark orangey red cap, velvety cap surface, growing exclusively with conifers Leccinum fibrilosum 8 Go B Orangey cap, growing in mixed or pure aspen poplar stands 9 to Orangey - red cap, skin flaps on cap margins, slowly staining pinkish gray, earliest of the leccinums starting A Leccinum boreale in June.
    [Show full text]
  • And Interspecific Hybridiation in Agaric Fungi
    Mycologia, 105(6), 2013, pp. 1577–1594. DOI: 10.3852/13-041 # 2013 by The Mycological Society of America, Lawrence, KS 66044-8897 Evolutionary consequences of putative intra- and interspecific hybridization in agaric fungi Karen W. Hughes1 to determine the outcome of hybridization events. Ronald H. Petersen Within Armillaria mellea and Amanita citrina f. Ecology and Evolutionary Biology, University of lavendula, we found evidence of interbreeding and Tennessee, Knoxville, Tennessee 37996-1100 recombination. Within G. dichrous and H. flavescens/ D. Jean Lodge chlorophana, hybrids were identified but there was Center for Forest Mycology Research, USDA-Forest no evidence for F2 or higher progeny in natural Service, Northern Research Station, Box 137, Luquillo, populations suggesting that the hybrid fruitbodies Puerto Rico 00773-1377 might be an evolutionary dead end and that the Sarah E. Bergemann genetically divergent Mendelian populations from which they were derived are, in fact, different species. Middle Tennessee State University, Department of Biology, PO Box 60, Murfreesboro Tennessee 37132 The association between ITS haplotype divergence of less than 5% (Armillaria mellea 5 2.6% excluding Kendra Baumgartner gaps; Amanita citrina f. lavendula 5 3.3%) with the USDA-Agricultural Research Service, Department of presence of putative recombinants and greater than Plant Pathology, University of California, Davis, California 95616 5% (Gymnopus dichrous 5 5.7%; Hygrocybe flavescens/ chlorophana 5 14.1%) with apparent failure of F1 2 Rodham E. Tulloss hybrids to produce F2 or higher progeny in popula- PO Box 57, Roosevelt, New Jersey 08555-0057 tions may suggest a correlation between genetic Edgar Lickey distance and reproductive isolation.
    [Show full text]
  • Macromycetes Determined in Çamburnu Nature Park and Close Environs (Trabzon)
    MANTAR DERGİSİ/The Journal of Fungus Nisan(2021)12(1)71-79 Geliş(Recevied) :10.01.2021 Research Article Kabul(Accepted) :04.03.2021 Doi: 10.30708.mantar.857729 Macromycetes Determined in Çamburnu Nature Park and Close Environs (Trabzon) Yılmaz ORUÇ1, Ali KELEŞ2, Yasin UZUN3, Abdullah KAYA4* *Sorumlu yazar: [email protected] 1Yüzüncü Yıl University, Department of Strategy Development, 65080 Van, Turkey Orcid ID: 0000-0002-1238-481X / [email protected] 2Yüzüncü Yıl University, Education Faculty, Department of Mathematics and Science Education, 65080 Van, Turkey Orcid ID: 0000-0002-9087-0805 / [email protected] 3Karamanoğlu Mehmetbey University, Ermenek Uysal & Hasan Kalan Health Services Vocational School, Department of Pharmacy Services, 70400, Karaman, Turkey Orcid ID:0000-0002-6423-6085 / [email protected] 4Gazi University, Science Faculty, Department of Biology, 06500 Ankara, Turkey Orcid ID: 0000-0002-4654-1406 / [email protected] Abstract: This study was carried out the macrofungi samples collected from Çamburnu Nature Park (Sürmene/Trabzon). As a result of field and laboratory studies, 109 macromycete species belonging to four classes, 12 orders, 41 families and 64 genera within Ascomycota and Basidiomycota were determined. The species are presented in alphabetical order together with their habitats and localities. Key words: Biodiversity, macrofungi, Black Sea Region, Turkey Çamburnu Tabiat Parkı ve Yakın Çevresinde (Trabzon) Belirlenen Makromantarlar Öz: Bu çalışma Çamburnu Tabiat Parkı (Sürmene/Trabzon)’ndan toplanan makromantar örnekleri üzerinde gerçekleştirilmiştir. Arazi ve laboratuvar çalışmaları sonucunda Askomikota ve Bazidiyomikota bölümleri içinde yer alan dört sınıf, 12 takım, 41 familya ve 64 cinse ait 109 makromantar türü belirlenmiştir. Türler habitat ve lokaliteleri ile birlikte alfabetik sırada verilmiştir.
    [Show full text]
  • Published Version
    8 Damage to stems, branches and twigs of broadleaf woody plants M. Kacprzyk, I. Matsiakh, D.L. Musolin, A.V. Selikhovkin, Y.N. Baranchikov, D. Burokiene, T. Cech, V. Talgø, A.M. Vettraino, A. Vannini, A. Zambounis and S. Prospero 8.1. Root and stem rot Description: External, aboveground symptoms on individual trees are variable and may include suppressed growth, reduced vigour, discoloured or smaller than average-sized foliage, premature leaf shedding, branch dieback, crown thinning, bleeding lesions on the lower stem and root collar, wilting and eventual death of trees. It is common for root and butt rots to remain unnoticed until annual or perennial (conks) fruiting bodies appear on branches or the main trunk. Possible cause of damage: Oomycetes (water moulds: Figs. 8.1.1 – 8.1.3); Fungi: Basidiomycota (Figs. 8.1.4 – 8.1.7) and Ascomycota (Fig. 8.1.8). Fig. 8.1.1. Root collar of European beech Fig. 8.1.2. Stem of grey alder (Alnus (Fagus sylvatica) with a bleeding bark lesion incana) with bark lesion caused by an caused by an Oomycete (Phytophthora Oomycete (Phytophthora x alni). Tyrol, cambivora). Bavaria, Germany, TC. Austria, TC. ©CAB International 2017. Field Guide for the Identification of Damage on Woody Sentinel Plants (eds A. Roques, M. Cleary, I. Matsiakh and R. Eschen) Damage to stems, branches and twigs of broadleaf woody plants 105 Fig. 8.1.3. European chestnut (Castanea Fig. 8.1.4. Collar of European beech sativa) showing bark lesion caused by an (Fagus sylvatica) with fungal fruiting Oomycete (Phytophthora cinnamomi). bodies (Polyporus squamosus).
    [Show full text]
  • Diversity of Ectomycorrhizal Fungi in Minnesota's Ancient and Younger Stands of Red Pine and Northern Hardwood-Conifer Forests
    DIVERSITY OF ECTOMYCORRHIZAL FUNGI IN MINNESOTA'S ANCIENT AND YOUNGER STANDS OF RED PINE AND NORTHERN HARDWOOD-CONIFER FORESTS A THESIS SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY PATRICK ROBERT LEACOCK IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DAVID J. MCLAUGHLIN, ADVISER OCTOBER 1997 DIVERSITY OF ECTOMYCORRHIZAL FUNGI IN MINNESOTA'S ANCIENT AND YOUNGER STANDS OF RED PINE AND NORTHERN HARDWOOD-CONIFER FORESTS COPYRIGHT Patrick Robert Leacock 1997 Saint Paul, Minnesota ACKNOWLEDGEMENTS I am indebted to Dr. David J. McLaughlin for being an admirable adviser, teacher, and editor. I thank Dave for his guidance and insight on this research and for assistance with identifications. I am grateful for the friendship and support of many graduate students, especially Beth Frieders, Becky Knowles, and Bev Weddle, who assisted with research. I thank undergraduate student assistants Dustine Robin and Tom Shay and school teacher participants Dan Bale, Geri Nelson, and Judith Olson. I also thank the faculty and staff of the Department of Plant Biology, University of Minnesota, for their assistance and support. I extend my most sincere thanks and gratitude to Judy Kenney and Adele Mehta for their dedication in the field during four years of mushroom counting and tree measuring. I thank Anna Gerenday for her support and help with identifications. I thank Joe Ammirati, Tim Baroni, Greg Mueller, and Clark Ovrebo, for their kind aid with identifications. I am indebted to Rich Baker and Kurt Rusterholz of the Natural Heritage Program, Minnesota Department of Natural Resources, for providing the opportunity for this research.
    [Show full text]
  • A Checklist of Clavarioid Fungi (Agaricomycetes) Recorded in Brazil
    A checklist of clavarioid fungi (Agaricomycetes) recorded in Brazil ANGELINA DE MEIRAS-OTTONI*, LIDIA SILVA ARAUJO-NETA & TATIANA BAPTISTA GIBERTONI Departamento de Micologia, Universidade Federal de Pernambuco, Av. Nelson Chaves s/n, Recife 50670-420 Brazil *CORRESPONDENCE TO: [email protected] ABSTRACT — Based on an intensive search of literature about clavarioid fungi (Agaricomycetes: Basidiomycota) in Brazil and revision of material deposited in Herbaria PACA and URM, a list of 195 taxa was compiled. These are distributed into six orders (Agaricales, Cantharellales, Gomphales, Hymenochaetales, Polyporales and Russulales) and 12 families (Aphelariaceae, Auriscalpiaceae, Clavariaceae, Clavulinaceae, Gomphaceae, Hymenochaetaceae, Lachnocladiaceae, Lentariaceae, Lepidostromataceae, Physalacriaceae, Pterulaceae, and Typhulaceae). Among the 22 Brazilian states with occurrence of clavarioid fungi, Rio Grande do Sul, Paraná and Amazonas have the higher number of species, but most of them are represented by a single record, which reinforces the need of more inventories and taxonomic studies about the group. KEY WORDS — diversity, taxonomy, tropical forest Introduction The clavarioid fungi are a polyphyletic group, characterized by coralloid, simple or branched basidiomata, with variable color and consistency. They include 30 genera with about 800 species, distributed in Agaricales, Cantharellales, Gomphales, Hymenochaetales, Polyporales and Russulales (Corner 1970; Petersen 1988; Kirk et al. 2008). These fungi are usually humicolous or lignicolous, but some can be symbionts – ectomycorrhizal, lichens or pathogens, being found in temperate, subtropical and tropical forests (Corner 1950, 1970; Petersen 1988; Nelsen et al. 2007; Henkel et al. 2012). Some species are edible, while some are poisonous (Toledo & Petersen 1989; Henkel et al. 2005, 2011). Studies about clavarioid fungi in Brazil are still scarce (Fidalgo & Fidalgo 1970; Rick 1959; De Lamônica-Freire 1979; Sulzbacher et al.
    [Show full text]
  • The Diversity of Macromycetes in the Territory of Batočina (Serbia)
    Kragujevac J. Sci. 41 (2019) 117-132. UDC 582.284 (497.11) Original scientific paper THE DIVERSITY OF MACROMYCETES IN THE TERRITORY OF BATOČINA (SERBIA) Nevena N. Petrović*, Marijana M. Kosanić and Branislav R. Ranković University of Kragujevac, Faculty of Science, Department of Biology and Ecology St. Radoje Domanović 12, 34 000 Kragujevac, Republic of Serbia *Corresponding author; E-mail: [email protected] (Received March 29th, 2019; Accepted April 30th, 2019) ABSTRACT. The purpose of this paper was discovering the diversity of macromycetes in the territory of Batočina (Serbia). Field studies, which lasted more than a year, revealed the presence of 200 species of macromycetes. The identified species belong to phyla Basidiomycota (191 species) and Ascomycota (9 species). The biggest number of registered species (100 species) was from the order Agaricales. Among the identified species was one strictly protected – Phallus hadriani and seven protected species: Amanita caesarea, Marasmius oreades, Cantharellus cibarius, Craterellus cornucopia- odes, Tuber aestivum, Russula cyanoxantha and R. virescens; also, several rare and endangered species of Serbia. This paper is a contribution to the knowledge of the diversity of macromycetes not only in the territory of Batočina, but in Serbia, in general. Keywords: Ascomycota, Basidiomycota, Batočina, the diversity of macromycetes. INTRODUCTION Fungi represent one of the most diverse and widespread group of organisms in terrestrial ecosystems, but, despite that fact, their diversity remains highly unexplored. Until recently it was considered that there are 1.6 million species of fungi, from which only something around 100 000 were described (KIRK et al., 2001), while data from 2017 lists 120000 identified species, which is still a slight number (HAWKSWORTH and LÜCKING, 2017).
    [Show full text]
  • AR TICLE New Sequestrate Fungi from Guyana: Jimtrappea Guyanensis
    IMA FUNGUS · 6(2): 297–317 (2015) doi:10.5598/imafungus.2015.06.02.03 New sequestrate fungi from Guyana: Jimtrappea guyanensis gen. sp. nov., ARTICLE Castellanea pakaraimophila gen. sp. nov., and Costatisporus cyanescens gen. sp. nov. (Boletaceae, Boletales) Matthew E. Smith1, Kevin R. Amses2, Todd F. Elliott3, Keisuke Obase1, M. Catherine Aime4, and Terry W. Henkel2 1Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA 2Department of Biological Sciences, Humboldt State University, Arcata, CA 95521, USA; corresponding author email: Terry.Henkel@humboldt. edu 3Department of Integrative Studies, Warren Wilson College, Asheville, NC 28815, USA 4Department of Botany & Plant Pathology, Purdue University, West Lafayette, IN 47907, USA Abstract: Jimtrappea guyanensis gen. sp. nov., Castellanea pakaraimophila gen. sp. nov., and Costatisporus Key words: cyanescens gen. sp. nov. are described as new to science. These sequestrate, hypogeous fungi were collected Boletineae in Guyana under closed canopy tropical forests in association with ectomycorrhizal (ECM) host tree genera Caesalpinioideae Dicymbe (Fabaceae subfam. Caesalpinioideae), Aldina (Fabaceae subfam. Papilionoideae), and Pakaraimaea Dipterocarpaceae (Dipterocarpaceae). Molecular data place these fungi in Boletaceae (Boletales, Agaricomycetes, Basidiomycota) ectomycorrhizal fungi and inform their relationships to other known epigeous and sequestrate taxa within that family. Macro- and gasteroid fungi micromorphological characters, habitat, and multi-locus DNA sequence data are provided for each new taxon. Guiana Shield Unique morphological features and a molecular phylogenetic analysis of 185 taxa across the order Boletales justify the recognition of the three new genera. Article info: Submitted: 31 May 2015; Accepted: 19 September 2015; Published: 2 October 2015. INTRODUCTION 2010, Gube & Dorfelt 2012, Lebel & Syme 2012, Ge & Smith 2013).
    [Show full text]