Part I Patterns of Arctic Investment
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Northern Sea Route Cargo Flows and Infrastructure- Present State And
Northern Sea Route Cargo Flows and Infrastructure – Present State and Future Potential By Claes Lykke Ragner FNI Report 13/2000 FRIDTJOF NANSENS INSTITUTT THE FRIDTJOF NANSEN INSTITUTE Tittel/Title Sider/Pages Northern Sea Route Cargo Flows and Infrastructure – Present 124 State and Future Potential Publikasjonstype/Publication Type Nummer/Number FNI Report 13/2000 Forfatter(e)/Author(s) ISBN Claes Lykke Ragner 82-7613-400-9 Program/Programme ISSN 0801-2431 Prosjekt/Project Sammendrag/Abstract The report assesses the Northern Sea Route’s commercial potential and economic importance, both as a transit route between Europe and Asia, and as an export route for oil, gas and other natural resources in the Russian Arctic. First, it conducts a survey of past and present Northern Sea Route (NSR) cargo flows. Then follow discussions of the route’s commercial potential as a transit route, as well as of its economic importance and relevance for each of the Russian Arctic regions. These discussions are summarized by estimates of what types and volumes of NSR cargoes that can realistically be expected in the period 2000-2015. This is then followed by a survey of the status quo of the NSR infrastructure (above all the ice-breakers, ice-class cargo vessels and ports), with estimates of its future capacity. Based on the estimated future NSR cargo potential, future NSR infrastructure requirements are calculated and compared with the estimated capacity in order to identify the main, future infrastructure bottlenecks for NSR operations. The information presented in the report is mainly compiled from data and research results that were published through the International Northern Sea Route Programme (INSROP) 1993-99, but considerable updates have been made using recent information, statistics and analyses from various sources. -
PDF-Download
Julian Grinschgl FOKUS | 3/2019 Pipeline Politics, A Single Market, and the Rise of Renewable Energy: Challenges and Pathways for European Energy Security Introduction (CEE) are highly dependent on Russian The Pipeline Legacy gas supplies. Bulgaria, the Czech Republic, At the end of 2018, Gazprom reported Estonia, Latvia, Hungary, Austria, Poland, The collapse of the Soviet Union meant a record high in natural gas exports to Romania, Slovenia, Slovakia, and Finland that the immense network of pipelines Europe, exceeding 200 billion cubic meters import more than 75% of their gas from linking the Siberian gas fields and Europe (bcm) for the first time.1 As of early January Russia.8 Furthermore, gas was used for as are now crossing numerous countries wit- 2019, the United States (US) ambassa- much as a quarter of total primary energy hout an overarching regulator. This creates dor to Germany threatened to sanction consumption in the EU and by looking at tensions between destination, transit, German companies that will continue broader and more long-term scenarios of and supplier countries due to problems to be engaged in the controversial Nord future energy demands it is expected that of governance because these pipelines Stream 2 (NS2) project, aiming to build the share of natural gas in the EU’s energy can be abused as a political tool. Ukra- another direct pipeline from Russia to mix might even further increase.9 The dec- ine, which has been the transit land for Germany circumventing transit states.2 line of domestic gas production in -
Hydrogen at the Gates: Towards a New Chapter in the EU-Russia Energy Relations
Hydrogen at the Gates: Towards a New Chapter in the EU-Russia Energy Relations by Aliaksei Patonia Having ratified the Paris Agreement, the European Union (EU) pledged to substantially lower the level of its carbon emissions and become climate-neutral by 2050. In this respect, hydrogen (H2) – an energy source that could prospectively substitute conventional hydrocarbons – is viewed as an important element in achieving these ambitious targets, as it could revolutionize the energy industry. Here, though the EU puts specific attention to the build-up of H2 generation based on renewables, the cheapest way of its current large-scale production is using natural gas as a feedstock – the fuel imported primarily from Russia. This tradeoff between costs and climate commitments makes the future of the EU-Russia energy relations particularly tricky. EU’s Hydrogen Strategy vs. Russia’s ‘Hydrogen Roadmap’ Since energy production and consumption are the largest sources of CO2 emissions in the EU- 271, meeting the climate targets will necessitate a comprehensive transformation of the energy sector. Nevertheless, the energy industries in most European countries are still extensively reliant on hydrocarbons, in general (Figure 1), and natural gas, in particular, most of which is supplied by Russia. That is why, shifting the European economic paradigm towards sustainability is likely to necessitate the review of the EU-Russia energy relations, since Russia’s little focus on climate policy. 1 EEA (2013) 1 Figure 1: EU energy imports from Russia and energy mix2 Though, within the EU, reaching climate neutrality – i.e. the economy with net-zero greenhouse gas emissions – is generally viewed through decarbonization (the substitution of fossil fuels by renewables)3, the intermittency of wind and solar power necessitates finding a way to store large volumes of energy for a long time so that they could be integrated into the energy system4. -
Satellite Ice Extent, Sea Surface Temperature, and Atmospheric 2 Methane Trends in the Barents and Kara Seas
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-237 Manuscript under review for journal The Cryosphere Discussion started: 22 November 2018 c Author(s) 2018. CC BY 4.0 License. 1 Satellite ice extent, sea surface temperature, and atmospheric 2 methane trends in the Barents and Kara Seas 1 2 3 2 4 3 Ira Leifer , F. Robert Chen , Thomas McClimans , Frank Muller Karger , Leonid Yurganov 1 4 Bubbleology Research International, Inc., Solvang, CA, USA 2 5 University of Southern Florida, USA 3 6 SINTEF Ocean, Trondheim, Norway 4 7 University of Maryland, Baltimore, USA 8 Correspondence to: Ira Leifer ([email protected]) 9 10 Abstract. Over a decade (2003-2015) of satellite data of sea-ice extent, sea surface temperature (SST), and methane 11 (CH4) concentrations in lower troposphere over 10 focus areas within the Barents and Kara Seas (BKS) were 12 analyzed for anomalies and trends relative to the Barents Sea. Large positive CH4 anomalies were discovered around 13 Franz Josef Land (FJL) and offshore west Novaya Zemlya in early fall. Far smaller CH4 enhancement was found 14 around Svalbard, downstream and north of known seabed seepage. SST increased in all focus areas at rates from 15 0.0018 to 0.15 °C yr-1, CH4 growth spanned 3.06 to 3.49 ppb yr-1. 16 The strongest SST increase was observed each year in the southeast Barents Sea in June due to strengthening of 17 the warm Murman Current (MC), and in the south Kara Sea in September. The southeast Barents Sea, the south 18 Kara Sea and coastal areas around FJL exhibited the strongest CH4 growth over the observation period. -
Alaska Natural Gas Transportation System (ANGTS)
Alaska Natural Gas Pipeline Proposals (North Slope to Market) Chronology of Events: 1984- by Betty Galbraith 7/15/09 March 7, 1984 The Joint Oil and Gas Committee met to receive briefings on the status of transporting and marketing North slope natural gas. Yukon Pacific Corporation's TAGS project for exporting gas to Pacific Rim countries was discussed as an alternative to ANGTS. March 10, 1984 Legislative digest: A Forecast and Review reported that testimony before the Alaska Joint House-Senate Oil and Gas Committees indicated that natural gas markets in the U.S. and elsewhere would have to improve substantially before financing of the gas pipeline could be financed. Dec 15, 1984 The Federal Energy Regulatory Commission issued an order conditionally approving an extension of the importation of natural gas from Canada for another 4 year period. April 3, 1986 HCR 8 encouraging the Governor to consider a gas pipeline from the North Slope to Fairbanks with spurs to other communities as an alternative to other energy proposals, passed to become Alaska Legislative Resolve 36 Nov 1, 1986 The Bureau of Land Management published a notice in the Federal Register, of their intent to prepare an environmental impact statement for the TAGS pipeline proposal. Dec 5, 1986 Yukon Pacific Corporation issued its Trans-Alaska Gas System Project Description. The project involved a pipeline to transport North Slope gas to tidewater, a facility in the Valdez area to liquefy the gas for ocean transport to Asia. The project would be phased in over a period of years. Dec 5, 1986 Yukon Pacific Corporation filed an application with the Bureau of Land Management and the Army Corps of Engineers to construct a large diameter pipeline between Prudhoe Bay and Anderson Bay (Valdez) to export LNG. -
Q4 News Release
Q4 News Release Calgary, February 2, 2021 TSE: IMO, NYSE American: IMO Imperial announces fourth quarter 2020 financial and operating results Fourth quarter net loss of $1,146 million, which includes a non-cash impairment charge of $1,171 million Cash generated from operations in the fourth quarter of $316 million, which includes unfavourable working capital effects of $218 million Highest quarterly upstream production in 30 years, driven by record production at Kearl Exceeded full-year cost reduction targets, with production and manufacturing expenses down $985 million from 2019, representing a savings of 15 percent compared to 2019 Full-year capital expenditures of $874 million, in line with the company’s most recent guidance, and less than half of 2019 expenditures Maintained dividend throughout the year, returning over $900 million to shareholders through dividends and share purchases in 2020 Fourth quarter Twelve months millions of Canadian dollars, unless noted 2020 2019 ∆I 2020 2019 ∆I Net income (loss) (U.S. GAAP) (1,146) 271 -1,417 (1,857) 2,200 -4,057 Net income (loss) per common share, assuming dilution (dollars) (1.56) 0.36 -1.92 (2.53) 2.88 -5.41 Capital and exploration expenditures 195 414 -219 874 1,814 -940 “The past year has proved an exceptionally challenging one, not only for the company and our employees, but society at-large,” said Brad Corson, chairman, president and chief executive officer. “Against significant headwinds, Imperial’s operational performance and cost management efforts have exceeded expectations. We set aggressive targets for capital and expense reductions in the first quarter of 2020, and we surpassed those targets. -
Exploration and Production
2006-2009 Triennium Work Report October 2009 WORKING COMMITTEE 1: EXPLORATION AND PRODUCTION Chair: Vladimir Yakushev Russia 1 TABLE OF CONTENTS Introduction SG 1.1 “Remaining conventional world gas resources and technological challenges for their development” report SG 1.2 “Difficult reservoirs and unconventional natural gas resources” report 2 INTRODUCTION Reliable natural gas supply becomes more and more important for world energy sector development. Especially this is visible in regions, where old and sophisticated gas infrastructure is a considerable part of regional industry and its stable work is necessary for successful economy development. In the same time such regions often are already poor by conventional gas reserves or have no more such reserves. And there is need for searching new sources of natural gas. This is challenge for exploration and production of natural gas requiring reviewing strategies of their development in near future. The most important questions are: how much gas still we can get from mature areas (and by what means), and how much gas we can get from difficult reservoirs and unconventional gas sources? From this point of view IGU Working Committee 1 (Exploration and Production of Natural Gas) has established for the triennium 2006-2009 two Study Groups: “Remaining conventional world gas resources and technological challenges for their development” and “Difficult reservoirs and unconventional natural gas resources”. The purposes for the first Group study were to make definition of such important term now using in gas industry like “mature area”, to show current situation with reserves and production in mature areas and forecast of future development, situation with modern technologies of produced gas monetization, Arctic gas prospects, special attention was paid to large Shtokman project. -
Imperial Standard: Imperial Oil, Exxon, and the Canadian Oil Industry from 1880
University of Calgary PRISM: University of Calgary's Digital Repository University of Calgary Press University of Calgary Press Open Access Books 2019-04 Imperial Standard: Imperial Oil, Exxon, and the Canadian Oil Industry from 1880 Taylor, Graham D. University of Calgary Press Taylor, G. D. (2019). Imperial Standard: Imperial Oil, Exxon, and the Canadian Oil Industry from 1880. "University of Calgary Press". http://hdl.handle.net/1880/110195 book https://creativecommons.org/licenses/by-nc-nd/4.0 Downloaded from PRISM: https://prism.ucalgary.ca IMPERIAL STANDARD: Imperial Oil, Exxon, and the Canadian Oil Industry from 1880 Graham D. Taylor ISBN 978-1-77385-036-8 THIS BOOK IS AN OPEN ACCESS E-BOOK. It is an electronic version of a book that can be purchased in physical form through any bookseller or on-line retailer, or from our distributors. Please support this open access publication by requesting that your university purchase a print copy of this book, or by purchasing a copy yourself. If you have any questions, please contact us at [email protected] Cover Art: The artwork on the cover of this book is not open access and falls under traditional copyright provisions; it cannot be reproduced in any way without written permission of the artists and their agents. The cover can be displayed as a complete cover image for the purposes of publicizing this work, but the artwork cannot be extracted from the context of the cover of this specific work without breaching the artist’s copyright. COPYRIGHT NOTICE: This open-access work is published under a Creative Commons licence. -
For Classification and Construction of Ships (Rccs)
RULES FOR CLASSIFICATION AND CONSTRUCTION OF SHIPS (RCCS) Part 0 CLASSIFICATION 4 RCCS. Part 0 “Classification” 1 GENERAL PROVISIONS 1.1 The present Part of the Rules for the materials for the ships except for small craft Classification and Construction of Inland and used for non-for-profit purposes. The re- Combined (River-Sea) Navigation Ships (here quirements of the present Rules are applicable and in all other Parts — Rules) defines the to passenger ships, tankers, pushboats, tug- basic terms and definitions applicable for all boats, ice breakers and industrial ships of Parts of the Rules, general procedure of ship‘s overall length less than 20 m. class adjudication and composing of class The requirements of the present Rules are formula, as well as contains information on not applicable to small craft, pleasure ships, the documents issued by Russian River Regis- sports sailing ships, military and border- ter (hereinafter — River Register) and on the security ships, ships with nuclear power units, areas and seasons of operation of the ships floating drill rigs and other floating facilities. with the River Register class. However, the River Register develops and 1.2 When performing its classification and issues corresponding regulations and other survey activities the River Register is governed standards being part of the Rules for particu- by the requirements of applicable interna- lar types of ships (small craft used for com- tional agreements of Russian Federation, mercial purposes, pleasure and sports sailing Regulations on Classification and Survey of ships, ekranoplans etc.) and other floating Ships, as well as the Rules specified in Clause facilities (pontoon bridges etc.). -
Russia to “Launder” Warpath the Inf Treaty Iranian Oil?
MONTHLY October 2018 MONTHLY AugustOctober 2018 2018 The publication prepared exclusively for PERN S.A. Date of publication in the public domain: 19th17th NovemberSeptember 2018. 2018. CONTENTS 12 19 28 PUTIN AGAIN ON THE GREAT GAME OVER RUSSIA TO “LAUNDER” WARPATH THE INF TREATY IRANIAN OIL? U.S. NATIONAL SECURITY ADVISOR PUTIN’S ANOTHER BODYGUARD JOHN BOLTON GLADDENED 3 TO BE APPOINTED GOVERNOR 18 MOSCOW’S “PARTY OF WAR” RUSSIAN ARMY TO ADD MORE GREAT GAME OVER THE INF 4 FIREPOWER IN KALININGRAD 19 TREATY PURGE IN RUSSIA’S REGIONS AS RUSSIA AND PAKISTAN TO HOLD PUTIN GETS RID OF POLITICAL JOINT MILITARY DRILLS IN THE 6 VETERANS 21 PAKISTANI MOUNTAINS SECHIN LOSES BATTLE FOR ITALY TO WITHDRAW FROM 7 RUSSIA’S STRATEGIC OIL PORT 22 ROSNEFT PROJECT SPETSNAZ, FLEET AND NUCLEAR GAS GAMES: POLISH-RUSSIANS FORCES: RUSSIA’S INTENSE 24 TENSIONS OVER A NEW LNG DEAL 9 MILITARY DRILLS RUSSIA GETS NEW ALLY AS SHOIGU GAZPROM TO RESUME IMPORTS 25 PAYS VISIT TO MONGOLIA 10 OF TURKMEN GAS MORE TENSIONS IN THE SEA 12 PUTIN AGAIN ON THE WARPATH OF AZOV: RUSSIA TO SCARE ON 27 EASTERN FLANK NOVATEK DISCOVERS NEW 13 PROFITABLE GAS DEPOSITS 28 RUSSIA TO “LAUNDER” IRANIAN OIL? NOT ONLY BALTIC LNG PLANT: MOSCOW HOPES FOR IRAQ’S CLOSE TIES BETWEEN SHELL 29 NEW GOVERNMENT 15 AND GAZPROM GAZPROM AND UKRAINE FACE PUTIN VISITS INDIA TO MARK ANOTHER LITIGATION OVER 16 PURCHASE OF RUSSIA’S MISSILES 31 GAS SUPPLIES www.warsawinstitute.org 2 SOURCE: KREMLIN.RU 8 October 2018 PUTIN’S ANOTHER BODYGUARD TO BE APPOINTED GOVERNOR According to the autumn tradition, Russia’s President Vladimir Putin dismisses some governors while appointing new ones. -
Near East University Docs
NEAR EAST UNIVERSITY THE FACULTY OF MARITIME STUDIES GRADUATION PROJECT LNG CARRIAGE ON THE WORLD Submitted to: OCEAN GOING MASTER AHMET BEYOGLU Submitted by: EMRE EVREN YURTSEVEN SHIP MANAGEMENT ENGINEERING DEPARTMENT NICOSIA - 2003 • Introduction The purpose of the IMO model coursesis to assist maritime training institutes and their teaching staff in organising and introducing new training courses, or in enhancing, updating or supplementing existing training material where the quality and effectiveness of the training courses may thereby be improved. It is not the intention of the model course programme to present instructors with a rigid 'teaching package' which they are expected to 'follow blindly' .Nor, is the intention to substitute audio-visual or 'programmed' material for the instructor's presence .As in all training endeavours, the knowledge, skills and detication of the instructor are the key components in the transfer of knowledge and skills to those being trained through IMO model course material. Because educational systems and the cultural backgrounds of trainees in maritime subjects vary considerably from country, the model course material has been designed to identify the basic entry requirements and trainee target group for each course in universally applicable terms , and to specify clearly the technical content and levels of knowledge and skill necessary to meet the technical intent of IMO conventions and related recommendations . • CONTENTS: PARTl SECTION 1 1. Executive Summary 1 1.1 Main conclusions 1 1.2 Natural gas demand trends 3 1.3 Natural gas reserves 3 1.4 Historical developmentof natural gas carriage 4 SECTiON 2 2. The natural gas market 5 2.1 What is natural gas and energy 5 2.1.1 Natural gas 5 2.1.2 Liquefied natural gas LNG 5 2.1.3 Applications 5 2.1.4 The natural gas industry 6 2.1.5 Natural gas and environment 7 2.2 World primary energy consumption 8 2.3 Natural gas consumption trends 11 2.4 Natural gas production trends 12 2.5 The international natural gas reserves 13 2.6 The international natural gas trade 14 SECTiON 3 3. -
On Deck Part 2
PART 2 The New Zealand Company of Master Mariners March 2015 SNIPPETS FROM THE MARITIME BIOSPHERE US NAVY’S NEW LASER WEAPON. “At less than a dollar per shot, there’s no question DOES THIS SPELL THE END OF about the value LaWS provides,” said Klunder. “With CONVENTIONAL WEAPONS? affordability a serious concern for our defense budgets, this will more effectively manage resources to ‘Shades of Buck Rogers’ ensure our Sailors and Marines are never in a fair The U.S. Navy has achieved a historic milestone with a fight.” cutting-edge new laser weapon system that can In the future, factors from the successful deployment destroy targets for less than $1 per shot. and demonstration aboard the USS Ponce will help The Navy made the announcement recently that for guide the development of weapons under ONR’s Solid- the first time ever the new laser weapon system, known as LaWS, was successfully deployed and State Laser-Technology Maturation program. According operated aboard a Navy ship in the Arabian Gulf. The to the U.S. Navy, combat-ready laser prototypes that weapon, which uses a form of concentrated directed- could be installed on vessels such as guided-missile energy to destroy a target, has been under destroyers and the Littoral Combat Ship in the early development by the Office of Naval Research for 2020s. several years. See it in action here: http://gcaptain.com/watch-u-s- navys-new-laser-weapon-action-photos- video/?utm_source=feedburner&utm_medium=feed&u tm_campaign=Feed%3A+Gcaptain+%28gCaptain.com %29 TIME-LAPSE VIDEO: ALLSEAS AUDACIA OFFSHORE PIPELAY VESSEL IN ACTION Check out this greatMIKE time SCHULER-lapse video showing exactly what Allseas’ newest pipelay vessel was built to do.