System Analysis and Nematode Phylogeny
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Biogeographic Atlas of the Southern Ocean
Census of Antarctic Marine Life SCAR-Marine Biodiversity Information Network BIOGEOGRAPHIC ATLAS OF THE SOUTHERN OCEAN CHAPTER 5.3. ANTARCTIC FREE-LIVING MARINE NEMATODES. Ingels J., Hauquier F., Raes M., Vanreusel A., 2014. In: De Broyer C., Koubbi P., Griffiths H.J., Raymond B., Udekem d’Acoz C. d’, et al. (eds.). Biogeographic Atlas of the Southern Ocean. Scientific Committee on Antarctic Research, Cambridge, pp. 83-87. EDITED BY: Claude DE BROYER & Philippe KOUBBI (chief editors) with Huw GRIFFITHS, Ben RAYMOND, Cédric d’UDEKEM d’ACOZ, Anton VAN DE PUTTE, Bruno DANIS, Bruno DAVID, Susie GRANT, Julian GUTT, Christoph HELD, Graham HOSIE, Falk HUETTMANN, Alexandra POST & Yan ROPERT-COUDERT SCIENTIFIC COMMITTEE ON ANTARCTIC RESEARCH THE BIOGEOGRAPHIC ATLAS OF THE SOUTHERN OCEAN The “Biogeographic Atlas of the Southern Ocean” is a legacy of the International Polar Year 2007-2009 (www.ipy.org) and of the Census of Marine Life 2000-2010 (www.coml.org), contributed by the Census of Antarctic Marine Life (www.caml.aq) and the SCAR Marine Biodiversity Information Network (www.scarmarbin.be; www.biodiversity.aq). The “Biogeographic Atlas” is a contribution to the SCAR programmes Ant-ECO (State of the Antarctic Ecosystem) and AnT-ERA (Antarctic Thresholds- Ecosys- tem Resilience and Adaptation) (www.scar.org/science-themes/ecosystems). Edited by: Claude De Broyer (Royal Belgian Institute of Natural Sciences, Brussels) Philippe Koubbi (Université Pierre et Marie Curie, Paris) Huw Griffiths (British Antarctic Survey, Cambridge) Ben Raymond (Australian -
Free-Living Marine Nematodes from San Antonio Bay (Río Negro, Argentina)
A peer-reviewed open-access journal ZooKeys 574: 43–55Free-living (2016) marine nematodes from San Antonio Bay (Río Negro, Argentina) 43 doi: 10.3897/zookeys.574.7222 DATA PAPER http://zookeys.pensoft.net Launched to accelerate biodiversity research Free-living marine nematodes from San Antonio Bay (Río Negro, Argentina) Gabriela Villares1, Virginia Lo Russo1, Catalina Pastor de Ward1, Viviana Milano2, Lidia Miyashiro3, Renato Mazzanti3 1 Laboratorio de Meiobentos LAMEIMA-CENPAT-CONICET, Boulevard Brown 2915, U9120ACF, Puerto Madryn, Argentina 2 Universidad Nacional de la Patagonia San Juan Bosco, sede Puerto Madryn. Boulevard Brown 3051, U9120ACF, Puerto Madryn, Argentina 3Centro de Cómputos CENPAT-CONICET, Boulevard Brown 2915, U9120ACF, Puerto Madryn, Argentina Corresponding author: Gabriela Villares ([email protected]) Academic editor: H-P Fagerholm | Received 18 November 2015 | Accepted 11 February 2016 | Published 28 March 2016 http://zoobank.org/3E8B6DD5-51FA-499D-AA94-6D426D5B1913 Citation: Villares G, Lo Russo V, Pastor de Ward C, Milano V, Miyashiro L, Mazzanti R (2016) Free-living marine nematodes from San Antonio Bay (Río Negro, Argentina). ZooKeys 574: 43–55. doi: 10.3897/zookeys.574.7222 Abstract The dataset of free-living marine nematodes of San Antonio Bay is based on sediment samples collected in February 2009 during doctoral theses funded by CONICET grants. A total of 36 samples has been taken at three locations in the San Antonio Bay, Santa Cruz Province, Argentina on the coastal littoral at three tidal levels. This presents a unique and important collection for benthic biodiversity assessment of Patagonian nematodes as this area remains one of the least known regions. -
Nematodes in Aquatic Environments Adaptations and Survival Strategies
Biodiversity Journal , 2012, 3 (1): 13-40 Nematodes in aquatic environments: adaptations and survival strategies Qudsia Tahseen Nematode Research Laboratory, Department of Zoology, Aligarh Muslim University, Aligarh-202002, India; e-mail: [email protected]. ABSTRACT Nematodes are found in all substrata and sediment types with fairly large number of species that are of considerable ecological importance. Despite their simple body organization, they are the most complex forms with many metabolic and developmental processes comparable to higher taxa. Phylum Nematoda represents a diverse array of taxa present in subterranean environment. It is due to the formative constraints to which these individuals are exposed in the interstitial system of medium and coarse sediments that they show pertinent characteristic features to survive successfully in aquatic environments. They represent great degree of mor - phological adaptations including those associated with cuticle, sensilla, pseudocoelomic in - clusions, stoma, pharynx and tail. Their life cycles as well as development seem to be entrained to the environment type. Besides exhibiting feeding adaptations according to the substrata and sediment type and the kind of food available, the aquatic nematodes tend to wi - thstand various stresses by undergoing cryobiosis, osmobiosis, anoxybiosis as well as thio - biosis involving sulphide detoxification mechanism. KEY WORDS Adaptations; fresh water nematodes; marine nematodes; morphology; ecology; development. Received 24.01.2012; accepted 23.02.2012; -
Nematoda: Enoplida) from the Tropics
Opusc. Zool. Budapest, (2006) 2008, 37: 3–9 Two new and a known species of the family Tripylidae (Nematoda: Enoplida) from the tropics I. ANDRÁSSY1 Abstract. Two new species of the genus Tripyla and Tripylella, respectively, as well as a known but rare species of the genus Tripylina are described and illustrated. Tripyla pulchella sp. n. from Papua New Guinea belongs to the smallest members of the genus, and is characterized by the narrowed anterior end, the well developed cephalic setae, the sclerotized vulval lips, the medium long, conical tail and the long terminal spinneret. Tripylella iucunda sp. n. from La Réunion is the shortest species within the genus possessing short cephalic setae, discoidal cardia and dorsally abruptly narrowed tail. Tripylina stramenti was found in São Tomé and is redescribed for the first time after the original description. wo new and a known but rare nematode spe- a = 19–21; b = 4.3–4.7; c = 6.1–6.4; c’ = 4.7–5.2; Tcies of the family Tripylidae found in tropical V = 54–59 %. regions of Earth are presented and described. They belong to the genera Tripyla, Tripylella and General description. A small and stout nema- Tripylina, respectively. tode, irregularly bent or twisted after fixation; bo- dy 36–42 µm wide at mid-region. Cuticle 1.5–2.0 The specimens of the new species were col- µm thick; finely annulated, annules 1.0–1.5 µm lected in Papua New Guinea and La Réunion, re- wide; annulations most conspicuous at vulval re- spectively, those of the known species in São gion and tail. -
Zootaxa, New Zealand Species of the Genus Tripyla Bastian, 1865
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/228485207 New Zealand species of the genus Tripyla Bastian, 1865 (Nematoda: Triplonchida: Tripylidae). I: A new species, a new record and key to long-tailed species Article · December 2009 CITATIONS READS 4 257 2 authors, including: Zeng Qi Zhao Manaaki Whenua - Landcare Research 69 PUBLICATIONS 454 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: An index to new genera and species of Nematoda in Zootaxa from 2007 to 2012 View project All content following this page was uploaded by Zeng Qi Zhao on 12 November 2015. The user has requested enhancement of the downloaded file. Zootaxa 2291: 35–50 (2009) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2009 · Magnolia Press ISSN 1175-5334 (online edition) New Zealand species of the genus Tripyla Bastian, 1865 (Nematoda:Triplonchida: Tripylidae). I : A new species, a new record and key to long-tailed species ZENG QI ZHAO Landcare Research, Private Bag 92170, Auckland Mail Centre, Auckland 1142, New Zealand Email: [email protected] Abstract This paper describes two species of the genus of Tripyla from New Zealand and also provides a key to species based on the morphology of females in eight long-tailed (c < 5) species in the genus of Tripyla. Tripyla bioblitz sp. nov. is characterized by its more anterior vulva position (V = 43.7–45.4%), relatively short body length (1150–1410 µm) and long tail (c = 4.0–4.4) in the group. -
Southeastern Regional Taxonomic Center South Carolina Department of Natural Resources
Southeastern Regional Taxonomic Center South Carolina Department of Natural Resources http://www.dnr.sc.gov/marine/sertc/ Southeastern Regional Taxonomic Center Invertebrate Literature Library (updated 9 May 2012, 4056 entries) (1958-1959). Proceedings of the salt marsh conference held at the Marine Institute of the University of Georgia, Apollo Island, Georgia March 25-28, 1958. Salt Marsh Conference, The Marine Institute, University of Georgia, Sapelo Island, Georgia, Marine Institute of the University of Georgia. (1975). Phylum Arthropoda: Crustacea, Amphipoda: Caprellidea. Light's Manual: Intertidal Invertebrates of the Central California Coast. R. I. Smith and J. T. Carlton, University of California Press. (1975). Phylum Arthropoda: Crustacea, Amphipoda: Gammaridea. Light's Manual: Intertidal Invertebrates of the Central California Coast. R. I. Smith and J. T. Carlton, University of California Press. (1981). Stomatopods. FAO species identification sheets for fishery purposes. Eastern Central Atlantic; fishing areas 34,47 (in part).Canada Funds-in Trust. Ottawa, Department of Fisheries and Oceans Canada, by arrangement with the Food and Agriculture Organization of the United Nations, vols. 1-7. W. Fischer, G. Bianchi and W. B. Scott. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico. Volume II. Final report to the Minerals Management Service. J. M. Uebelacker and P. G. Johnson. Mobile, AL, Barry A. Vittor & Associates, Inc. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico. Volume III. Final report to the Minerals Management Service. J. M. Uebelacker and P. G. Johnson. Mobile, AL, Barry A. Vittor & Associates, Inc. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico. -
01 Nematodes.Indd
J. Nematode Morphol. Syst., 15 (2): 71-86 (2012) Four new species of Tripylina from México Four new species of Tripylina Brzeski, 1963 (Enoplida: Tripylidae) from México, with an emended diagnosis of the genus I. CID DEL PRADO-VERA¹, H. FERRIS², S. A. NADLER² AND R. LAMOTHE-ARGUMEDO³ Summary.- Four new species of Tripylina collected in México are described and illustrated. Tripylina bravoae sp. n. has a slender body, asymmetric lip region, dorsal tooth posterior to smaller subventral teeth, two ventromedian setae in the cervical region of males but absent in females, indiscernible excretory pore, a post-uterine sac, vulval lips slightly protruding and sclerotized pieces present around the vagina. Tripylina ixayocensis sp. n. is characterized by the presence of sparse somatic setae, conoid and asymmetric lip region, long outer labial setae and shorter cephalic setae in a single whorl, dorsal wall of stoma thickened, dorsal tooth small and anterior to subventral teeth, excretory pore conspicuous, vulva with protruding lips, and vagina without sclerotized structures. Tripylina tlamincasensis sp. n. has sparse somatic setae, asymmetric lip region, outer labial setae and cephalic setae in two whorls, dorsal wall of stoma not thickened, dorsal tooth posterior to subventral teeth, indiscernible excretory pore, vulva with non-protruding lips, and vagina with small sclerotized pieces. Tripylina montecilloensis sp. n. is distinguished by its sparse somatic setae, conoid and asymmetric lip region, outer labial setae slightly anterior to cephalic setae, dorsal wall of stoma not thickened and dorsal tooth posterior to subventral teeth, two ventromedian cervical setae, excretory pore indiscernible, vulval lips not protruding and vagina without sclerotized pieces. -
Complete Taxonomy for the Nematode ATBI Project Organism Group: Nematode
Complete Taxonomy for the Nematode ATBI Project Organism Group: Nematode DOMAIN, KINGDOM PHYLUM CLASS ORDER FAMILY Eucarya, Animalia Arthropoda Diplopoda Polydesmida Xystodesmidae Eucarya, Animalia Arthropoda Insecta Hymenoptera Halictidae Eucarya, Animalia Nematoda Chromadorea Araeolaimida Plectidae Eucarya, Animalia Nematoda Chromadorea Araeolaimida Rhabdolaimidae Eucarya, Animalia Nematoda Chromadorea Diplogasterida Diplogasteridae Eucarya, Animalia Nematoda Chromadorea Rhabditida Bunonematidae Eucarya, Animalia Nematoda Chromadorea Rhabditida Cephalobidae Eucarya, Animalia Nematoda Chromadorea Rhabditida Panagrolaimidae Eucarya, Animalia Nematoda Chromadorea Tylenchida Aphelenchoididae Eucarya, Animalia Nematoda Chromadorea Tylenchida Criconematidae Page 1 of 4 Complete Taxonomy for the Nematode ATBI Project Organism Group: Nematode DOMAIN, KINGDOM PHYLUM CLASS ORDER FAMILY Eucarya, Animalia Nematoda Chromadorea Tylenchida Hoplolaimidae Eucarya, Animalia Nematoda Enoplea Dorylaimida Actinolaimidae Eucarya, Animalia Nematoda Enoplea Dorylaimida Aporcelaimidae Eucarya, Animalia Nematoda Enoplea Dorylaimida Dorylaimidae Eucarya, Animalia Nematoda Enoplea Dorylaimida Longidoridae Eucarya, Animalia Nematoda Enoplea Dorylaimida Nygolaimidae Eucarya, Animalia Nematoda Enoplea Dorylaimida Qudsianematidae Eucarya, Animalia Nematoda Enoplea Enoplida Alaimidae Eucarya, Animalia Nematoda Enoplea Enoplida Ironidae Eucarya, Animalia Nematoda Enoplea Enoplida Prismatolaimidae Page 2 of 4 Complete Taxonomy for the Nematode ATBI Project Organism Group: -
The Embryonic Development of Pontonema Vulgare (Enoplida: Oncholaimidae) with a Discussion of Nematode Phylogeny
Russian Journal of Nematology, 1999, 7 (2), 105 - 1 14 The embryonic development of Pontonema vulgare (Enoplida: Oncholaimidae) with a discussion of nematode phylogeny Dmitrii A. Voronov Institute for Information Transmission Problems of Russian Academy of Sciences, Bolshoy Karehy per. 19, Moscow, 101447, Russia, e-mail: [email protected] Accepted for publication 20 July 1999 Summriry. The cell lineage in embryonic development of the marine nematode Pontonema vulgare (Enoplida, Oncholaimidae) was studied using cell labelling by fluorescent dye. After labelling at the two-cell stage, the border between labelled and unlabelled cells is different in different Lima bean and comma stage embryos crossing them in left-right, anterior-posterior, or intermediate direction.Therefore, in contrast to the majority of nematodes, P. vulgare has a variable type of development. However, as in other nematodes all the endoderm is derived from a single blastomere of the elght-cell stage, and the gastrulation process in P. vulgare is comparable to that in other nematodes. In general, the development of P. vulgare is similar to that in the previously studied Enoplus brevis (Enoplida, Enoplidae). Using the type of development, all nematodes can be placed in one of three major groups: 1, with variable cleavage (order Enoplida); 2, with invariant cleavage and anterior localization of endoderm material at the two-cell stage (remaining Enoplea); 3, with invariant cleavage and posterior localization of endoderm material at the two-cell stage (Chromadorea and Secernentea). This classification is independently supported by molecular phylogeny studies and by several anatomical characters. Key words: nematodes, embryonic development, cell lineage, cleavage, gastrulation, phylogeny. -
Taxonomy Assignment Approach Determines the Efficiency of Identification of Metabarcodes in Marine Nematodes
Taxonomy assignment approach determines the efficiency of identification of metabarcodes in marine nematodes Oleksandr Holovachov1, Quiterie Haenel2, Sarah J. Bourlat3 and Ulf Jondelius1 1Department of Zoology, Swedish Museum of Natural History, Stockholm, Sweden 2Zoological Institute, University of Basel, Switzerland 3Department of Marine Sciences, University of Gothenburg, Sweden Abstract: Precision and reliability of barcode-based biodiversity assessment can be affected at several steps during acquisition and analysis of the data. Identification of barcodes is one of the crucial steps in the process and can be accomplished using several different approaches, namely, alignment-based, probabilistic, tree-based and phylogeny-based. Number of identified sequences in the reference databases affects the precision of identification. This paper compares the identification of marine nematode barcodes using alignment-based, tree-based and phylogeny-based approaches. Because the nematode reference dataset is limited in its taxonomic scope, barcodes can only be assigned to higher taxonomic categories, families. Phylogeny-based approach using Evolutionary Placement Algorithm provided the largest number of positively assigned metabarcodes and was least affected by erroneous sequences and limitations of reference data, comparing to alignment- based and tree-based approaches. Key words: biodiversity, identification, barcode, nematodes, meiobenthos. 1 1. Introduction Metabarcoding studies based on high throughput sequencing of amplicons from marine samples have reshaped our understanding of the biodiversity of marine microscopic eukaryotes, revealing a much higher diversity than previously known [1]. Early metabarcoding of the slightly larger sediment-dwelling meiofauna have mainly focused on scoring relative diversity of taxonomic groups [1-3]. The next step in metabarcoding: identification of species, is limited by the available reference database, which is sparse for most marine taxa, and by the matching algorithms. -
A Taxonomic Hierarchy and Checklist of the Genera and Higher Taxa of Marine Nematodes
A Taxonomic Hierarchy and Checklist of the Genera and Higher Taxa of Marine Nematodes w. D. HOPE and D. G. MURPHY SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 137 SERIAL PUBLICATIONS OF THE SMITHSONIAN INSTITUTION The emphasis upon publications as a means of diffusing knowledge was expressed by the first Secretary of the Smithsonian Institution. In his formal plan for the Insti- tution, Joseph Henry articulated a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This keynote of basic research has been adhered to over the years in the issuance of thousands of titles in serial publications under the Smithsonian imprint, com- mencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Annals of Flight Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology Smithsonian Studies in History and Technology In these series, the Institution publishes original articles and monographs dealing with the research and collections of its several museums and offices and of professional colleagues at other institutions of learning. These papers report newly acquired facts, synoptic interpretations of data, or original theory in specialized fields. These pub- lications are distributed by mailing lists to libraries, laboratories, and other interested institutions and specialists throughout the world. Individual copies may be obtained from the Smithsonian Institution Press as long as stocks are available. -
Table of Contents
TABLE OF CONTENTS SESSION ONE – PLENARY SESSION ............................................................................................... 1 CHAIRS: MICHAEL HODDA & DAVID CHITWOOD Is Nematology a Jigsaw, a Tapestry or a Strange Attractor? 1 Hodda, M. Metagenomics, Big Science, and the Reformation of Nematology 2 Powers, T. A Practical Future for Nematology in the Real World 2 Nicol, J. & R. Sikora SESSION TWO – ECOLOGY AND BIODIVERSITY OF SOIL NEMATODES IN SUSTAINABLE SOIL CONSERVATION ............................................................................................ 3 CONVENORS: GREGOR YEATES & NIGEL BELL Nematode Assemblages and Soil Properties Are Closely Linked 3 Sánchez-Moreno, S. & H. Ferris Nematode Diversity and Function in Dutch Sand Dunes 4 Brinkman, E.P., H. Duyts & W.H. Van der Putten Nematode Diversity under Commercial Banana Production 5 Pattison, A., J. Cobon, M. Araya, L. Pocasangre, F. Rosales & R. Sikora How Different or Similar are Nematode Communities in Paddy and Upland Rice Fields 6 Okada, H., W. Abe, M. Komatsuzaki & M. Hiroki A Perspective on Diversity within Nematode Feeding Groups across Ecosystems 7 Yeates, G.W. SESSION THREE – MUTUALISTIC/PHORETIC ASSOCIATIONS AND INVERTEBRATE PARASITIC NEMATODES ............................................................................................................... 8 CONVENORS: ROBIN GIBLIN-DAVIS & KERRIE DAVIES Entomophilic Nematodes for Predictions of Worldwide Nematode Species Diversity 8 Giblin-Davis, R.M., N. Kanzaki & K.A. Davies Host Specificity,