The Embryonic Development of Pontonema Vulgare (Enoplida: Oncholaimidae) with a Discussion of Nematode Phylogeny

Total Page:16

File Type:pdf, Size:1020Kb

The Embryonic Development of Pontonema Vulgare (Enoplida: Oncholaimidae) with a Discussion of Nematode Phylogeny Russian Journal of Nematology, 1999, 7 (2), 105 - 1 14 The embryonic development of Pontonema vulgare (Enoplida: Oncholaimidae) with a discussion of nematode phylogeny Dmitrii A. Voronov Institute for Information Transmission Problems of Russian Academy of Sciences, Bolshoy Karehy per. 19, Moscow, 101447, Russia, e-mail: [email protected] Accepted for publication 20 July 1999 Summriry. The cell lineage in embryonic development of the marine nematode Pontonema vulgare (Enoplida, Oncholaimidae) was studied using cell labelling by fluorescent dye. After labelling at the two-cell stage, the border between labelled and unlabelled cells is different in different Lima bean and comma stage embryos crossing them in left-right, anterior-posterior, or intermediate direction.Therefore, in contrast to the majority of nematodes, P. vulgare has a variable type of development. However, as in other nematodes all the endoderm is derived from a single blastomere of the elght-cell stage, and the gastrulation process in P. vulgare is comparable to that in other nematodes. In general, the development of P. vulgare is similar to that in the previously studied Enoplus brevis (Enoplida, Enoplidae). Using the type of development, all nematodes can be placed in one of three major groups: 1, with variable cleavage (order Enoplida); 2, with invariant cleavage and anterior localization of endoderm material at the two-cell stage (remaining Enoplea); 3, with invariant cleavage and posterior localization of endoderm material at the two-cell stage (Chromadorea and Secernentea). This classification is independently supported by molecular phylogeny studies and by several anatomical characters. Key words: nematodes, embryonic development, cell lineage, cleavage, gastrulation, phylogeny. Study of nematode embryonic development is a This, together with untransparency of embryos due well-developed field of science with fundamental to high concentration of yolk granules, prevents results having been obtained with Caenorhabditis study of the enoplidan cell lineage by direct obser- elegans. However, until now its significance in nema- vation. However, application of the technique of tode phylogeny and taxonomy has been little recog- intracellular labelling by fluorescent dye can over- nized. This situation has arisen as a result of unequal come these problems. Cell labelling enables ob- study of development in different nematode taxa. servation to be made of the progeny of an arbitrarily However, some reports suggest that the cell lineage chosen blastomere in a succession of developmental and other fundamental characteristics of nematode stages. Moreover, the bright luminescence of an development may have utility for solving problems appropriate label provides information of the redis- of nematode phylogeny (Drozdovsky, 1975, 1977, tribution of cells within the embryo, e.g. in studies of the gastrulation process. 1978; Skiba & Schierenberg, 1992; Goldstein et a/., The cell tracing technique revealed the absence 1998; Voronov et al., 1998; Wiegner & Schierenberg, of fmed cell lineage in the enoplidan species, Enoplus 1998). Thus, Drozdovsky (1969, 1975, 1977, 1978) brevis (Enoplidae) (Voronov et al., 1986, Voronov demonstrated that the cell lineage of representatives & Panchin, 1995b, 1998). However, E. brevis is the of Enopleais markedly different from that in Se- only enoplidan species for which cell tracing experi- cernentea and in Chromadorea, and proposed an ments have been made. In the present study the cell embryological criterion for distinguishing between tracing technique was used to investigate the embry- these two branches of nematodes. onic development of the enoplidan Pontonema The cleavage pattern in the order Enoplida, in vulga~(Oncholaimidae). The results obtained and contrast to all previously studied nematodes, is highly their significance for nematode phylogeny are dis- variable (Cherdantsev et al., 1972; Malakhov, 1994). cussed. D. A. Voronov MATERIALS AND METHODS Specimens of the free-living marine littoral nema- tode Pontonema vulgare (Bastian, 1865) (Enoplida, Oncholaimidae) were collected from Kandalaksha Bay of the White Sea in the vicinity of the Kartesh Marine Biological Station of the Russian Academy of Sciences, and the White Sea Biological Station of Moscow State University. Uncleaved eggs were dis- sected from gravid females in filtered seawater. To observe both sides of the embryo, the eggs were placed on cover slips to which they stuck by their outer mucus sheath. During development eggs were kept at 15-16 "C. Fig. I. Some stages of P. vulgare development.Camera The fluorescent dye 5(6)-carboxyfluorescein lucididrawings of living embly6s. A: Interphase cytoplas- (CF) (Sigma, Mw 376.3) was iontophoretically mic movements of zygote; similar movements are also injected at the two- or eight-cell stage to visualize peculiar for interphase blastomeres; B: The rounded zygote before the first division of cleavage; two polar the progeny of labelled cells in the developing em- bodies are seen near the equator of the egg-shell; C: bryo. Microelectrodes used for injections were made Two-cell stage, the usual arrangement of blastomeres along of glass with inner filaments (Clark Electromedical the longitudinal egg-shell axis; D: The oblique disposition Instruments, GC100F-15) and backfilled with injec- of blastomeres at the two-cell stage; E, F, and G: Examples tion solution. Single blastomeres were injected using of blastomere distribution at the four-cell stage (E, rhom- aseveral seconds pulse of 1-5 nA negative current bus; F, tetrahedron; G, T-shaped figure); H: The begin- ning of ventral cleft formation in ventral view with the through 30-50 MegR glass microelectrodes filled ventral cleft seen as an elliptical depression on the ventral with 3% solution of potassium carboxyfluorescein in side of the embryo (stipled); I: Lima bean stage in left distilled water. Injections were performed using a lateral view with the anterior at the top; J: Comma stage fluorescent microscope (ML-2, LOMO, Russia) in left lateral view with the anterior at the top. Scale bar - with a filter set optimized for fluorescein. The 100 om. development of the labelled embryos was traced from the beginning to the comma stage, when the pattern The early cleavage divisions occur approximately of label distribution gradually became unclear due every six hours. They are usually (up to the 16-cell to the loss of CF by differentiating cells. stage) synchronous, but sometimes delays of divi- Drawings were made with a camera lucida. Lllus- sions of some blastomeres were observed. These trations of labelled embryos were taken on Kodak delays can last up to 2-3 hours, but do not perturb Gold 400 film or ahigh sensitivity video-camera further development. (DeltaTex, Russia). At the 2 to 16-cell stage blastomeres are indistin- guishable. Early blastomeres are approximately equal, RESULTS but sometimes slight irregular differences in their size are visible. The spatial-temporal pattern of early Only a brief general description of P. vulgare cleavage varies between different embryos, e.g. blas- development is presented as it has been reported tomeres at the two-cell stage are usually located along previously (Cherdantsev et al., 1972; Malakhov & the longitudinal egg-shell axis, but sometimes they Cherdantsev, 1975; Malakhov, 1994). occur at a random angle to the axis (Fig. lC, D). The zygote diameter in P. vulgare eggs is about Blastomeres at the four-cell stage can be arranged as 130 pm. Egg-shell shape is ellipsoidal, often visibly a tetrahedron, rhombus, quadrate, or T-shaped asymmetrical (Fig. I), and the egg-shell is large configuration (Fig. lE, F, G). These configurations providing a large free space for the embryo. Before can transform from one to another due to interphase cleavage, two polar bodies are formed. Their posi- motility of the blastomeres. tion, relative to the longitudinal egg-shell axis, varied During the course of later development it is in difTerent eggs from polar to equatorial. possible to distinguish the stages similar to that in The interphase zygote has prominent cytoplasmic other nematodes (Fig. IH, I, J), i.e., ventral cleft movement (Fig. IA), which cease prior to mitosis formation (beginning at about 90 hours at 15-16 "C), (Fig. 1B). Similar movements are characteristic for Lima bean stage (140 hours), comma stage (170 interphase blastomeres, and these can interfere with hours). The first stage juvenile hatches after approxi- direct observation of cell lineage. mately 30 days of development. The dorsal-ventral Development of Pontonema vulgare Fig. 2. The distribution of descendants of the first two blastomeres in the comma stage embryos of P. vulgare. These embryos were labelled by carboxyfluorescein (CF) at the two-cell stage in an arbitrarily chosen blastomere. Anterior at the left in ventral view (capital letters) and dorsal view (lower case letters). Initial position of injected blastomere at the two-cell stage was at the right in A, a, B, b and at the left in C, c: A, a, the transverse border between descendants of two-cell stage blastomeres; B, b, the oblique border between descendants of two-cell stage blastomeres; C, c, the label is approximately evenly distributed along the longitudinal embryo axis and therefore the fmt two blastomeres can not be designated as being "anterior" or "posterior". In this embryo the main part of the surface cells is labelled. In the embryo A, a the mid-gut was stained and their fluorescence is clearly seen through unstained epithelial cells at the dorsal side of the embryo (a, asterisk). In B, b and C. c the mid-gut was not stained and it was seen as a darkmass under the dorsal surface (b, c, asterisk). Scale bar - 100 pm. polarity of the embryo is evident after the beginning and also within the embryo was used). Therefore, in of gastrulation, the direction of the anterior-poste- different eggs of P. vulgare the first two blastomeres rior axis is visible after the ventral clef? stretching, give rise to different parts of the embryo, ranging and the polarity of the anterior-posterior axis is from anterior-posterior to left-right distribution with discernible only at the Lima bean stage.
Recommended publications
  • Biogeographic Atlas of the Southern Ocean
    Census of Antarctic Marine Life SCAR-Marine Biodiversity Information Network BIOGEOGRAPHIC ATLAS OF THE SOUTHERN OCEAN CHAPTER 5.3. ANTARCTIC FREE-LIVING MARINE NEMATODES. Ingels J., Hauquier F., Raes M., Vanreusel A., 2014. In: De Broyer C., Koubbi P., Griffiths H.J., Raymond B., Udekem d’Acoz C. d’, et al. (eds.). Biogeographic Atlas of the Southern Ocean. Scientific Committee on Antarctic Research, Cambridge, pp. 83-87. EDITED BY: Claude DE BROYER & Philippe KOUBBI (chief editors) with Huw GRIFFITHS, Ben RAYMOND, Cédric d’UDEKEM d’ACOZ, Anton VAN DE PUTTE, Bruno DANIS, Bruno DAVID, Susie GRANT, Julian GUTT, Christoph HELD, Graham HOSIE, Falk HUETTMANN, Alexandra POST & Yan ROPERT-COUDERT SCIENTIFIC COMMITTEE ON ANTARCTIC RESEARCH THE BIOGEOGRAPHIC ATLAS OF THE SOUTHERN OCEAN The “Biogeographic Atlas of the Southern Ocean” is a legacy of the International Polar Year 2007-2009 (www.ipy.org) and of the Census of Marine Life 2000-2010 (www.coml.org), contributed by the Census of Antarctic Marine Life (www.caml.aq) and the SCAR Marine Biodiversity Information Network (www.scarmarbin.be; www.biodiversity.aq). The “Biogeographic Atlas” is a contribution to the SCAR programmes Ant-ECO (State of the Antarctic Ecosystem) and AnT-ERA (Antarctic Thresholds- Ecosys- tem Resilience and Adaptation) (www.scar.org/science-themes/ecosystems). Edited by: Claude De Broyer (Royal Belgian Institute of Natural Sciences, Brussels) Philippe Koubbi (Université Pierre et Marie Curie, Paris) Huw Griffiths (British Antarctic Survey, Cambridge) Ben Raymond (Australian
    [Show full text]
  • Nor Hawani Salikin
    Characterisation of a novel antinematode agent produced by the marine epiphytic bacterium Pseudoalteromonas tunicata and its impact on Caenorhabditis elegans Nor Hawani Salikin A thesis in fulfilment of the requirements for the degree of Doctor of Philosophy School of Biological, Earth and Environmental Sciences Faculty of Science August 2020 Thesis/Dissertation Sheet Surname/Family Name : Salikin Given Name/s : Nor Hawani Abbreviation for degree as give in the University : Ph.D. calendar Faculty : UNSW Faculty of Science School : School of Biological, Earth and Environmental Sciences Characterisation of a novel antinematode agent produced Thesis Title : by the marine epiphytic bacterium Pseudoalteromonas tunicata and its impact on Caenorhabditis elegans Abstract 350 words maximum: (PLEASE TYPE) Drug resistance among parasitic nematodes has resulted in an urgent need for the development of new therapies. However, the high re-discovery rate of antinematode compounds from terrestrial environments necessitates a new repository for future drug research. Marine epiphytic bacteria are hypothesised to produce nematicidal compounds as a defence against bacterivorous predators, thus representing a promising, yet underexplored source for antinematode drug discovery. The marine epiphytic bacterium Pseudoalteromonas tunicata is known to produce a number of bioactive compounds. Screening genomic libraries of P. tunicata against the nematode Caenorhabditis elegans identified a clone (HG8) showing fast-killing activity. However, the molecular, chemical and biological properties of HG8 remain undetermined. A novel Nematode killing protein-1 (Nkp-1) encoded by an uncharacterised gene of HG8 annotated as hp1 was successfully discovered through this project. The Nkp-1 toxicity appears to be nematode-specific, with the protein being highly toxic to nematode larvae but having no impact on nematode eggs.
    [Show full text]
  • Free-Living Marine Nematodes from San Antonio Bay (Río Negro, Argentina)
    A peer-reviewed open-access journal ZooKeys 574: 43–55Free-living (2016) marine nematodes from San Antonio Bay (Río Negro, Argentina) 43 doi: 10.3897/zookeys.574.7222 DATA PAPER http://zookeys.pensoft.net Launched to accelerate biodiversity research Free-living marine nematodes from San Antonio Bay (Río Negro, Argentina) Gabriela Villares1, Virginia Lo Russo1, Catalina Pastor de Ward1, Viviana Milano2, Lidia Miyashiro3, Renato Mazzanti3 1 Laboratorio de Meiobentos LAMEIMA-CENPAT-CONICET, Boulevard Brown 2915, U9120ACF, Puerto Madryn, Argentina 2 Universidad Nacional de la Patagonia San Juan Bosco, sede Puerto Madryn. Boulevard Brown 3051, U9120ACF, Puerto Madryn, Argentina 3Centro de Cómputos CENPAT-CONICET, Boulevard Brown 2915, U9120ACF, Puerto Madryn, Argentina Corresponding author: Gabriela Villares ([email protected]) Academic editor: H-P Fagerholm | Received 18 November 2015 | Accepted 11 February 2016 | Published 28 March 2016 http://zoobank.org/3E8B6DD5-51FA-499D-AA94-6D426D5B1913 Citation: Villares G, Lo Russo V, Pastor de Ward C, Milano V, Miyashiro L, Mazzanti R (2016) Free-living marine nematodes from San Antonio Bay (Río Negro, Argentina). ZooKeys 574: 43–55. doi: 10.3897/zookeys.574.7222 Abstract The dataset of free-living marine nematodes of San Antonio Bay is based on sediment samples collected in February 2009 during doctoral theses funded by CONICET grants. A total of 36 samples has been taken at three locations in the San Antonio Bay, Santa Cruz Province, Argentina on the coastal littoral at three tidal levels. This presents a unique and important collection for benthic biodiversity assessment of Patagonian nematodes as this area remains one of the least known regions.
    [Show full text]
  • The Systematic Position of the Family Ironidae and Its Relation to the Dorylaimida
    THE SYSTEMATIC POSITION OF THE FAMILY IRONIDAE AND ITS RELATION TO THE DORYLAIMIDA by A. COOMANS and A. VAN DER HEIDEN Instituut voor Dierkunde, Rijksuniversiteit Gent, Ledeganckstraat 35, B 9000 Gent, Belgium ABSTRACT A critical review is made of the similarities and differences existing between the Ironidae and the Dorylaimida. The most important diagnostic features of the main groups of Dorylaimida, up to the superfamily level, and of the Enoplidae are listed. The family Ironidae is subdivided into two subfamilies of which the Coniliinae constitute a new subfamily with Conilia Gerlach, 1956 as the type genus. From the detailed comparison of both groups it is concluded that the differences are important and that the similarities are probably the result of parallel evolution, occurring in two branches that evolved independently from a remote enoplid ancestor. It is further argued that Ironidae do not fit well in Tripyloidea and are at present better included in Enoploidea, On several occasions the similarities between Ironidae and Dorylaimida have been stressed, the extreme being the inclusion of the genera of the Ironidae in the family Dorylaimidae (W ie s e r , 1953). Ironidae are now usually classified under Tripyloidea in the Enoplida, but a close relationship between Ironidae and Dory­ laimida has been postulated, with Ironidae representing the ancestral type. COMPARISON OF THE MAIN FEATURES OF IRONIDAE AND DORYLAIMIDA Differences can be observed in e.g. the number and position of the lips (except Ironella), structure and outlet of the excretory system, position of the oesophageal gland outlets and habitat of most representatives. Similarities exist in general body shape, position and shape of the amphideal fovea, structure of the feeding apparatus, structure of the female reproductive system and of the male copulatory apparatus.
    [Show full text]
  • Zoonotic Nematodes of Wild Carnivores
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2019 Zoonotic nematodes of wild carnivores Otranto, Domenico ; Deplazes, Peter Abstract: For a long time, wildlife carnivores have been disregarded for their potential in transmitting zoonotic nematodes. However, human activities and politics (e.g., fragmentation of the environment, land use, recycling in urban settings) have consistently favoured the encroachment of urban areas upon wild environments, ultimately causing alteration of many ecosystems with changes in the composition of the wild fauna and destruction of boundaries between domestic and wild environments. Therefore, the exchange of parasites from wild to domestic carnivores and vice versa have enhanced the public health relevance of wild carnivores and their potential impact in the epidemiology of many zoonotic parasitic diseases. The risk of transmission of zoonotic nematodes from wild carnivores to humans via food, water and soil (e.g., genera Ancylostoma, Baylisascaris, Capillaria, Uncinaria, Strongyloides, Toxocara, Trichinella) or arthropod vectors (e.g., genera Dirofilaria spp., Onchocerca spp., Thelazia spp.) and the emergence, re-emergence or the decreasing trend of selected infections is herein discussed. In addition, the reasons for limited scientific information about some parasites of zoonotic concern have been examined. A correct compromise between conservation of wild carnivores and risk of introduction and spreading of parasites of public health concern is discussed in order to adequately manage the risk of zoonotic nematodes of wild carnivores in line with the ’One Health’ approach. DOI: https://doi.org/10.1016/j.ijppaw.2018.12.011 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-175913 Journal Article Published Version The following work is licensed under a Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) License.
    [Show full text]
  • Nematodes in Aquatic Environments Adaptations and Survival Strategies
    Biodiversity Journal , 2012, 3 (1): 13-40 Nematodes in aquatic environments: adaptations and survival strategies Qudsia Tahseen Nematode Research Laboratory, Department of Zoology, Aligarh Muslim University, Aligarh-202002, India; e-mail: [email protected]. ABSTRACT Nematodes are found in all substrata and sediment types with fairly large number of species that are of considerable ecological importance. Despite their simple body organization, they are the most complex forms with many metabolic and developmental processes comparable to higher taxa. Phylum Nematoda represents a diverse array of taxa present in subterranean environment. It is due to the formative constraints to which these individuals are exposed in the interstitial system of medium and coarse sediments that they show pertinent characteristic features to survive successfully in aquatic environments. They represent great degree of mor - phological adaptations including those associated with cuticle, sensilla, pseudocoelomic in - clusions, stoma, pharynx and tail. Their life cycles as well as development seem to be entrained to the environment type. Besides exhibiting feeding adaptations according to the substrata and sediment type and the kind of food available, the aquatic nematodes tend to wi - thstand various stresses by undergoing cryobiosis, osmobiosis, anoxybiosis as well as thio - biosis involving sulphide detoxification mechanism. KEY WORDS Adaptations; fresh water nematodes; marine nematodes; morphology; ecology; development. Received 24.01.2012; accepted 23.02.2012;
    [Show full text]
  • Southeastern Regional Taxonomic Center South Carolina Department of Natural Resources
    Southeastern Regional Taxonomic Center South Carolina Department of Natural Resources http://www.dnr.sc.gov/marine/sertc/ Southeastern Regional Taxonomic Center Invertebrate Literature Library (updated 9 May 2012, 4056 entries) (1958-1959). Proceedings of the salt marsh conference held at the Marine Institute of the University of Georgia, Apollo Island, Georgia March 25-28, 1958. Salt Marsh Conference, The Marine Institute, University of Georgia, Sapelo Island, Georgia, Marine Institute of the University of Georgia. (1975). Phylum Arthropoda: Crustacea, Amphipoda: Caprellidea. Light's Manual: Intertidal Invertebrates of the Central California Coast. R. I. Smith and J. T. Carlton, University of California Press. (1975). Phylum Arthropoda: Crustacea, Amphipoda: Gammaridea. Light's Manual: Intertidal Invertebrates of the Central California Coast. R. I. Smith and J. T. Carlton, University of California Press. (1981). Stomatopods. FAO species identification sheets for fishery purposes. Eastern Central Atlantic; fishing areas 34,47 (in part).Canada Funds-in Trust. Ottawa, Department of Fisheries and Oceans Canada, by arrangement with the Food and Agriculture Organization of the United Nations, vols. 1-7. W. Fischer, G. Bianchi and W. B. Scott. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico. Volume II. Final report to the Minerals Management Service. J. M. Uebelacker and P. G. Johnson. Mobile, AL, Barry A. Vittor & Associates, Inc. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico. Volume III. Final report to the Minerals Management Service. J. M. Uebelacker and P. G. Johnson. Mobile, AL, Barry A. Vittor & Associates, Inc. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico.
    [Show full text]
  • Respiratory and Cardiopulmonary Nematode Species of Foxes and Jackals in Serbia
    ©2018 Institute of Parasitology, SAS, Košice DOI 10.2478/helm-2018-0019 HELMINTHOLOGIA, 55, 213 – 221, 2018 Respiratory and cardiopulmonary nematode species of foxes and jackals in Serbia O. BJELIĆ ČABRILO1#, V. SIMIN2#, M. MILJEVIĆ2, B. ČABRILO1*, D. MIJATOVIĆ2, D. LALOŠEVIĆ1,2 1University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 3, Novi Sad, Serbia, E-mail: [email protected], *[email protected], [email protected]; 2Pasteur Institute of Novi Sad, Hajduk Veljkova 1, Novi Sad, Serbia, E-mail: [email protected], [email protected], [email protected] Article info Summary Received January 12, 2018 As part of routine monitoring of foxes (Vulpes vulpes) and jackals (Canis aureus) on the territory Accepted May 7, 2018 of Vojvodina province (northern Serbia), an analysis of respiratory and cardiopulmonary parasitic nematodes was conducted. Both host species harbored Eucoleus aerophilus, E. boehmi and Cren- osoma vulpis, whereas Angiostrongylus vasorum was found only in foxes. A high prevalence of infection (72.6 %) was noted for E. aerophilus in foxes. The remaining parasite species occurred less frequently in both host species. In all species where it could be quantifi ed, a high degree of parasite aggregation within host individuals was noted. Single species infections were most common, where- as two and three species infections occurred less frequently in both host species. The distribution of abundance of E. aerophilus was affected by host sex, with abundances higher in male foxes. Sampling site and year infl uenced abundance variation in E.
    [Show full text]
  • Evaluation of Some Vulval Appendages in Nematode Taxonomy
    Comp. Parasitol. 76(2), 2009, pp. 191–209 Evaluation of Some Vulval Appendages in Nematode Taxonomy 1,5 1 2 3 4 LYNN K. CARTA, ZAFAR A. HANDOO, ERIC P. HOBERG, ERIC F. ERBE, AND WILLIAM P. WERGIN 1 Nematology Laboratory, United States Department of Agriculture–Agricultural Research Service, Beltsville, Maryland 20705, U.S.A. (e-mail: [email protected], [email protected]) and 2 United States National Parasite Collection, and Animal Parasitic Diseases Laboratory, United States Department of Agriculture–Agricultural Research Service, Beltsville, Maryland 20705, U.S.A. (e-mail: [email protected]) ABSTRACT: A survey of the nature and phylogenetic distribution of nematode vulval appendages revealed 3 major classes based on composition, position, and orientation that included membranes, flaps, and epiptygmata. Minor classes included cuticular inflations, protruding vulvar appendages of extruded gonadal tissues, vulval ridges, and peri-vulval pits. Vulval membranes were found in Mermithida, Triplonchida, Chromadorida, Rhabditidae, Panagrolaimidae, Tylenchida, and Trichostrongylidae. Vulval flaps were found in Desmodoroidea, Mermithida, Oxyuroidea, Tylenchida, Rhabditida, and Trichostrongyloidea. Epiptygmata were present within Aphelenchida, Tylenchida, Rhabditida, including the diverged Steinernematidae, and Enoplida. Within the Rhabditida, vulval ridges occurred in Cervidellus, peri-vulval pits in Strongyloides, cuticular inflations in Trichostrongylidae, and vulval cuticular sacs in Myolaimus and Deleyia. Vulval membranes have been confused with persistent copulatory sacs deposited by males, and some putative appendages may be artifactual. Vulval appendages occurred almost exclusively in commensal or parasitic nematode taxa. Appendages were discussed based on their relative taxonomic reliability, ecological associations, and distribution in the context of recent 18S ribosomal DNA molecular phylogenetic trees for the nematodes.
    [Show full text]
  • Mitochondrial DNA Polymorphism Within and Among Species of Capillaria Sensu Lato from Australian Marsupials and Rodentsq
    ____________________________________________________________________________http://www.paper.edu.cn International Journal for Parasitology 30 (2000) 933±938 www.elsevier.nl/locate/ijpara Research note Mitochondrial DNA polymorphism within and among species of Capillaria sensu lato from Australian marsupials and rodentsq Xingquan Zhua, David M. Sprattb, Ian Beveridgea, Peter Haycockb, Robin B. Gassera,* aDepartment of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia bCSIRO Wildlife & Ecology, GPO Box 284, Canberra 2601, Australia Received 12 April 2000; received in revised form 9 June 2000; accepted 9 June 2000 Abstract The nucleotide variation in a mitochondrial DNA (mtDNA) fragment within and among species of Capillaria sensu lato from Australian marsupials and rodents was analyzed using a mutation scanning/sequencing approach. The fragment of the cytochrome c oxidase subunit I (COI) was ampli®ed by PCR from parasite DNA, and analysed by single-strand conformation polymorphism (SSCP) and sequencing. There was no signi®cant variation in SSCP pro®les within a morphospecies from a particular host species, but signi®cant variation existed among morphospecies originating from different host species. The same morphospecies was found to occur in 1±3 tissue habitats within one host individual or within different individuals of a particular species of host from the same or different geographical areas, and morphospecies appeared to be relatively host speci®c at the generic level. The results indicated that the species of Capillaria sensu lato examined, although highly variable in their host and tissue speci®city, may exhibit the greatest degree of speci®city at the level of host genus. q 2000 Published by Elsevier Science Ltd.
    [Show full text]
  • (Stsm) Scientific Report
    SHORT TERM SCIENTIFIC MISSION (STSM) SCIENTIFIC REPORT This report is submitted for approval by the STSM applicant to the STSM coordinator Action number: CA15219-45333 STSM title: Free-living marine nematodes from the eastern Mediterranean deep sea - connecting COI and 18S rRNA barcodes to structure and function STSM start and end date: 06/02/2020 to 18/3/2020 (short than the planned two months due to the Co-Vid 19 virus pandemic) Grantee name: Zoya Garbuzov PURPOSE OF THE STSM: My Ph.D. thesis is devoted to the population ecology of free-living nematodes inhabiting deep-sea soft substrates of the Mediterranean Levantine Basin. The success of the study largely depends on my ability to accurately identify collected nematodes at the species level, essential for appropriate environmental analysis. Morphological identification of nematodes at the species level is fraught with difficulties, mainly because of their relatively simple body shape and the absence of distinctive morphological characters. Therefore, a combination of morphological identification to genus level and the use of molecular markers to reach species identification is assumed to provide a better distinction of species in this difficult to identify group. My STSM host, Dr. Nikolaos Lampadariou, is an experienced taxonomist and nematode ecologist. In addition, I will have access to the molecular laboratory of Dr. Panagiotis Kasapidis. Both researchers are based at the Hellenic Center for Marine Research (HCMR) in Crete and this STSM is aimed at combining morphological taxonomy, under the supervision of Dr. Lampadariou, with my recently acquired experience in nematode molecular taxonomy for relating molecular identifiers to nematode morphology.
    [Show full text]
  • Identification of Seabed Indicator Species from Time-Series and Other Studies to Support Implementation of the Eu Habitats and Water Framework Directives
    IDENTIFICATION OF SEABED INDICATOR SPECIES FROM TIME-SERIES AND OTHER STUDIES TO SUPPORT IMPLEMENTATION OF THE EU HABITATS AND WATER FRAMEWORK DIRECTIVES Keith Hiscock Olivia Langmead Richard Warwick This report provides a starting-point review. Additions, errors and omissions should be drawn to the attention of the first author: [email protected] Report to the Joint Nature Conservation Committee and the Environment Agency This report contributes to the EC-funded European Lifestyles and Marine Ecosystems (ELME) Specific Targeted Research Project undertaken within the 6th Framework Programme September 2004 Reference: Hiscock, K., Langmead, O. & Warwick, R. 2004. Identification of seabed indicator species from time-series and other studies to support implementation of the EU Habitats and Water Framework Directives. Report to the Joint Nature Conservation Committee and the Environment Agency from the Marine Biological Association. Plymouth: Marine Biological Association. JNCC Contract F90-01-705. 109 pp. Identification of seabed indicator species from time-series and other studies 2 Identification of seabed indicator species from time-series and other studies CONTENTS SUMMARY ........................................................................................................................... 5 1. Introduction ....................................................................................................................... 7 2. Marine environmental protection initiatives .....................................................................
    [Show full text]