Index to Hydrobiologia Volumes 251-384 (1993-1999)

Total Page:16

File Type:pdf, Size:1020Kb

Index to Hydrobiologia Volumes 251-384 (1993-1999) The International Journal on Limnology and Marine Sciences Volume 425 1 May 2000 Editor-in-Chief H. J. Dumont, Ghent Editorial Board J. Cambray, Grahamstown J. J. Cole, Millbrook, New York S. Dodson, Madison B. Gopal, New Delhi J. U. Grobbelaar, Bloemfontein R. Guerrero, Barcelona D. M. Harper, Leicester J. Kalff, Montreal K. Martens, Brussels J. M. Melack, Santa Barbara J. Padisák, Tihany T. J. Pandian, Madurai B. A. Whitton, Durham Advisory Board J. Cairns, Blacksburg, Va. H. L. Golterman, Arles R. D. Gulati, Nieuwersluis C. Lévêque, Paris H. Löffler, Vienna T. Platt, Dartmouth J. G. Tundisi, Sâo Carlos W. D. Williams, Adelaide Secretary S. Wellekens, Ghent Theme Index to Hydrobiologia Volumes 251–384 (1993–1999) Compiled by K. Van Damme Kluwer Academic Publishers Dordrecht/Boston/London The International Journal on Limnology and Marine Sciences Subscription prices year 2000 (volumes 417–441) including postage and handling: NLG 14425.00/USD 6869.00/EURO 6545.78 (print or electronic access); NLG 17310.00/USD 8243.00/EURO 7854.94 (print and electronic access). Subscriptions should be sent to Kluwer Academic Publishers Group, P.O. Box 322, 3300 AH Dordrecht, The Netherlands,oratP.O. Box 358, Accord Station, Hingham, MA 02018-0358, U.S.A., or to any subscription agent. Changes of mailing address should be notified together with our latest label. For advertisement rates, prices of back volumes, and other information, please apply to Kluwer Academic Publishers, P.O. Box 17, 3300 AA Dordrecht, The Netherlands. ISSN 0018-8158 All Rights Reserved © 2000 Kluwer Academic Publishers No part of the material protected by this copyright notice may be reproduced or utilised in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without written permission from the copyright owner Printed in the Netherlands hydrobiologia Volume 425, Nos. 1–3, 1 May 2000 Index to Hydrobiologia Volumes 251–384 (1993–1999) Compiled by K. Van Damme Department of Ecology University of Ghent Ledeganckstraat 35, B-9000 Ghent Belgium E-mail: [email protected] Contents Using the index v–vi List of references 1–151 Author Index 152–204 Subject Index 205–406 List of Thematic Volumes 407–408 Also available Online electronically via .kluwer .nl http://www Hydrobiologia publishes original articles in the fields of fundamental limnology and marine biology. The scope of the journal is wide and includes ecology, physiology, biogeography, methodology and taxonomy. Applied (technological) papers should be of general, not solely technical interest. Very long papers and review papers will be printed on invitation only. Proceedings of specialized symposia may also be accepted for publication, if the scientific standard set by the journal is met. Editorial policy. All papers submitted will be considered for publication. They will be evaluated by the editors and referees on the basis of their data and ideas, which should be of more than regional significance. For example, local faunal lists, or chemical ‘inventories’ of waters not supplemented by interpretations of a more general nature are not acceptable. Papers should be submitted with the understanding that they are unpublished, and not printed, submitted or accepted for publication elsewhere. Photocopying. In the U.S.A.: This journal is registered at the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for internal or personal use, or the internal or personal use of specific clients, is granted by Kluwer Academic Publishers for users registered with the Copyright Clearance Center (CCC) Transactional Reporting Service, provided that the fee of USD 18.00 per copy is paid directly to CCC. For those organizations that have been granted a photocopy licence by CCC, a separate system of payment has been arranged. The fee code for users of the Transactional Reporting Service is 0018–8158/2000/USD 18.00. Authorization does not extend to other kinds of copying, such as that for general distribution, for advertising or promotional purposes, for creating new collective works, or for resale. Intherestoftheworld: Permission to photocopy must be obtained from the copyright owner. Please apply to Kluwer Academic Publishers, P.O. Box 17, 3300 AA Dordrecht, The Netherlands. Hydrobiologia is published bimonthly, and trimonthly during June. Subscription prices year 2000 (volumes 417–441) including postage and handling: NLG 14425.00/USD 6869.00/EURO 6545.78 (print or electronic access); NLG 17310.00/USD 8243.00/EURO 7854.94 (print and electronic access). Periodicals postage paid at Rahway, N.J. USPS No. 568–290. U.S. Mailing Agent: Mercury Airfreight International Ltd., 365 Blair Road, Avenel, NJ 07001. Published by Kluwer Academic Publishers, Spuiboulevard 50, P.O. Box 17, 3300 AA Dordrecht, The Netherlands, and 101 Philip Drive, Norwell, MA 02061, U.S.A. Postmaster: Please send all address corrections to: Hydrobiologia, c/o Mercury Airfreight International Ltd., 365 Blair Road, Avenel, NJ 07001, U.S.A. Printed on acid-free paper Hydrobiologia 425, 2000. v Using the index This index covers all articles published between Feb- (2) Compound names such as ‘Lund-Hansen’, ruary 12, 1993 and February 15, 1999. Its format is ‘Howard-Williams’ and ‘Martínez-Ansemil’ are re- more or less the same as that of the previous indices ferred to as such. This applies also to names like ‘do (Hydrobiologia Volumes 90, 130, 181 and 296). It Socorro Ibañez’. consists of a List of References,anAuthor Index, a Subject Index and a List of Thematic Volumes. (3) In most Arabic and Asian cultures, family names are rarely used. If a prefix or its variant precedes Because this index lists over 3000 articles, some the name, it is not transposed (as with de, van,etc.). changes have been made to keep it from becoming too Names like ‘Su Rong’ can be cited as ‘Rong, S.’ or voluminous. These and other changes will hopefully ‘Su, R.’; in cases like these, the second name of the be considered as improvements regarding previous author is listed in the Author Index. indices. The name of an author of more than one article In the master List of References all articles are is repeated in the Author Index if the initials are listed and arranged in alphabetical order according to not spelled consistently. I apologize to those authors the name of the first author. Each article and thematic whose names should contain typing errors (very few, volume is given a number, a code, by which it can hopefully). be identified in the Author and Subject Indexes.The reference formula is the same as that in routine use in The Subject Index contains alphabetically ar- Hydrobiologia: author’s name(s), date, title, volume ranged keywords. Under each keyword come number, first and last page of the article. subentries, also arranged alphabetically. As previ- ously, inverted entry is used when necessary, to ensure The Author Index is arranged alphabetically by that similar topics are adjacent to each other, e.g. the surname of every individual author. After the au- ‘America, North’ and ‘America, South’ instead of thor’s name comes the identification number(s) of the ‘North America’ and ‘South America’. article(s). For the compound surnames, some rules, different from those in the previous indexes are ap- In using the index, it is also advisable to note that: plied. (1) The particle, definite article, or preposition (1) Cross-references are indicated by the terms always precedes the family name. Therefore, particles ‘See’ and ‘See also’, to avoid repetition of reference as de, den, di, ter, von, van, van de and van der are not numbers. transposed: (2) New genera and new species are to be found H. De Wolf De Wolf, H. under the keyword ‘New taxa’. L. de Wolf de Wolf, L. D. Van Damme Van Damme, D. (3) When searching for certain species, one should M. van Zanten van Zanten, M. start at higher taxonomic levels. If exceptions are made (e.g. fish species), cross-references are used to D.J. von Willert von Willert, D.J. avoid confusion. H. Le Guyader Le Guyader, H. The Irish preposition O’ is not transposed: (4) When searching for any particular coast, coastal lagoon, bay, estuary, lake, man-made water- P.E. O’Sullivan O’Sullivan, P.E. body (artificial lake, canal, dam, reservoir), mountain, In compound names as ‘MacDonald’ and ‘McQueen’, national park, reserve, river (basin, creek, delta, river the position of the prefixes is left unchanged. system, stream), wetland (bog, swamp), man-grove, vi etc., one should start looking under these keywords. In the List of Thematic Volumes, all special issues These are not listed under the different continents (proceedings of symposia, theme volumes, etc.) are (Africa, America, Asia, Europe and Oceania). arranged by volume number. They have been given a code (t#), under which they are referred to in the (5) Subentries such as ecology, morphology and Subject Index. taxonomy are used quite generally and each can refer to one or many different aspects of that particular Index to Hydrobiologia topic. Volumes 251–384 (1993–1999) Compiled by K. Van Damme 1 LIST OF REFERENCES 11. Abebe, E. & A. Coomans, 1996. Aquatic nematodes from Ethiopia: III. The genus 1. Aagaard, K., J. O. Solem, T. Nøst & O. Eumonhystera Andrassy, 1981 (Monhysteridae: Hanssen, 1997. The macrobenthos of the pristine Nematoda) with the description of E. geraerti n. sp. stream, Skiftesåa, Høylandet, Norway. 348(0): 81- 324(1): 79-97. 94. 12. Abebe, E. & A. Coomans, 1996. Aquatic 2. Aarestrup, K. & N. Jepsen, 1998. Spawning nematodes from Ethiopia V. Descriptions of migration of sea trout (Salmo trutta (L.)) in a Achromadora inflata n. sp., Ethmolaimus zullinii n. Danish river. 371/372: 275-281.
Recommended publications
  • Green-Tree Retention and Controlled Burning in Restoration and Conservation of Beetle Diversity in Boreal Forests
    Dissertationes Forestales 21 Green-tree retention and controlled burning in restoration and conservation of beetle diversity in boreal forests Esko Hyvärinen Faculty of Forestry University of Joensuu Academic dissertation To be presented, with the permission of the Faculty of Forestry of the University of Joensuu, for public criticism in auditorium C2 of the University of Joensuu, Yliopistonkatu 4, Joensuu, on 9th June 2006, at 12 o’clock noon. 2 Title: Green-tree retention and controlled burning in restoration and conservation of beetle diversity in boreal forests Author: Esko Hyvärinen Dissertationes Forestales 21 Supervisors: Prof. Jari Kouki, Faculty of Forestry, University of Joensuu, Finland Docent Petri Martikainen, Faculty of Forestry, University of Joensuu, Finland Pre-examiners: Docent Jyrki Muona, Finnish Museum of Natural History, Zoological Museum, University of Helsinki, Helsinki, Finland Docent Tomas Roslin, Department of Biological and Environmental Sciences, Division of Population Biology, University of Helsinki, Helsinki, Finland Opponent: Prof. Bengt Gunnar Jonsson, Department of Natural Sciences, Mid Sweden University, Sundsvall, Sweden ISSN 1795-7389 ISBN-13: 978-951-651-130-9 (PDF) ISBN-10: 951-651-130-9 (PDF) Paper copy printed: Joensuun yliopistopaino, 2006 Publishers: The Finnish Society of Forest Science Finnish Forest Research Institute Faculty of Agriculture and Forestry of the University of Helsinki Faculty of Forestry of the University of Joensuu Editorial Office: The Finnish Society of Forest Science Unioninkatu 40A, 00170 Helsinki, Finland http://www.metla.fi/dissertationes 3 Hyvärinen, Esko 2006. Green-tree retention and controlled burning in restoration and conservation of beetle diversity in boreal forests. University of Joensuu, Faculty of Forestry. ABSTRACT The main aim of this thesis was to demonstrate the effects of green-tree retention and controlled burning on beetles (Coleoptera) in order to provide information applicable to the restoration and conservation of beetle species diversity in boreal forests.
    [Show full text]
  • Aquatic Invertebrates and Waterbirds of Wetlands and Rivers of the Southern Carnarvon Basin, Western Australia
    DOI: 10.18195/issn.0313-122x.61.2000.217-265 Records of the Western Australian Museum Supplement No. 61: 217-265 (2000). Aquatic invertebrates and waterbirds of wetlands and rivers of the southern Carnarvon Basin, Western Australia 3 3 S.A. Halsel, R.J. ShieF, A.W. Storey, D.H.D. Edward , I. Lansburyt, D.J. Cale and M.S. HarveyS 1 Department of Conservation and Land Management, Wildlife Research Centre, PO Box 51, Wanneroo, Western Australia 6946, Australia 2CRC for Freshwater Ecology, Murray-Darling Freshwater Research Centre, PO Box 921, Albury, New South Wales 2640, Australia 3 Department of Zoology, The University of Western Australia, Nedlands, Western Australia 6907, Australia 4 Hope Entomological Collections, Oxford University Museum, Parks Road, Oxford OXl 3PW, United Kingdom 5 Department of Terrestrial Invertebrates, Western Australian Museum, Francis Street, Perth, Western Australia 6000, Australia Abstract - Fifty-six sites, representing 53 wetlands, were surveyed in the southern Carnarvon Basin in 1994 and 1995 with the aim of documenting the waterbird and aquatic invertebrate fauna of the region. Most sites were surveyed in both winter and summer, although some contained water only one occasion. Altogether 57 waterbird species were recorded, with 29 292 waterbirds of 25 species on Lake MacLeod in October 1994. River pools were shown to be relatively important for waterbirds, while many freshwater claypans were little used. At least 492 species of aquatic invertebrate were collected. The invertebrate fauna was characterized by the low frequency with which taxa occurred: a third of the species were collected at a single site on only one occasion.
    [Show full text]
  • Freshwater Crustaceans As an Aboriginal Food Resource in the Northern Great Basin
    UC Merced Journal of California and Great Basin Anthropology Title Freshwater Crustaceans as an Aboriginal Food Resource in the Northern Great Basin Permalink https://escholarship.org/uc/item/3w8765rq Journal Journal of California and Great Basin Anthropology, 20(1) ISSN 0191-3557 Authors Henrikson, Lael S Yohe, Robert M, II Newman, Margaret E et al. Publication Date 1998-07-01 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Joumal of Califomia and Great Basin Anthropology Vol. 20, No. 1, pp. 72-87 (1998). Freshwater Crustaceans as an Aboriginal Food Resource in the Northern Great Basin LAEL SUZANN HENRIKSON, Bureau of Land Management, Shoshone District, 400 W. F Street, Shoshone, ID 83352. ROBERT M. YOHE II, Archaeological Survey of Idaho, Idaho State Historical Society, 210 Main Street, Boise, ID 83702. MARGARET E. NEWMAN, Dept. of Archaeology, University of Calgary, Alberta, Canada T2N 1N4. MARK DRUSS, Idaho Power Company, 1409 West Main Street, P.O. Box 70. Boise, ID 83707. Phyllopods of the genera Triops, Lepidums, and Branchinecta are common inhabitants of many ephemeral lakes in the American West. Tadpole shrimp (Triops spp. and Lepidums spp.) are known to have been a food source in Mexico, and fairy shrimp fBranchinecta spp.) were eaten by the aborigi­ nal occupants of the Great Basin. Where found, these crustaceans generally occur in numbers large enough to supply abundant calories and nutrients to humans. Several ephemeral lakes studied in the Mojave Desert arul northern Great Basin currently sustain large seasonal populations of these crusta­ ceans and also are surrounded by numerous small prehistoric camp sites that typically contain small artifactual assemblages consisting largely of milling implements.
    [Show full text]
  • Taxonomy, Biology and Phylogeny of Miraciidae (Copepoda: Harpacticoida)
    TAXONOMY, BIOLOGY AND PHYLOGENY OF MIRACIIDAE (COPEPODA: HARPACTICOIDA) Rony Huys & Ruth Böttger-Schnack SARSIA Huys, Rony & Ruth Böttger-Schnack 1994 12 30. Taxonomy, biology and phytogeny of Miraciidae (Copepoda: Harpacticoida). - Sarsia 79:207-283. Bergen. ISSN 0036-4827. The holoplanktonic family Miraciidae (Copepoda, Harpacticoida) is revised and a key to the four monotypic genera presented. Amended diagnoses are given for Miracia Dana, Oculosetella Dahl and Macrosetella A. Scott, based on complete redescriptions of their respective type species M. efferata Dana, 1849, O. gracilis (Dana, 1849) and M. gracilis (Dana, 1847). A fourth genus Distioculus gen. nov. is proposed to accommodate Miracia minor T. Scott, 1894. The occurrence of two size-morphs of M. gracilis in the Red Sea is discussed, and reliable distribution records of the problematic O. gracilis are compiled. The first nauplius of M. gracilis is described in detail and changes in the structure of the antennule, P2 endopod and caudal ramus during copepodid development are illustrated. Phylogenetic analysis revealed that Miracia is closest to the miraciid ancestor and placed Oculosetella-Macrosetella at the terminal branch of the cladogram. Various aspects of miraciid biology are reviewed, including reproduction, postembryonic development, verti­ cal and geographical distribution, bioluminescence, photoreception and their association with filamentous Cyanobacteria {Trichodesmium). Rony Huys, Department of Zoology, The Natural History Museum, Cromwell Road, Lon­ don SW7 5BD, England. - Ruth Böttger-Schnack, Institut für Meereskunde, Düsternbroo- ker Weg 20, D-24105 Kiel, Germany. CONTENTS Introduction.............. .. 207 Genus Distioculus pacticoids can be carried into the open ocean by Material and methods ... .. 208 gen. nov.................. 243 algal rafting. Truly planktonic species which perma­ Systematics and Distioculus minor nently reside in the water column, however, form morphology ..........
    [Show full text]
  • Species Composition of Coleoptera Families Associated with Live and Dead Wood in a Large Norway Spruce Plantation in Denmark
    Species composition of Coleoptera families associated with live and dead wood in a large Norway spruce plantation in Denmark Jens Reddersen & Thomas Secher Jensen Reddersen, J. & T.S. Jensen: Species composition of Coleoptera familites as­ sociated with live og dead wood in a large Norway spruce plantation in Den­ mark. Ent. Meddr. 71: 115-128: Copenhagen, Denmark, 2003. ISSN 0013-8851. For decades, the idea of various biotope types hosting unique plant and ani­ mal species associations and thus forming well-delimited species communities have continuously been debated. At any rate, it remains a practical empirical working concept in intensively exploited mosaic landscapes like in Denmark where biotope fragments are distinctly separated by man-made borders. In Denmark, conifer plantations dominated by Norway spruce, Picea abies L. con­ stitute such a well-delimited biotope type - at the same time widely distributed and with an insect fauna only poorly known. In two years, 1980-81, in Gludsted Plantation, Central Jutland, the arthro­ pod fauna was studied in six stands of mature well-tended Norway spruce on poor sandy acidic soils. A variety of sampling methods was employed with a minimum of four white bucket traps and two tray traps on the ground in each stand. In both years in some stands, ground emergence traps were set up as well as vertical series of white buckets in canopies at mean levels 6.6, 10.6 and 13.2 m. Additional sampling comprised vertical sticky trap series in canopies, sweep net sampling in low branches and winter bark search. Ground beetles, sawflies and the aphid-aphidophagous fauna were analysed in previous papers.
    [Show full text]
  • Volume 2, Chapter 4-7C: Invertebrates: Rotifer Taxa
    Glime, J. M. 2017. Invertebrates: Rotifer Taxa – Monogononta. Chapt. 4-7c. In: Glime, J. M. Bryophyte Ecology. Volume 2. 4-7c-1 Bryological Interaction. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 18 July 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology2/>. CHAPTER 4-7c INVERTEBRATES: ROTIFER TAXA – MONOGONONTA TABLE OF CONTENTS Notommatidae ............................................................................................................................................ 4-7c-2 Cephalodella ....................................................................................................................................... 4-7c-2 Drilophaga ........................................................................................................................................ 4-7c-10 Enteroplea ......................................................................................................................................... 4-7c-11 Eosphora ........................................................................................................................................... 4-7c-11 Eothinia ............................................................................................................................................. 4-7c-12 Monommata ...................................................................................................................................... 4-7c-12 Notommata .......................................................................................................................................
    [Show full text]
  • The Biodiversity of Flying Coleoptera Associated With
    THE BIODIVERSITY OF FLYING COLEOPTERA ASSOCIATED WITH INTEGRATED PEST MANAGEMENT OF THE DOUGLAS-FIR BEETLE (Dendroctonus pseudotsugae Hopkins) IN INTERIOR DOUGLAS-FIR (Pseudotsuga menziesii Franco). By Susanna Lynn Carson B. Sc., The University of Victoria, 1994 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE STUDIES (Department of Zoology) We accept this thesis as conforming To t(p^-feguired standard THE UNIVERSITY OF BRITISH COLUMBIA 2002 © Susanna Lynn Carson, 2002 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. 1 further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department The University of British Columbia Vancouver, Canada DE-6 (2/88) Abstract Increasing forest management resulting from bark beetle attack in British Columbia's forests has created a need to assess the impact of single species management on local insect biodiversity. In the Fort St James Forest District, in central British Columbia, Douglas-fir (Pseudotsuga menziesii Franco) (Fd) grows at the northern limit of its North American range. At the district level the species is rare (representing 1% of timber stands), and in the early 1990's growing populations of the Douglas-fir beetle (Dendroctonus pseudotsuage Hopkins) threatened the loss of all mature Douglas-fir habitat in the district.
    [Show full text]
  • Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans
    Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans by Robert George Young A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Integrative Biology Guelph, Ontario, Canada © Robert George Young, March, 2016 ABSTRACT MOLECULAR SPECIES DELIMITATION AND BIOGEOGRAPHY OF CANADIAN MARINE PLANKTONIC CRUSTACEANS Robert George Young Advisors: University of Guelph, 2016 Dr. Sarah Adamowicz Dr. Cathryn Abbott Zooplankton are a major component of the marine environment in both diversity and biomass and are a crucial source of nutrients for organisms at higher trophic levels. Unfortunately, marine zooplankton biodiversity is not well known because of difficult morphological identifications and lack of taxonomic experts for many groups. In addition, the large taxonomic diversity present in plankton and low sampling coverage pose challenges in obtaining a better understanding of true zooplankton diversity. Molecular identification tools, like DNA barcoding, have been successfully used to identify marine planktonic specimens to a species. However, the behaviour of methods for specimen identification and species delimitation remain untested for taxonomically diverse and widely-distributed marine zooplanktonic groups. Using Canadian marine planktonic crustacean collections, I generated a multi-gene data set including COI-5P and 18S-V4 molecular markers of morphologically-identified Copepoda and Thecostraca (Multicrustacea: Hexanauplia) species. I used this data set to assess generalities in the genetic divergence patterns and to determine if a barcode gap exists separating interspecific and intraspecific molecular divergences, which can reliably delimit specimens into species. I then used this information to evaluate the North Pacific, Arctic, and North Atlantic biogeography of marine Calanoida (Hexanauplia: Copepoda) plankton.
    [Show full text]
  • A Concept for the Deployment of a Large
    i-SAIRAS2020-Papers (2020) 5072.pdf A CONCEPT FOR THE DEPLOYMENT OF A LARGE LUNAR CRATER RADIO TELESCOPE USING TEAMS OF TETHERED ROBOTS Virtual Conference 19–23 October 2020 Patrick McGarey1*, Saptarshi Bandyopadhyay1†, Ramin Rafizadeh1, Ashish Goel1, Manan Arya1, Issa Nesnas1, Joe Lazio1, Paul Goldsmith1, Adrian Stoica1, Marco Quadrelli1, Gregg Hallinan2 1 Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA, USA 91109 *[email protected], †[email protected] 2Astronomy Department, California Institute of Technology, 1200 East California Blvd, Pasadena, CA, USA 91125 ABSTRACT 1 INTRODUCTION Kilometer-scale craters on the far side of the Moon have unique potential as future locations for large ra- dio telescopes, which can observe the universe at wavelengths and frequencies (>10 m, < 30 MHz) not possible with conventional Earth or orbital-based ap- proaches. Distinct advantages of building a Lunar Crater Radio Telescope (LCRT) on the far side include i) isolation from radio noise due to the Earth’s iono- sphere, orbiting satellites, and the Sun, ii) days of un- interrupted dark/cold sky viewing during lunar night, and iii) terrain geometry naturally suited for con- structing the largest mesh antenna structure in the So- lar System. A key challenge to constructing LCRT on the Moon is related to the complexity of deploying a Figure 1: Illustration of the Lunar Crater Radio Tele- 1-km diameter antenna and hanging receiver within a scope (LCRT) concept. The green antenna reflector is lunar crater whose diameter, depth, and slope are 3-5 shown suspended by lift wires just below a suspended km, 1 km, and ~30 degrees respectively.
    [Show full text]
  • Platyhelminthes: Tricladida: Terricola) of the Australian Region
    ResearchOnline@JCU This file is part of the following reference: Winsor, Leigh (2003) Studies on the systematics and biogeography of terrestrial flatworms (Platyhelminthes: Tricladida: Terricola) of the Australian region. PhD thesis, James Cook University. Access to this file is available from: http://eprints.jcu.edu.au/24134/ The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact [email protected] and quote http://eprints.jcu.edu.au/24134/ Studies on the Systematics and Biogeography of Terrestrial Flatworms (Platyhelminthes: Tricladida: Terricola) of the Australian Region. Thesis submitted by LEIGH WINSOR MSc JCU, Dip.MLT, FAIMS, MSIA in March 2003 for the degree of Doctor of Philosophy in the Discipline of Zoology and Tropical Ecology within the School of Tropical Biology at James Cook University Frontispiece Platydemus manokwari Beauchamp, 1962 (Rhynchodemidae: Rhynchodeminae), 40 mm long, urban habitat, Townsville, north Queensland dry tropics, Australia. A molluscivorous species originally from Papua New Guinea which has been introduced to several countries in the Pacific region. Common. (photo L. Winsor). Bipalium kewense Moseley,1878 (Bipaliidae), 140mm long, Lissner Park, Charters Towers, north Queensland dry tropics, Australia. A cosmopolitan vermivorous species originally from Vietnam. Common. (photo L. Winsor). Fletchamia quinquelineata (Fletcher & Hamilton, 1888) (Geoplanidae: Caenoplaninae), 60 mm long, dry Ironbark forest, Maryborough, Victoria. Common. (photo L. Winsor). Tasmanoplana tasmaniana (Darwin, 1844) (Geoplanidae: Caenoplaninae), 35 mm long, tall open sclerophyll forest, Kamona, north eastern Tasmania, Australia.
    [Show full text]
  • PERO Proposal
    _ i b '’ V '•• •• , .1 ’ ^ V ' ' ■■• ; ■■ FRIDAY, JANUARY #1, 1»64 «® SEOTSEN V jStanrlt^Btfr lEwning li^rald Aierafg Dally Net Pteas Kne Far tlw WMk DaM servloes o f the UJB. C on fer­ Auraaiy 95^ 1964 The VTW Poet will sponsor Course to Stop FORRBNT Rally Set Sunday ence of Mayors and to urge Rahi aadiag aatiiy seafood night from 6 to 12:80 Curtis Wants them to jedn. 8 and M mm. Marla. Piojaa- l ^ u t Town ajn. for membera and guests Manchester’s board of direc­ Smoking Plan tors—sound or sOnk Moo 13,881 85 «a‘ 46i.- eaaiair'L ^ By Youth Council $ 5 iwm. sUda projeoton, to n ig h t tors, earlier this month voted vuCUm AiMtt b r e ^ , aaU . M lgli 66 4a 9)1^1^ . 3fr. and Mrs. Gordon lUxdc- To Negotiate the town’s partlcipatian In the A ICMohester agency Is «• WELDON DRUG CO. I ad CXraiilattMi win ot 58 Marion Dr. will be John B. Cumer- HI, an en- TIm Manoheater Christian conference, at an annual ooat Maneh0$tmr^A Cky of Vlttagf Charm gineman third class ip the Unit­ peoted to ^Mosor a ‘Tlve-Oajr 901 Main SWVeL 948-5991 boat and hoetesa Sunday from Y outh OourcB wlH present its o f 8100. Plan to atop Smoking,” the » - 8 to 6 pjn. at the LuU Junior ed States Coast Guard and son Bus Contract Youth Week RaBy Service from Mayor Mahoney attended last ■ult of a meeting last idght at (CliaaWlad AdverUsfaig oa Paga 16) PRICE SEVEN CENTS Kuaeum.
    [Show full text]
  • Free-Living Marine Nematodes from San Antonio Bay (Río Negro, Argentina)
    A peer-reviewed open-access journal ZooKeys 574: 43–55Free-living (2016) marine nematodes from San Antonio Bay (Río Negro, Argentina) 43 doi: 10.3897/zookeys.574.7222 DATA PAPER http://zookeys.pensoft.net Launched to accelerate biodiversity research Free-living marine nematodes from San Antonio Bay (Río Negro, Argentina) Gabriela Villares1, Virginia Lo Russo1, Catalina Pastor de Ward1, Viviana Milano2, Lidia Miyashiro3, Renato Mazzanti3 1 Laboratorio de Meiobentos LAMEIMA-CENPAT-CONICET, Boulevard Brown 2915, U9120ACF, Puerto Madryn, Argentina 2 Universidad Nacional de la Patagonia San Juan Bosco, sede Puerto Madryn. Boulevard Brown 3051, U9120ACF, Puerto Madryn, Argentina 3Centro de Cómputos CENPAT-CONICET, Boulevard Brown 2915, U9120ACF, Puerto Madryn, Argentina Corresponding author: Gabriela Villares ([email protected]) Academic editor: H-P Fagerholm | Received 18 November 2015 | Accepted 11 February 2016 | Published 28 March 2016 http://zoobank.org/3E8B6DD5-51FA-499D-AA94-6D426D5B1913 Citation: Villares G, Lo Russo V, Pastor de Ward C, Milano V, Miyashiro L, Mazzanti R (2016) Free-living marine nematodes from San Antonio Bay (Río Negro, Argentina). ZooKeys 574: 43–55. doi: 10.3897/zookeys.574.7222 Abstract The dataset of free-living marine nematodes of San Antonio Bay is based on sediment samples collected in February 2009 during doctoral theses funded by CONICET grants. A total of 36 samples has been taken at three locations in the San Antonio Bay, Santa Cruz Province, Argentina on the coastal littoral at three tidal levels. This presents a unique and important collection for benthic biodiversity assessment of Patagonian nematodes as this area remains one of the least known regions.
    [Show full text]