Microbial Community Structure and Seasonal Variations in Mudflat Sediments of Sansha Bay, China - 987

Total Page:16

File Type:pdf, Size:1020Kb

Microbial Community Structure and Seasonal Variations in Mudflat Sediments of Sansha Bay, China - 987 Yang et al.: Microbial community structure and seasonal variations in mudflat sediments of Sansha Bay, China - 987 - MICROBIAL COMMUNITY STRUCTURE AND SEASONAL VARIATIONS IN MUDFLAT SEDIMENTS OF SANSHA BAY, CHINA YANG, Z.1 – WANG, Y. Z.1 – WU, Z. C.1 – REN, L. R.1 – XIONG, C. J.2 – MA, Y.1* 1Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College of Jimei University, Xiamen 361021, China 2College of Foreign Language, Hunan University, Changsha 410006, China *Corresponding author e-mail: [email protected]; phone: +86-1896-5423-006; fax: +86-0592-6181-476 (Received 13th Jul 2019; accepted 25th Nov 2019) Abstract. Illumina high-throughput sequencing was applied to study the microbial community structure and seasonal variations in the mudflat sediments of Sansha Bay, China. Significant seasonal differences of microbial communities were observed, and pH, total P, total N, and organic carbon concentration were important factors affecting the microbial communities. A total of 52 bacterial phyla were detected in the sediments, dominated by γ-Proteobacteria (27.78%), δ-Proteobacteria (20.16%) and Bacteroidetes (10.58%). A total of 717 bacterial genera were detected, and among the top 100 genera with the highest abundances, 48 genera changed significantly (p <0.05) with seasons. The microbial community structure in summer was significantly different from others, and the environmental factors driving the changes were mainly temperature, organic carbon and total N concentration. The bacteria with higher abundances in summer were mainly attached bacteria, thermophilic bacteria, anaerobic bacteria, and those involved in carbon and nitrogen cycling, while in other seasons, those with higher abundances were mainly aerobic bacteria, which could adapt to low temperatures and are involved in the degradation of cellulose and chitosan. However, the physicochemical indexes didn’t change significantly, which indicated that the bacterial communities are more sensitive and can serve as a good sentinel for environmental changes. Keywords: Illumina high-throughput sequencing, bacterial genetic diversity, seasonal changes, intertidal sediments, physiochemical characteristics, Sansha Bay Introduction Traditionally, marine environmental quality is assessed by physical-chemical and biological indexes, such as dissolved oxygen (DO), chemical oxygen demand (COD), nitrogen (N), phosphorus (P), heavy metal, persistent pollutant, and so on (Arsad et al., 2012). However, such static indexes have difficulties characterizing the structure and function of the marine ecosystem (Viswanathan et al., 2010). At present, most of the biological indicators used to characterize ecosystem structure and function are large animals, plants or benthos (Cabana et al., 2013; Hannah, 2015; Wang et al., 2018), or some microscopically visible single-celled organisms, such as diatoms and cyanobacteria (Daby, 2006). Nevertheless, when the impact of the disturbance has caused obvious changes in these biological indicators, the time of early warning is long gone. Microorganisms are one of the most important components of the intertidal zones of mudflat ecosystems, and are involved in nutrient cycling, energy flow, organic matter degradation, and pollutant removal. Microbial communities are sensitive to environmental variation, which makes them ideal biological indicators for environmental pollution and ecosystem changes (Sun et al., 2012). Total coliforms, APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 18(1):987-1000. http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN1785 0037 (Online) DOI: http://dx.doi.org/10.15666/aeer/1801_9871000 © 2020, ALÖKI Kft., Budapest, Hungary Yang et al.: Microbial community structure and seasonal variations in mudflat sediments of Sansha Bay, China - 988 - fecal coliforms (Escherichia coli) and enterococci have been commonly used as indicators to assess the microbiological safety of water resources (Lage and Bondoso, 2011). Previous studies also showed that there was a positive and strong association of total phosphorous, total nitrogen, and ammonium-nitrogen contents with micro- eukaryotes and Gram-positive bacteria (Zhao et al., 2010), and several metals are also strongly associated with microbial community composition (Cao et al., 2006). Although microorganisms are more sensitive to environmental changes and are better indicators for environmental quality, they have not been adopted as environmental quality indexes yet due to our poor understanding of them and the difficulty of detection. The emergence of molecular biological technique, especially the high- throughput sequencing, has provided us important opportunity for fully and deeply understand environmental microbes because of the high data throughput (103–106 sequences per sample), high accuracy and low cost. This technique enables us to identify the dominant and rare populations within a community simultaneously, thus it could reveal a significantly greater level of microbial diversity than conventional molecular tools (Binladen et al., 2007; Caporaso and Gordon, 2011). Sansha Bay is a typical enclosed bay, which is located on the southeastern coast of Ningde City, Fujian Province, and includes Dongwuyang, Guanjingyang, and Sanduao. The streams and rivers from the eight surrounding cities, with a basin area of 8,700 km2, flow into this harbor, containing the domestic sewage of over 2 million people (Tang et al., 2018). In recent years, due to the high discharge of domestic sewage and industrial wastewater as well as the large inflow of residual breeding bait, the mudflat environment has been subjected to substantial pollution. The main goals of the study are to investigate the community structure and seasonal variations of organisms in mudflat sediments of Sansha Bay, and their relationship to physicochemical indexes. The results present here will provide microbial parameters for assessing the environment quality, and to lay a foundation for further illumination of the ecological functions of microorganisms in mudflat sediments. Methods Sample collection and physiochemical index analysis The study was performed in the Northern Yantian port of Sansha Bay (Fig. A1). The total area was about 2.6 acre, at an east longitude from 119.7975 to 119.7986 and a northern latitude from 26.8411 to 30.8422. The study area was divided into four plots, and sediment samples of each plot were collected on 10 October, 2014 (autumn), 2 January, 2015 (winter), 6 April 2015 (spring), and 2 July 2015 (summer). The sediments of the surface layer (top 3-5 cm) were removed and about 200 g subsurface sediments from three different sites within the same plot were collected and mixed as one sample, resulting in a total of 16 samples in four batches. The samples were termed as Oct-P1 to Oct-P4, Jan-P1 to Jan-P4, Apr-P1 to Apr-P4, Jul-P1 to Jul-P4, according to sampling time and sampling plots. All the 16 sediment samples were used for the determination of the physicochemical indices, 10 g sediments of each sample were freeze-dried in a lyophilizer (Labconco, Kansas City, MO, USA). The following parameters were analyzed, and each sample was measured twice. Total nitrogen (TN) was determined via the Kjeldahl method (Bradstreet, 1954) and total phosphorus (TP) via the ammonium molybdate spectrophotometric method (GB11894-89, China; Huang, APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 18(1):987-1000. http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN1785 0037 (Online) DOI: http://dx.doi.org/10.15666/aeer/1801_9871000 © 2020, ALÖKI Kft., Budapest, Hungary Yang et al.: Microbial community structure and seasonal variations in mudflat sediments of Sansha Bay, China - 989 - 2000). Organic matter contents (OrgC and OrgS) were determined via a Vario Max CNS analyzer (Elementar, Hanau, Germany). For the determination of pH, sediment and water were mixed at a ratio of 1:5 (W/V). Water temperature (Tm) was measured on the site. DNA extraction, PCR amplification, and Illumina sequencing For DNA extraction with the PowerSoil DNA Isolation Kit (MOBIO-Laboratories, USA), we used 0.25 g of the sediment samples. The V4 variable region in the bacterial 16S rRNA gene was amplified with the primer pair 515F (5'- GTG CCA GCM GCC GCG GTA A-3') and 806R (5'- GGA CTA CHV GGG TWT CTA AT-3'). The PCR products of the different samples were mixed with equimolar concentration and sent to the Majorbio Co. Ltd. (Shanghai) for paired-end sequencing through the Illumina Miseq platform. Bioinformatic analysis Post-processing of the Illumina sequence reads included quality control and clustering of the operational taxonomic unit (OTU) with 97% sequence identity. The QIIME was applied to collect the OTUs for sequence clustering, the chimeras were removed, and OTU abundance was defined. The RDP Bayesian classifier was applied to conduct taxonomic analyses on OUT-representative sequences with 97% similarity level; the classification was identified in the Silva database (Release128 http://www.arb-silva.de), and the community composition of each sample was analyzed at each classification level, including phylum, class, order, family, genus, and OTU. Mothur software was used to analyze alpha diversity. Community diversity was estimated by Shannon (Magurran, 1988) and Simpson (Simpson, 1949) indices. The total number of species in each sample was estimated with Chao1 and Ace. Phylogenetic diversity (PD) whole tree was used to analyze the relationships among observed species. Sampling coverage was used to evaluate whether
Recommended publications
  • First Genomic Insights Into Members of a Candidate Bacterial Phylum Responsible for Wastewater Bulking
    First genomic insights into members of a candidate bacterial phylum responsible for wastewater bulking Yuji Sekiguchi1, Akiko Ohashi1, Donovan H. Parks2, Toshihiro Yamauchi3, Gene W. Tyson2,4 and Philip Hugenholtz2,5 1 Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan 2 Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia 3 Administrative Management Department, Kubota Kasui Corporation, Minato-ku, Tokyo, Japan 4 Advanced Water Management Centre, The University of Queensland, St. Lucia, Queensland, Australia 5 Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia ABSTRACT Filamentous cells belonging to the candidate bacterial phylum KSB3 were previously identified as the causative agent of fatal filament overgrowth (bulking) in a high-rate industrial anaerobic wastewater treatment bioreactor. Here, we obtained near complete genomes from two KSB3 populations in the bioreactor, including the dominant bulking filament, using diVerential coverage binning of metagenomic data. Fluorescence in situ hybridization with 16S rRNA-targeted probes specific for the two populations confirmed that both are filamentous organisms. Genome-based metabolic reconstruction and microscopic observation of the KSB3 filaments in the presence of sugar gradients indicate that both filament types are Gram-negative, strictly anaerobic fermenters capable of
    [Show full text]
  • Systema Naturae 2000 (Phylum, 6 Nov 2017)
    The Taxonomicon Systema Naturae 2000 Classification of Domain Bacteria (prokaryotes) down to Phylum Compiled by Drs. S.J. Brands Universal Taxonomic Services 6 Nov 2017 Systema Naturae 2000 - Domain Bacteria - Domain Bacteria Woese et al. 1990 1 Genus †Eoleptonema Schopf 1983, incertae sedis 2 Genus †Primaevifilum Schopf 1983, incertae sedis 3 Genus †Archaeotrichion Schopf 1968, incertae sedis 4 Genus †Siphonophycus Schopf 1968, incertae sedis 5 Genus Bactoderma Tepper and Korshunova 1973 (Approved Lists 1980), incertae sedis 6 Genus Stibiobacter Lyalikova 1974 (Approved Lists 1980), incertae sedis 7.1.1.1.1.1 Superphylum "Proteobacteria" Craig et al. 2010 1.1 Phylum "Alphaproteobacteria" 1.2.1 Phylum "Acidithiobacillia" 1.2.2.1 Phylum "Gammaproteobacteria" 1.2.2.2.1 Candidate phylum Muproteobacteria (RIF23) Anantharaman et al. 2016 1.2.2.2.2 Phylum "Betaproteobacteria" 2 Phylum "Zetaproteobacteria" 7.1.1.1.1.2 Phylum "Deltaproteobacteria_1" 7.1.1.1.2.1.1.1 Phylum "Deltaproteobacteria" [polyphyletic] 7.1.1.1.2.1.1.2.1 Phylum "Deltaproteobacteria_2" 7.1.1.1.2.1.1.2.2 Phylum "Deltaproteobacteria_3" 7.1.1.1.2.1.2 Candidate phylum Dadabacteria (CSP1-2) Hug et al. 2015 7.1.1.1.2.2.1 Candidate phylum "MBNT15" 7.1.1.1.2.2.2 Candidate phylum "Uncultured Bacterial Phylum 10 (UBP10)" Parks et al. 2017 7.1.1.2.1 Phylum "Nitrospirae_1" 7.1.1.2.2 Phylum Chrysiogenetes Garrity and Holt 2001 7.1.2.1.1 Phylum "Nitrospirae" Garrity and Holt 2001 [polyphyletic] 7.1.2.1.2.1.1 Candidate phylum Rokubacteria (CSP1-6) Hug et al.
    [Show full text]
  • Libros Sobre Enfermedades Autoinmunes: Tratamientos, Tipos Y Diagnósticos- Profesor Dr
    - LIBROS SOBRE ENFERMEDADES AUTOINMUNES: TRATAMIENTOS, TIPOS Y DIAGNÓSTICOS- PROFESOR DR. ENRIQUE BARMAIMON- 9 TOMOS- AÑO 2020.1- TOMO VI- - LIBROS SOBRE ENFERMEDADES AUTOINMUNES: TRATAMIENTOS, TIPOS Y DIAGNÓSTICOS . AUTOR: PROFESOR DR. ENRIQUE BARMAIMON.- - Doctor en Medicina.- - Cátedras de: - Anestesiología - Cuidados Intensivos - Neuroanatomía - Neurofisiología - Psicofisiología - Neuropsicología. - 9 TOMOS - - TOMO VI - -AÑO 2020- 1ª Edición Virtual: (.2020. 1)- - MONTEVIDEO, URUGUAY. 1 - LIBROS SOBRE ENFERMEDADES AUTOINMUNES: TRATAMIENTOS, TIPOS Y DIAGNÓSTICOS- PROFESOR DR. ENRIQUE BARMAIMON- 9 TOMOS- AÑO 2020.1- TOMO VI- - Queda terminantemente prohibido reproducir este libro en forma escrita y virtual, total o parcialmente, por cualquier medio, sin la autorización previa del autor. -Derechos reservados. 1ª Edición. Año 2020. Impresión [email protected]. - email: [email protected].; y [email protected]; -Montevideo, 15 de enero de 2020. - BIBLIOTECA VIRTUAL DE SALUD del S. M.U. del URUGUAY; y BIBLIOTECA DEL COLEGIO MÉDICO DEL URUGUAY. 0 0 0 0 0 0 0 0. 2 - LIBROS SOBRE ENFERMEDADES AUTOINMUNES: TRATAMIENTOS, TIPOS Y DIAGNÓSTICOS- PROFESOR DR. ENRIQUE BARMAIMON- 9 TOMOS- AÑO 2020.1- TOMO VI- - TOMO V I - 3 - LIBROS SOBRE ENFERMEDADES AUTOINMUNES: TRATAMIENTOS, TIPOS Y DIAGNÓSTICOS- PROFESOR DR. ENRIQUE BARMAIMON- 9 TOMOS- AÑO 2020.1- TOMO VI- - ÍNDICE.- - TOMO I . - - ÍNDICE. - PRÓLOGO.- - INTRODUCCIÓN. - CAPÍTULO I: -1)- GENERALIDADES. -1.1)- DEFINICIÓN. -1.2)- CAUSAS Y FACTORES DE RIESGO. -1.2.1)- FACTORES EMOCIONALES. -1.2.2)- FACTORES AMBIENTALES. -1.2.3)- FACTORES GENÉTICOS. -1.3)- Enterarse aquí, como las 10 Tipos de semillas pueden mejorar la salud. - 1.4)- TIPOS DE TRATAMIENTO DE ENFERMEDADES AUTOINMUNES. -1.4.1)- Remedios Naturales. -1.4.1.1)- Mejorar la Dieta.
    [Show full text]
  • Compile.Xlsx
    Silva OTU GS1A % PS1B % Taxonomy_Silva_132 otu0001 0 0 2 0.05 Bacteria;Acidobacteria;Acidobacteria_un;Acidobacteria_un;Acidobacteria_un;Acidobacteria_un; otu0002 0 0 1 0.02 Bacteria;Acidobacteria;Acidobacteriia;Solibacterales;Solibacteraceae_(Subgroup_3);PAUC26f; otu0003 49 0.82 5 0.12 Bacteria;Acidobacteria;Aminicenantia;Aminicenantales;Aminicenantales_fa;Aminicenantales_ge; otu0004 1 0.02 7 0.17 Bacteria;Acidobacteria;AT-s3-28;AT-s3-28_or;AT-s3-28_fa;AT-s3-28_ge; otu0005 1 0.02 0 0 Bacteria;Acidobacteria;Blastocatellia_(Subgroup_4);Blastocatellales;Blastocatellaceae;Blastocatella; otu0006 0 0 2 0.05 Bacteria;Acidobacteria;Holophagae;Subgroup_7;Subgroup_7_fa;Subgroup_7_ge; otu0007 1 0.02 0 0 Bacteria;Acidobacteria;ODP1230B23.02;ODP1230B23.02_or;ODP1230B23.02_fa;ODP1230B23.02_ge; otu0008 1 0.02 15 0.36 Bacteria;Acidobacteria;Subgroup_17;Subgroup_17_or;Subgroup_17_fa;Subgroup_17_ge; otu0009 9 0.15 41 0.99 Bacteria;Acidobacteria;Subgroup_21;Subgroup_21_or;Subgroup_21_fa;Subgroup_21_ge; otu0010 5 0.08 50 1.21 Bacteria;Acidobacteria;Subgroup_22;Subgroup_22_or;Subgroup_22_fa;Subgroup_22_ge; otu0011 2 0.03 11 0.27 Bacteria;Acidobacteria;Subgroup_26;Subgroup_26_or;Subgroup_26_fa;Subgroup_26_ge; otu0012 0 0 1 0.02 Bacteria;Acidobacteria;Subgroup_5;Subgroup_5_or;Subgroup_5_fa;Subgroup_5_ge; otu0013 1 0.02 13 0.32 Bacteria;Acidobacteria;Subgroup_6;Subgroup_6_or;Subgroup_6_fa;Subgroup_6_ge; otu0014 0 0 1 0.02 Bacteria;Acidobacteria;Subgroup_6;Subgroup_6_un;Subgroup_6_un;Subgroup_6_un; otu0015 8 0.13 30 0.73 Bacteria;Acidobacteria;Subgroup_9;Subgroup_9_or;Subgroup_9_fa;Subgroup_9_ge;
    [Show full text]
  • Deep-Sea Shipwrecks Represent Island-Like Ecosystems for Marine Microbiomes
    The ISME Journal (2021) 15:2883–2891 https://doi.org/10.1038/s41396-021-00978-y ARTICLE Deep-sea shipwrecks represent island-like ecosystems for marine microbiomes 1 1 1 1 1 Leila J. Hamdan ● Justyna J. Hampel ● Rachel D. Moseley ● Rachel. L. Mugge ● Anirban Ray ● 2 3 Jennifer L. Salerno ● Melanie Damour Received: 11 November 2020 / Revised: 19 March 2021 / Accepted: 6 April 2021 / Published online: 22 April 2021 © The Author(s) 2021. This article is published with open access Abstract Biogeography of macro- and micro-organisms in the deep sea is, in part, shaped by naturally occurring heterogeneous habitat features of geological and biological origin such as seeps, vents, seamounts, whale and wood-falls. Artificial features including shipwrecks and energy infrastructure shape the biogeographic patterns of macro-organisms; how they influence microorganisms is unclear. Shipwrecks may function as islands of biodiversity for microbiomes, creating a patchwork of habitats with influence radiating out into the seabed. Here we show microbiome richness and diversity increase as a function of proximity to the historic deep-sea shipwreck Anona in the Gulf of Mexico. Diversity and richness extinction plots provide 1234567890();,: 1234567890();,: evidence of an island effect on microbiomes. A halo of core taxa on the seabed was observed up to 200 m away from the wreck indicative of the transition zone from shipwreck habitat to the surrounding environment. Transition zones around natural habitat features are often small in area compared to what was observed at Anona indicating shipwrecks may exert a large sphere of influence on seabed microbiomes. Historic shipwrecks are abundant, isolated habitats with global distribution, providing a means to explore contemporary processes shaping biogeography on the seafloor.
    [Show full text]
  • Comprehensive Comparative Genomics Reveals Over 50 Phyla of Free‑Living and Pathogenic Bacteria Are Associated with Diverse Members of the Amoebozoa Yonas I
    www.nature.com/scientificreports OPEN Comprehensive comparative genomics reveals over 50 phyla of free‑living and pathogenic bacteria are associated with diverse members of the amoebozoa Yonas I. Tekle*, Janae M. Lyttle, Maya G. Blasingame & Fang Wang The Amoebozoa, a group containing predominantly amoeboid unicellular protists has been shown to play an important ecological role in controlling environmental bacteria. Amoebozoans not only graze bacteria but also serve as a safe niche for bacterial replication and harbor endosymbiotic bacteria including dangerous human pathogens. Despite their importance, only a few lineages of Amoebozoa have been studied in this regard. In this research, we conducted a comprehensive genomic and transcriptomic study with expansive taxon sampling by including representatives from the three known clades of the Amoebozoa. We used culture independent whole culture and single cell genomics/transcriptomics to investigate the association of bacteria with diverse amoebozoans. Relative to current published evidence, we recovered the largest number of bacterial phyla (64) and human pathogen genera (51) associated with the Amoebozoa. Using single cell genomics/ transcriptomics we were able to determine up to 24 potential endosymbiotic bacterial phyla, some potentially endosymbionts. This includes the majority of multi‑drug resistant pathogens designated as major public health threats. Our study demonstrates amoebozoans are associated with many more phylogenetically diverse bacterial phyla than previously recognized. It also shows that all amoebozoans are capable of harboring far more dangerous human pathogens than presently documented, making them of primal public health concern. Te study of microbial interactions is a complex and fascinating feld of research 1–3. Microorganisms occupy diverse ecological niches and are usually found in large communities that result in inherent interactions.
    [Show full text]
  • Reconstruction Phylogénétique Références
    1 Reconstruction phylogénétique Yves Desdevises Université Pierre et Marie Curie Observatoire Océanologique de Banyuls 04 68 88 73 13 [email protected] http://desdevises.free.fr/Adaphyl Références 2 • Darlu P. et Tassy P. 1993. Reconstruction phylogénétique : concepts et méthodes. Masson. Gratuit en pdf ! • Perrière G. et Brochier C. 2010. Concepts et méthodes en phylogénie moléculaire. Springer. • Felsenstein J. 2004. Inferring phylogenies. Sinauer. • Baum D. et Smith S. 2013. Tree thinking: an introduction to phylogenetic biology. Roberts & Company Publishers 3 • Hall B. 2011. Phylogenetic trees made easy. Fourth Edition. Sinauer. • Lemey P., Salemi M. et Vandamme A.-M. 2009. The phylogenetic handbook. Second Edition. Cambridge University Press. • Page R. et Holmes E. 1998. Molecular evolution: a phylogenetic approach. Blackwell. 4 • But : proposer une hypothèse des liens de parenté entre plusieurs taxons • Phylogénie = arbre évolutif (≠ échelle) • Spéciation : binaire • Basé sur l’homologie : similarité héritée d’un ancêtre commun • Indication de l’existence d’un ancêtre commun • Identifiable à l’aide d’un arbre phylogénétique, peut également servir à le construire 5 Arbres phylogénétiques Labrichthys unilineatus Hemigymnus melapterus Hemigymnus fasciatus Symphodus roissali Symphodus cinereus Symphodus tinca Symphodus ocellatus Symphodus mediterraneus Labrichthys unilineatus Symphodus melanocercus ThalassomaThalassomaHemigymnus bifasciatumCoris lutescens julisfasciatus Ctenolabrus rupestris Labroides dimidiatus Labrus merula
    [Show full text]
  • Microscopic and Microbial Insights SCTLD
    Microscopic and Microbial Insights into the Stony Coral Tissue Loss Disease (SCTLD) Outbreak Across Multiple Coral Species on Florida’s Coral Reef Florida Department of Environmental Protection Coral Reef Conservation Program (CRCP) Project 11 Microscopic and Microbial Insights into the Stony Coral Tissue Loss Disease (SCTLD) Outbreak Across Multiple Coral Species on Florida’s Coral Reef Final Report Prepared By: Jennifer L. Salerno PhD Esther C. Peters PhD George Mason University Department of Environmental Science and Policy 4400 University Drive, MS 5F2 Fairfax, VA 22030-4444 August 31, 2020 Completed in Fulfillment of PO B67289 for Florida Department of Environmental Protection Coral Reef Conservation Program 1277 N.E. 79th Street Causeway Miami, FL 33138 This report should be cited as follows: Salerno, J.L., and Peters, E.C. 2020. Microscopic and Microbial Insights into the Stony Coral Tissue Loss Disease (SCTLD) Outbreak Across Multiple Coral Species on Florida’s Coral Reef. Florida DEP. Miami, FL. Pp. 42. This report was prepared for the Florida Department of Environmental Protection, Office of Resilience and Coastal Protection by George Mason University. Funding was provided by the Florida Department of Environmental Protection and the National Oceanic and Atmospheric Administration (NOAA) Coral Reef Conservation Program. The views, conclusionsstatements, and findings, recommendations expressed herein are those of the authors and do not necessarily reflect the views of the State of Florida, NOAA or any of its sub-agencies. Cover Photo: Esther C. Peters Executive Summary Three integrated research tasks were performed using molecular biology, histology, and immunohistochemistry to provide insights into a possible mechanism of bacterial infection that results in tissue loss, as well as potential pathogen(s) associated with stony coral tissue loss disease (SCTLD).
    [Show full text]
  • Characterisation of Anaerobic Digester Microbiome in Various Operating Conditions Using Next-Generation and Third-Generation Sequencing Technologies
    Copyright Undertaking This thesis is protected by copyright, with all rights reserved. By reading and using the thesis, the reader understands and agrees to the following terms: 1. The reader will abide by the rules and legal ordinances governing copyright regarding the use of the thesis. 2. The reader will use the thesis for the purpose of research or private study only and not for distribution or further reproduction or any other purpose. 3. The reader agrees to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage. IMPORTANT If you have reasons to believe that any materials in this thesis are deemed not suitable to be distributed in this form, or a copyright owner having difficulty with the material being included in our database, please contact [email protected] providing details. The Library will look into your claim and consider taking remedial action upon receipt of the written requests. Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong http://www.lib.polyu.edu.hk CHARACTERISATION OF ANAEROBIC DIGESTER MICROBIOME IN VARIOUS OPERATING CONDITIONS USING NEXT-GENERATION AND THIRD-GENERATION SEQUENCING TECHNOLOGIES YU-CHUNG LAM MPhil The Hong Kong Polytechnic University 2020 1 The Hong Kong Polytechnic University Department of Civil and Environmental Engineering Characterisation of anaerobic digester microbiome in various operating conditions using next- generation and third-generation sequencing technologies Yu-Chung Lam A Thesis Submitted in Partial Fulfilment of the Requirement for the degree of Master of Philosophy Sep 2019 2 CERTIFICATE OF ORIGINALITY I hereby declare that this thesis is my own work and that, to the best of my knowledge and belief, it reproduces no material previously published or written, nor material that has been accepted for the award of any other degree or diploma, except where due acknowledgement has been made in the text.
    [Show full text]
  • Published Version (PDF 3MB)
    This may be the author’s version of a work that was submitted/accepted for publication in the following source: Sekiguchi, Yuji, Ohashi, Akiko, Parks, Donovan H., Yamauchi, Toshihiro, Tyson, Gene W., & Hugenholtz, Philip (2015) First genomic insights into members of a candidate bacterial phylum re- sponsible for wastewater bulking. PeerJ, 3, Article number: e740. This file was downloaded from: https://eprints.qut.edu.au/210512/ c 2015 The Author(s) This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the docu- ment is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recog- nise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to [email protected] License: Creative Commons: Attribution 4.0 Notice: Please note that this document may not be the Version of Record (i.e. published version) of the work. Author manuscript versions (as Sub- mitted for peer review or as Accepted for publication after peer review) can be identified by an absence of publisher branding and/or typeset appear- ance. If there is any doubt, please refer to the published source. https://doi.org/10.7717/peerj.740 First genomic insights into members of a candidate bacterial phylum responsible for wastewater bulking Yuji Sekiguchi1, Akiko Ohashi1, Donovan H.
    [Show full text]
  • Large-Scale Computational Discovery and Analysis of Virus-Derived
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.18.436031; this version posted March 18, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Large-scale computational discovery and analysis of virus-derived 2 microbial nanocompartments 3 Michael P. Andreas and Tobias W. Giessen* 4 Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI, USA 5 Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA 6 *correspondence: [email protected] 7 8 9 10 11 12 13 14 15 16 17 18 19 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.18.436031; this version posted March 18, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 20 Abstract 21 Protein compartments represent an important strategy for subcellular spatial control and 22 compartmentalization. Encapsulins are a class of microbial protein compartments defined by the viral 23 HK97-fold of their capsid protein, self-assembly into icosahedral shells, and dedicated cargo loading 24 mechanism for sequestering specific enzymes. Encapsulins are often misannotated and traditional 25 sequence-based searches yield many false positive hits in the form of phage capsids. This has hampered 26 progress in understanding the distribution and functional diversity of encapsulins.
    [Show full text]
  • S41564-017-0012-7.Pdf
    ARTICLES DOI: 10.1038/s41564-017-0012-7 Corrected: Author correction Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life Donovan H. Parks , Christian Rinke , Maria Chuvochina, Pierre-Alain Chaumeil, Ben J. Woodcroft, Paul N. Evans, Philip Hugenholtz * and Gene W. Tyson* Challenges in cultivating microorganisms have limited the phylogenetic diversity of currently available microbial genomes. This is being addressed by advances in sequencing throughput and computational techniques that allow for the cultivation-inde- pendent recovery of genomes from metagenomes. Here, we report the reconstruction of 7,903 bacterial and archaeal genomes from > 1,500 public metagenomes. All genomes are estimated to be ≥ 50% complete and nearly half are ≥ 90% complete with ≤ 5% contamination. These genomes increase the phylogenetic diversity of bacterial and archaeal genome trees by > 30% and provide the first representatives of 17 bacterial and three archaeal candidate phyla. We also recovered 245 genomes from the Patescibacteria superphylum (also known as the Candidate Phyla Radiation) and find that the relative diversity of this group varies substantially with different protein marker sets. The scale and quality of this data set demonstrate that recovering genomes from metagenomes provides an expedient path forward to exploring microbial dark matter. equencing of microbial genomes has accelerated with reduc- phyla previously lacking genomic representatives27–29, including tions in sequencing costs, and public repositories now contain the Patescibacteria superphylum4, which has subsequently been nearly 70,000 bacterial and archaeal genomes. The majority referred to as the ‘Candidate Phyla Radiation’ (CPR) as it may con- S 1,2 10,30 of these genomes have been obtained from axenic cultures and sist of upwards of 35 candidate phyla .
    [Show full text]