Reconstruction Phylogénétique Références

Total Page:16

File Type:pdf, Size:1020Kb

Reconstruction Phylogénétique Références 1 Reconstruction phylogénétique Yves Desdevises Université Pierre et Marie Curie Observatoire Océanologique de Banyuls 04 68 88 73 13 [email protected] http://desdevises.free.fr/Adaphyl Références 2 • Darlu P. et Tassy P. 1993. Reconstruction phylogénétique : concepts et méthodes. Masson. Gratuit en pdf ! • Perrière G. et Brochier C. 2010. Concepts et méthodes en phylogénie moléculaire. Springer. • Felsenstein J. 2004. Inferring phylogenies. Sinauer. • Baum D. et Smith S. 2013. Tree thinking: an introduction to phylogenetic biology. Roberts & Company Publishers 3 • Hall B. 2011. Phylogenetic trees made easy. Fourth Edition. Sinauer. • Lemey P., Salemi M. et Vandamme A.-M. 2009. The phylogenetic handbook. Second Edition. Cambridge University Press. • Page R. et Holmes E. 1998. Molecular evolution: a phylogenetic approach. Blackwell. 4 • But : proposer une hypothèse des liens de parenté entre plusieurs taxons • Phylogénie = arbre évolutif (≠ échelle) • Spéciation : binaire • Basé sur l’homologie : similarité héritée d’un ancêtre commun • Indication de l’existence d’un ancêtre commun • Identifiable à l’aide d’un arbre phylogénétique, peut également servir à le construire 5 Arbres phylogénétiques Labrichthys unilineatus Hemigymnus melapterus Hemigymnus fasciatus Symphodus roissali Symphodus cinereus Symphodus tinca Symphodus ocellatus Symphodus mediterraneus Labrichthys unilineatus Symphodus melanocercus ThalassomaThalassomaHemigymnus bifasciatumCoris lutescens julisfasciatus Ctenolabrus rupestris Labroides dimidiatus Labrus merula Labroides dimidiatus Coris julis Labrus viridis Anampses caeruleopunctatus Anampses caeruleopunctatus Cheilinus trilobatus Anampses geographicus Thalassoma bifasciatum Halichoeres hortulanus Thalassoma lunare Hemigymnus melapterus Cheilinus chlorourus Thalassoma lutescens Labropsis australis Pictilabrus laticlavius Halichoeres marginatus Epibulus incidiator Pictilabrus laticlavius Stetojulis albovittata Anampses geographicus Notolabrus tetricus Stetojulis bandanensis Bodianus rufus Thalassoma lunare Halichoeres margaritaceus Halichoeres hortulanus Clepticus parrae Halichoeres margaritaceus Clepticus parrae StetojulisStetojulis bandanensisalbovittata Notolabrus tetricus Labropsis australis Halichoeres marginatus Pagrus major Halichoeres marginatus Cheilinus chlorourus Anampses geographicus Symphodus roissali Cheilinus trilobatus Anampses caeruleopunctatus Labropsis australis Symphodus cinereus Epibulus incidiator Labroides dimidiatus Labrichthys unilineatus Symphodus tinca Coris julis Bodianus rufus Symphodus ocellatus Labrus merulaviridis Hemigymnus melapterus Halichoeres margaritaceus Hemigymnus fasciatus Symphodus mediterraneus Ctenolabrus rupestris Symphodus melanocercus SymphodusSymphodus cinereus roissali Thalassoma bifasciatum Symphodus tinca Ctenolabrus rupestris Thalassoma lunare Labrus merula Halichoeres hortulanus Labrus viridis Pagrus major Thalassoma lutescens Symphodus mediterraneus Pictilabrus laticlavius Notolabrus tetricus Stetojulis bandanensis Symphodus melanocercus Bodianus rufus Clepticus parrae Stetojulis albovittata Pagrus major Symphodus roissali Epibulus incidiator Symphodus ocellatus Symphodus roissali Symphodus cinereus Symphodus cinereus Symphodus tinca Symphodus tinca Cheilinus chlorourus Cheilinus trilobatus Symphodus ocellatus Symphodus ocellatus Symphodus mediterraneus Symphodus mediterraneus Symphodus melanocercus Symphodus melanocercus Ctenolabrus rupestris Ctenolabrus rupestris Labrus merula Labrus merula Labrus viridis Labrus viridis Cheilinus trilobatus Cheilinus trilobatus Cheilinus chlorourus Cheilinus chlorourus Epibulus incidiator Epibulus incidiator Stetojulis albovittata Stetojulis albovittata Stetojulis bandanensis Stetojulis bandanensis Halichoeres hortulanus Halichoeres hortulanus Halichoeres margaritaceus Halichoeres margaritaceus Labropsis australis Labropsis australis Halichoeres marginatus Halichoeres marginatus Anampses geographicus Anampses geographicus Anampses caeruleopunctatus Anampses caeruleopunctatus Labroides dimidiatus Labroides dimidiatus Labrichthys unilineatus Labrichthys unilineatus Coris julis Coris julis Hemigymnus melapterus Hemigymnus melapterus Hemigymnus fasciatus Hemigymnus fasciatus Thalassoma bifasciatum Thalassoma bifasciatum Thalassoma lunare Thalassoma lunare Thalassoma lutescens Thalassoma lutescens Pictilabrus laticlavius Pictilabrus laticlavius Notolabrus tetricus Notolabrus tetricus Bodianus rufus Bodianus rufus Clepticus parrae Clepticus parrae Pagrus major Pagrus major 6 • Cladogrammes • Pas de longueurs de branches • Clades • Phylogrammes • Longueurs de branches Arbre additif Arbre ultramétrique 7 Feuilles = taxons terminaux Branches terminales A B C D E F G H I J Noeud Polytomie Branches intérieures Racine 8 • Spéciation 9 Hypothèse A B C 10 • Sinon c'est un réseau phylogénétique Enracinement 11 • Pour orienter l’arbre • Utilisation d’un extra-groupe (hors-groupe = groupe extérieur = outgroup) • Reste = groupe intérieur (ingroup) Arbre non enraciné Arbre enraciné extra-groupe ajout d’un extra-groupe 12 • Extra-groupe : taxon frère hors de l’ingroup • Caractères partagés entre outgroup et ingroup = caractères ancestraux • Parfois pas d’extra-groupe : enracinement au point équidistant des extrémités de l’arbre (suppose longueurs de branches) = midpoint rooting B A C D F E B C E A D F • Groupes 13 • Monophylétique (= clade) : groupe naturel • Mammifères • Paraphylétique • Reptiles • Polyphylétique • Algues, protozoaires 14 Caractères 15 • Organismes composés de différentes caractéristiques • Ces caractéristiques prennent des formes différentes selon les taxons : états de caractères • L’ensemble des états d’un caractère constituent un caractère • Ces états sont produits par des changements héritables • L’inférence phylogénétique se fait à partir des différences entre états de caractères 16 • On cherche à établir le lien entre ancêtre et descendant par la présence/absence d’un état de caractère • On cherche l’apparition de nouveaux états de caractères dans les descendants • Les différents états de caractères sont par définition des homologies • Les taxons qui partagent ce nouvel état de caractère (dérivé) forment des clades • Exemple : les poils chez les mammifères, noyau chez les Eucaryotes, ... 17 • Homologie 18 19 • Homoplasie 20 • Caractères ancestraux : plésiomorphies • Caractères ancestraux partagés : symplésiomorphies • Caractères dérivés : apomorphies • Caractères dérivés partagés : synapomorphies • Caractérisent idéalement les clades • Caractères dérivés non partagés = propres à un taxon : autapomorphies 21 Homologies • Les homologies sont supposées montrer des similarités en : • position • structure • développement • Un critère reconnu pour supporter les homologies est la congruence avec d’autres caractères 22 • On définit a priori les homologies primaires : pour faire l'arbre (on fait le "pari" qu'elles sont le produit d'un état de caractère ancestral : hypothèse) • et a posteriori les homologies secondaires : à partir de l'arbre (on confirme l'homologie) 23 Lézard Chien Grenouille Humain Changement POILS Absents Présents Homoplasies 24 • Ce sont les similarités non homologues • Résultat d’une évolution indépendante • Convergence • Parallélisme • Réversion • Brouillent le signal phylogénétique : peuvent conduire à l’établissement de fausses relations de parenté 25 Parallélisme Convergence Réversion 26 Lézard Humain QUEUE Absente Présente Grenouille Chien Humain Chien QUEUE Absente Présente Grenouille Lézard 27 • Sans homoplasies, l’inférence phylogénétique serait facile • Problème fondamental de la reconstruction phylogénétique : distinguer les homoplasies (= bruit) du signal • Corollaire : la qualité des données (un “bon” signal phylogénétique) est plus importante que la méthode utilisée • Si il y a un seul arbre correct, quand des caractères 28 supportent des arbres différents, l’un au moins est forcément homoplasique Lézard Chien POILS Absents Présents Grenouille Humain Humain Chien QUEUE Absente Présente Grenouille Lézard 29 Congruence • L’arbre choisi est celui qui maximise le nombre de caractères congruents MAMMIFERES Lézard Chien POILS LACTATION ... Grenouille Humain Changements 30 • Pour résumer : 31 Cas des données moléculaires • L’homoplasie est généralement plus commune avec des données moléculaires que morphologiques • Peu d’états (4 pour l’ADN : A G C T) • Chimiquement proches • Taux d’évolution parfois élevé • Pas d’identification de l’homoplasie par structure ou développement Données 32 • Fossiles : rares • Caractères morphologiques • Caractères moléculaires : ADN, protéines, ... • De loin les plus utilisés : modèles, nombreux caractères, moins subjectifs, ... • Phylogénie du fragment d’ADN (≠ espèce) • Génomes ➙ phylogénomique • Autres (comportements, hôtes, habitat, ...) 33 Caractères morphologiques • Pas facile : homologie • Souvent peu nombreux : difficile pour grand nombre de taxons, surtout s’ils sont a priori proches • Décisions parfois subjectives • Processus évolutifs en général mal connus : limite le choix des méthodes • Nécessitent un codage • Parfois difficile • Hypothèse sur l’évolution des caractères 34 Codage • Binaire : Présence/absence = 0/1 • États multiples (ordonnés ou non) : définition du nombre de pas entre les états • Codage additif binaire : e.g. 00, 01, 10, 11 • Codage linéaire : e.g. 0, 1, 2 • Combinaison des deux 35 International Journal for Parasitology 30 (2000) 1077±1088 www.elsevier.nl/locate/ijpara Co-existence of nine gill ectoparasites (Dactylogyrus: Monogenea)
Recommended publications
  • First Genomic Insights Into Members of a Candidate Bacterial Phylum Responsible for Wastewater Bulking
    First genomic insights into members of a candidate bacterial phylum responsible for wastewater bulking Yuji Sekiguchi1, Akiko Ohashi1, Donovan H. Parks2, Toshihiro Yamauchi3, Gene W. Tyson2,4 and Philip Hugenholtz2,5 1 Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan 2 Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia 3 Administrative Management Department, Kubota Kasui Corporation, Minato-ku, Tokyo, Japan 4 Advanced Water Management Centre, The University of Queensland, St. Lucia, Queensland, Australia 5 Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia ABSTRACT Filamentous cells belonging to the candidate bacterial phylum KSB3 were previously identified as the causative agent of fatal filament overgrowth (bulking) in a high-rate industrial anaerobic wastewater treatment bioreactor. Here, we obtained near complete genomes from two KSB3 populations in the bioreactor, including the dominant bulking filament, using diVerential coverage binning of metagenomic data. Fluorescence in situ hybridization with 16S rRNA-targeted probes specific for the two populations confirmed that both are filamentous organisms. Genome-based metabolic reconstruction and microscopic observation of the KSB3 filaments in the presence of sugar gradients indicate that both filament types are Gram-negative, strictly anaerobic fermenters capable of
    [Show full text]
  • Systema Naturae 2000 (Phylum, 6 Nov 2017)
    The Taxonomicon Systema Naturae 2000 Classification of Domain Bacteria (prokaryotes) down to Phylum Compiled by Drs. S.J. Brands Universal Taxonomic Services 6 Nov 2017 Systema Naturae 2000 - Domain Bacteria - Domain Bacteria Woese et al. 1990 1 Genus †Eoleptonema Schopf 1983, incertae sedis 2 Genus †Primaevifilum Schopf 1983, incertae sedis 3 Genus †Archaeotrichion Schopf 1968, incertae sedis 4 Genus †Siphonophycus Schopf 1968, incertae sedis 5 Genus Bactoderma Tepper and Korshunova 1973 (Approved Lists 1980), incertae sedis 6 Genus Stibiobacter Lyalikova 1974 (Approved Lists 1980), incertae sedis 7.1.1.1.1.1 Superphylum "Proteobacteria" Craig et al. 2010 1.1 Phylum "Alphaproteobacteria" 1.2.1 Phylum "Acidithiobacillia" 1.2.2.1 Phylum "Gammaproteobacteria" 1.2.2.2.1 Candidate phylum Muproteobacteria (RIF23) Anantharaman et al. 2016 1.2.2.2.2 Phylum "Betaproteobacteria" 2 Phylum "Zetaproteobacteria" 7.1.1.1.1.2 Phylum "Deltaproteobacteria_1" 7.1.1.1.2.1.1.1 Phylum "Deltaproteobacteria" [polyphyletic] 7.1.1.1.2.1.1.2.1 Phylum "Deltaproteobacteria_2" 7.1.1.1.2.1.1.2.2 Phylum "Deltaproteobacteria_3" 7.1.1.1.2.1.2 Candidate phylum Dadabacteria (CSP1-2) Hug et al. 2015 7.1.1.1.2.2.1 Candidate phylum "MBNT15" 7.1.1.1.2.2.2 Candidate phylum "Uncultured Bacterial Phylum 10 (UBP10)" Parks et al. 2017 7.1.1.2.1 Phylum "Nitrospirae_1" 7.1.1.2.2 Phylum Chrysiogenetes Garrity and Holt 2001 7.1.2.1.1 Phylum "Nitrospirae" Garrity and Holt 2001 [polyphyletic] 7.1.2.1.2.1.1 Candidate phylum Rokubacteria (CSP1-6) Hug et al.
    [Show full text]
  • Libros Sobre Enfermedades Autoinmunes: Tratamientos, Tipos Y Diagnósticos- Profesor Dr
    - LIBROS SOBRE ENFERMEDADES AUTOINMUNES: TRATAMIENTOS, TIPOS Y DIAGNÓSTICOS- PROFESOR DR. ENRIQUE BARMAIMON- 9 TOMOS- AÑO 2020.1- TOMO VI- - LIBROS SOBRE ENFERMEDADES AUTOINMUNES: TRATAMIENTOS, TIPOS Y DIAGNÓSTICOS . AUTOR: PROFESOR DR. ENRIQUE BARMAIMON.- - Doctor en Medicina.- - Cátedras de: - Anestesiología - Cuidados Intensivos - Neuroanatomía - Neurofisiología - Psicofisiología - Neuropsicología. - 9 TOMOS - - TOMO VI - -AÑO 2020- 1ª Edición Virtual: (.2020. 1)- - MONTEVIDEO, URUGUAY. 1 - LIBROS SOBRE ENFERMEDADES AUTOINMUNES: TRATAMIENTOS, TIPOS Y DIAGNÓSTICOS- PROFESOR DR. ENRIQUE BARMAIMON- 9 TOMOS- AÑO 2020.1- TOMO VI- - Queda terminantemente prohibido reproducir este libro en forma escrita y virtual, total o parcialmente, por cualquier medio, sin la autorización previa del autor. -Derechos reservados. 1ª Edición. Año 2020. Impresión [email protected]. - email: [email protected].; y [email protected]; -Montevideo, 15 de enero de 2020. - BIBLIOTECA VIRTUAL DE SALUD del S. M.U. del URUGUAY; y BIBLIOTECA DEL COLEGIO MÉDICO DEL URUGUAY. 0 0 0 0 0 0 0 0. 2 - LIBROS SOBRE ENFERMEDADES AUTOINMUNES: TRATAMIENTOS, TIPOS Y DIAGNÓSTICOS- PROFESOR DR. ENRIQUE BARMAIMON- 9 TOMOS- AÑO 2020.1- TOMO VI- - TOMO V I - 3 - LIBROS SOBRE ENFERMEDADES AUTOINMUNES: TRATAMIENTOS, TIPOS Y DIAGNÓSTICOS- PROFESOR DR. ENRIQUE BARMAIMON- 9 TOMOS- AÑO 2020.1- TOMO VI- - ÍNDICE.- - TOMO I . - - ÍNDICE. - PRÓLOGO.- - INTRODUCCIÓN. - CAPÍTULO I: -1)- GENERALIDADES. -1.1)- DEFINICIÓN. -1.2)- CAUSAS Y FACTORES DE RIESGO. -1.2.1)- FACTORES EMOCIONALES. -1.2.2)- FACTORES AMBIENTALES. -1.2.3)- FACTORES GENÉTICOS. -1.3)- Enterarse aquí, como las 10 Tipos de semillas pueden mejorar la salud. - 1.4)- TIPOS DE TRATAMIENTO DE ENFERMEDADES AUTOINMUNES. -1.4.1)- Remedios Naturales. -1.4.1.1)- Mejorar la Dieta.
    [Show full text]
  • Compile.Xlsx
    Silva OTU GS1A % PS1B % Taxonomy_Silva_132 otu0001 0 0 2 0.05 Bacteria;Acidobacteria;Acidobacteria_un;Acidobacteria_un;Acidobacteria_un;Acidobacteria_un; otu0002 0 0 1 0.02 Bacteria;Acidobacteria;Acidobacteriia;Solibacterales;Solibacteraceae_(Subgroup_3);PAUC26f; otu0003 49 0.82 5 0.12 Bacteria;Acidobacteria;Aminicenantia;Aminicenantales;Aminicenantales_fa;Aminicenantales_ge; otu0004 1 0.02 7 0.17 Bacteria;Acidobacteria;AT-s3-28;AT-s3-28_or;AT-s3-28_fa;AT-s3-28_ge; otu0005 1 0.02 0 0 Bacteria;Acidobacteria;Blastocatellia_(Subgroup_4);Blastocatellales;Blastocatellaceae;Blastocatella; otu0006 0 0 2 0.05 Bacteria;Acidobacteria;Holophagae;Subgroup_7;Subgroup_7_fa;Subgroup_7_ge; otu0007 1 0.02 0 0 Bacteria;Acidobacteria;ODP1230B23.02;ODP1230B23.02_or;ODP1230B23.02_fa;ODP1230B23.02_ge; otu0008 1 0.02 15 0.36 Bacteria;Acidobacteria;Subgroup_17;Subgroup_17_or;Subgroup_17_fa;Subgroup_17_ge; otu0009 9 0.15 41 0.99 Bacteria;Acidobacteria;Subgroup_21;Subgroup_21_or;Subgroup_21_fa;Subgroup_21_ge; otu0010 5 0.08 50 1.21 Bacteria;Acidobacteria;Subgroup_22;Subgroup_22_or;Subgroup_22_fa;Subgroup_22_ge; otu0011 2 0.03 11 0.27 Bacteria;Acidobacteria;Subgroup_26;Subgroup_26_or;Subgroup_26_fa;Subgroup_26_ge; otu0012 0 0 1 0.02 Bacteria;Acidobacteria;Subgroup_5;Subgroup_5_or;Subgroup_5_fa;Subgroup_5_ge; otu0013 1 0.02 13 0.32 Bacteria;Acidobacteria;Subgroup_6;Subgroup_6_or;Subgroup_6_fa;Subgroup_6_ge; otu0014 0 0 1 0.02 Bacteria;Acidobacteria;Subgroup_6;Subgroup_6_un;Subgroup_6_un;Subgroup_6_un; otu0015 8 0.13 30 0.73 Bacteria;Acidobacteria;Subgroup_9;Subgroup_9_or;Subgroup_9_fa;Subgroup_9_ge;
    [Show full text]
  • Deep-Sea Shipwrecks Represent Island-Like Ecosystems for Marine Microbiomes
    The ISME Journal (2021) 15:2883–2891 https://doi.org/10.1038/s41396-021-00978-y ARTICLE Deep-sea shipwrecks represent island-like ecosystems for marine microbiomes 1 1 1 1 1 Leila J. Hamdan ● Justyna J. Hampel ● Rachel D. Moseley ● Rachel. L. Mugge ● Anirban Ray ● 2 3 Jennifer L. Salerno ● Melanie Damour Received: 11 November 2020 / Revised: 19 March 2021 / Accepted: 6 April 2021 / Published online: 22 April 2021 © The Author(s) 2021. This article is published with open access Abstract Biogeography of macro- and micro-organisms in the deep sea is, in part, shaped by naturally occurring heterogeneous habitat features of geological and biological origin such as seeps, vents, seamounts, whale and wood-falls. Artificial features including shipwrecks and energy infrastructure shape the biogeographic patterns of macro-organisms; how they influence microorganisms is unclear. Shipwrecks may function as islands of biodiversity for microbiomes, creating a patchwork of habitats with influence radiating out into the seabed. Here we show microbiome richness and diversity increase as a function of proximity to the historic deep-sea shipwreck Anona in the Gulf of Mexico. Diversity and richness extinction plots provide 1234567890();,: 1234567890();,: evidence of an island effect on microbiomes. A halo of core taxa on the seabed was observed up to 200 m away from the wreck indicative of the transition zone from shipwreck habitat to the surrounding environment. Transition zones around natural habitat features are often small in area compared to what was observed at Anona indicating shipwrecks may exert a large sphere of influence on seabed microbiomes. Historic shipwrecks are abundant, isolated habitats with global distribution, providing a means to explore contemporary processes shaping biogeography on the seafloor.
    [Show full text]
  • Comprehensive Comparative Genomics Reveals Over 50 Phyla of Free‑Living and Pathogenic Bacteria Are Associated with Diverse Members of the Amoebozoa Yonas I
    www.nature.com/scientificreports OPEN Comprehensive comparative genomics reveals over 50 phyla of free‑living and pathogenic bacteria are associated with diverse members of the amoebozoa Yonas I. Tekle*, Janae M. Lyttle, Maya G. Blasingame & Fang Wang The Amoebozoa, a group containing predominantly amoeboid unicellular protists has been shown to play an important ecological role in controlling environmental bacteria. Amoebozoans not only graze bacteria but also serve as a safe niche for bacterial replication and harbor endosymbiotic bacteria including dangerous human pathogens. Despite their importance, only a few lineages of Amoebozoa have been studied in this regard. In this research, we conducted a comprehensive genomic and transcriptomic study with expansive taxon sampling by including representatives from the three known clades of the Amoebozoa. We used culture independent whole culture and single cell genomics/transcriptomics to investigate the association of bacteria with diverse amoebozoans. Relative to current published evidence, we recovered the largest number of bacterial phyla (64) and human pathogen genera (51) associated with the Amoebozoa. Using single cell genomics/ transcriptomics we were able to determine up to 24 potential endosymbiotic bacterial phyla, some potentially endosymbionts. This includes the majority of multi‑drug resistant pathogens designated as major public health threats. Our study demonstrates amoebozoans are associated with many more phylogenetically diverse bacterial phyla than previously recognized. It also shows that all amoebozoans are capable of harboring far more dangerous human pathogens than presently documented, making them of primal public health concern. Te study of microbial interactions is a complex and fascinating feld of research 1–3. Microorganisms occupy diverse ecological niches and are usually found in large communities that result in inherent interactions.
    [Show full text]
  • Microscopic and Microbial Insights SCTLD
    Microscopic and Microbial Insights into the Stony Coral Tissue Loss Disease (SCTLD) Outbreak Across Multiple Coral Species on Florida’s Coral Reef Florida Department of Environmental Protection Coral Reef Conservation Program (CRCP) Project 11 Microscopic and Microbial Insights into the Stony Coral Tissue Loss Disease (SCTLD) Outbreak Across Multiple Coral Species on Florida’s Coral Reef Final Report Prepared By: Jennifer L. Salerno PhD Esther C. Peters PhD George Mason University Department of Environmental Science and Policy 4400 University Drive, MS 5F2 Fairfax, VA 22030-4444 August 31, 2020 Completed in Fulfillment of PO B67289 for Florida Department of Environmental Protection Coral Reef Conservation Program 1277 N.E. 79th Street Causeway Miami, FL 33138 This report should be cited as follows: Salerno, J.L., and Peters, E.C. 2020. Microscopic and Microbial Insights into the Stony Coral Tissue Loss Disease (SCTLD) Outbreak Across Multiple Coral Species on Florida’s Coral Reef. Florida DEP. Miami, FL. Pp. 42. This report was prepared for the Florida Department of Environmental Protection, Office of Resilience and Coastal Protection by George Mason University. Funding was provided by the Florida Department of Environmental Protection and the National Oceanic and Atmospheric Administration (NOAA) Coral Reef Conservation Program. The views, conclusionsstatements, and findings, recommendations expressed herein are those of the authors and do not necessarily reflect the views of the State of Florida, NOAA or any of its sub-agencies. Cover Photo: Esther C. Peters Executive Summary Three integrated research tasks were performed using molecular biology, histology, and immunohistochemistry to provide insights into a possible mechanism of bacterial infection that results in tissue loss, as well as potential pathogen(s) associated with stony coral tissue loss disease (SCTLD).
    [Show full text]
  • Characterisation of Anaerobic Digester Microbiome in Various Operating Conditions Using Next-Generation and Third-Generation Sequencing Technologies
    Copyright Undertaking This thesis is protected by copyright, with all rights reserved. By reading and using the thesis, the reader understands and agrees to the following terms: 1. The reader will abide by the rules and legal ordinances governing copyright regarding the use of the thesis. 2. The reader will use the thesis for the purpose of research or private study only and not for distribution or further reproduction or any other purpose. 3. The reader agrees to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage. IMPORTANT If you have reasons to believe that any materials in this thesis are deemed not suitable to be distributed in this form, or a copyright owner having difficulty with the material being included in our database, please contact [email protected] providing details. The Library will look into your claim and consider taking remedial action upon receipt of the written requests. Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong http://www.lib.polyu.edu.hk CHARACTERISATION OF ANAEROBIC DIGESTER MICROBIOME IN VARIOUS OPERATING CONDITIONS USING NEXT-GENERATION AND THIRD-GENERATION SEQUENCING TECHNOLOGIES YU-CHUNG LAM MPhil The Hong Kong Polytechnic University 2020 1 The Hong Kong Polytechnic University Department of Civil and Environmental Engineering Characterisation of anaerobic digester microbiome in various operating conditions using next- generation and third-generation sequencing technologies Yu-Chung Lam A Thesis Submitted in Partial Fulfilment of the Requirement for the degree of Master of Philosophy Sep 2019 2 CERTIFICATE OF ORIGINALITY I hereby declare that this thesis is my own work and that, to the best of my knowledge and belief, it reproduces no material previously published or written, nor material that has been accepted for the award of any other degree or diploma, except where due acknowledgement has been made in the text.
    [Show full text]
  • Published Version (PDF 3MB)
    This may be the author’s version of a work that was submitted/accepted for publication in the following source: Sekiguchi, Yuji, Ohashi, Akiko, Parks, Donovan H., Yamauchi, Toshihiro, Tyson, Gene W., & Hugenholtz, Philip (2015) First genomic insights into members of a candidate bacterial phylum re- sponsible for wastewater bulking. PeerJ, 3, Article number: e740. This file was downloaded from: https://eprints.qut.edu.au/210512/ c 2015 The Author(s) This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the docu- ment is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recog- nise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to [email protected] License: Creative Commons: Attribution 4.0 Notice: Please note that this document may not be the Version of Record (i.e. published version) of the work. Author manuscript versions (as Sub- mitted for peer review or as Accepted for publication after peer review) can be identified by an absence of publisher branding and/or typeset appear- ance. If there is any doubt, please refer to the published source. https://doi.org/10.7717/peerj.740 First genomic insights into members of a candidate bacterial phylum responsible for wastewater bulking Yuji Sekiguchi1, Akiko Ohashi1, Donovan H.
    [Show full text]
  • Large-Scale Computational Discovery and Analysis of Virus-Derived
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.18.436031; this version posted March 18, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Large-scale computational discovery and analysis of virus-derived 2 microbial nanocompartments 3 Michael P. Andreas and Tobias W. Giessen* 4 Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI, USA 5 Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA 6 *correspondence: [email protected] 7 8 9 10 11 12 13 14 15 16 17 18 19 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.18.436031; this version posted March 18, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 20 Abstract 21 Protein compartments represent an important strategy for subcellular spatial control and 22 compartmentalization. Encapsulins are a class of microbial protein compartments defined by the viral 23 HK97-fold of their capsid protein, self-assembly into icosahedral shells, and dedicated cargo loading 24 mechanism for sequestering specific enzymes. Encapsulins are often misannotated and traditional 25 sequence-based searches yield many false positive hits in the form of phage capsids. This has hampered 26 progress in understanding the distribution and functional diversity of encapsulins.
    [Show full text]
  • S41564-017-0012-7.Pdf
    ARTICLES DOI: 10.1038/s41564-017-0012-7 Corrected: Author correction Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life Donovan H. Parks , Christian Rinke , Maria Chuvochina, Pierre-Alain Chaumeil, Ben J. Woodcroft, Paul N. Evans, Philip Hugenholtz * and Gene W. Tyson* Challenges in cultivating microorganisms have limited the phylogenetic diversity of currently available microbial genomes. This is being addressed by advances in sequencing throughput and computational techniques that allow for the cultivation-inde- pendent recovery of genomes from metagenomes. Here, we report the reconstruction of 7,903 bacterial and archaeal genomes from > 1,500 public metagenomes. All genomes are estimated to be ≥ 50% complete and nearly half are ≥ 90% complete with ≤ 5% contamination. These genomes increase the phylogenetic diversity of bacterial and archaeal genome trees by > 30% and provide the first representatives of 17 bacterial and three archaeal candidate phyla. We also recovered 245 genomes from the Patescibacteria superphylum (also known as the Candidate Phyla Radiation) and find that the relative diversity of this group varies substantially with different protein marker sets. The scale and quality of this data set demonstrate that recovering genomes from metagenomes provides an expedient path forward to exploring microbial dark matter. equencing of microbial genomes has accelerated with reduc- phyla previously lacking genomic representatives27–29, including tions in sequencing costs, and public repositories now contain the Patescibacteria superphylum4, which has subsequently been nearly 70,000 bacterial and archaeal genomes. The majority referred to as the ‘Candidate Phyla Radiation’ (CPR) as it may con- S 1,2 10,30 of these genomes have been obtained from axenic cultures and sist of upwards of 35 candidate phyla .
    [Show full text]
  • Molecular Detection and Microbiome Differentiation of Two Cryptic Lineages of Giant Barrel Sponges from Conch Reef, Florida Keys
    Coral Reefs https://doi.org/10.1007/s00338-021-02089-8 REPORT Molecular detection and microbiome differentiation of two cryptic lineages of giant barrel sponges from Conch Reef, Florida Keys 1 1 1 2 James S. Evans • Susanna Lo´pez-Legentil • Joseph R. Pawlik • Isobel G. Turnbull • Patrick M. Erwin1 Received: 9 December 2020 / Accepted: 23 March 2021 Ó Springer-Verlag GmbH Germany, part of Springer Nature 2021 Abstract The giant barrel sponge, Xestospongia muta, diverse microbial communities, with 12,185 total OTUs represents a dominant member of Caribbean reef commu- spanning 38 bacterial and 3 archaeal phyla, but significant nities. Recent microsatellite data have revealed the pres- differences in microbial community structure (PERMA- ence of two genetic clusters of X. muta in a monitored NOVA; p \ 0.001) and diversity (Shannon diversity index; population on Conch Reef, Florida Keys, with a reduced p \ 0.01) were detected between the two clusters. As abundance of one cluster among the largest individuals. sponges typically exhibit interspecific, but not intraspecific, Tracking changes to populations over time and their eco- variability in microbial communities, these findings within logical significance requires rapid identification of each a sympatric population provide additional support for genetic cluster and subsequent studies of biological dif- ecologically relevant cryptic species of X. muta. ferences between clusters. Here, we show that single-gene barcoding detected the same intraspecific genetic variation Keywords Xestospongia muta Á Microbial symbionts Á within X. muta from Conch Reef as microsatellite data, Giant barrel sponge Á Cryptic lineages Á Sponge ecology Á with mitochondrial gene sequences (cytochrome c oxidase Microbial ecology subunit I, I3-M11 partition) from 54 individuals corre- sponding to 4 known haplotypes within the two genetic clusters.
    [Show full text]