Witch-Hazel - Wikipedia, the Free Encyclopedia

Total Page:16

File Type:pdf, Size:1020Kb

Witch-Hazel - Wikipedia, the Free Encyclopedia Witch-hazel - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Witch-hazel You can support Wikipedia by making a tax-deductible donation. Witch-hazel From Wikipedia, the free encyclopedia Witch-hazel (Hamamelis) is a genus of flowering plants in the Witch-hazel family Hamamelidaceae, with two species in North America (H. virginiana and H. vernalis), and one each in Japan (H. japonica) and China (H. mollis). They are deciduous shrubs or (rarely) small trees growing to 3-8 m tall, rarely to 12 m tall. The leaves are alternately arranged, oval, 4-16 cm long and 3-11 cm broad, with a smooth or wavy margin. The horticultural name means "together with fruit"; its fruit, flowers, and next year's leaf buds all appear on the branch simultaneously, a rarity among trees. [1] The flowers are sometimes produced on the leafless stems in winter, thus one alternative name for the plant, "Winterbloom". [1] Each flower has four slender strap-shaped petals 1-2 cm long, pale to dark yellow, orange, or red. The fruit is a two-part capsule 1 cm long, containing a single 5 mm glossy black seed in each of the two parts; the capsule splits explosively at maturity in the autumn about 8 months after flowering, ejecting the seeds with sufficient force to fly for distances of up to 10 m, thus another Hamamelis virginiana alternative name "Snapping Hazel". [1] Scientific classification Kingdom: Plantae Hamamelis species are used as food plants by the larvae of Division: Magnoliophyta some Lepidoptera species including Feathered Thorn. Class: Magnoliopsida The name Witch has its origins in Middle English wiche, from Order: Saxifragales the Old English wice, meaning "pliant" or "bendable". Hazel is Family: Hamamelidaceae derived from the use of the twigs as divining rods, just as hazel Genus: Hamamelis twigs were used in England. Gronov. ex L. Species The Persian Ironwood, a closely related tree formerly treated as Hamamelis persica, is now given a genus of its own, as Hamamelis japonica Parrotia persica, as it differs in the flowers not having petals. Hamamelis mollis Other closely allied genera are Parrotiopsis, Fothergilla and Hamamelis vernalis Sycopsis (see under Hamamelidaceae). Witch-hazels are not Hamamelis virginiana closely related to the hazels. Cultivation and uses They are popular ornamental plants, grown for their clusters of rich yellow to orange-red flowers which begin to expand in the autumn as or slightly before the leaves fall, and continue throughout the winter. 1 of 3 6/3/08 11:12 AM Witch-hazel - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Witch-hazel Numerous cultivars have been selected for use as garden shrubs, many of them derived from the hybrid H. × intermedia Rehder (H. japonica × H. mollis). The bark and leaves are astringent; the extract, also referred to as witch hazel, is used medicinally. Extracts from its bark and leaves are used in aftershave lotions and lotions for treating bruises and insect bites. Witch-hazel is the active ingredient in many hemorrhoid medications. It is also a common treatment for postpartum tearing of the perineum. The seeds contain a quantity of oil and are edible. References 1. ^ a b c http://www.witchhazel.com/about.htm Dickinson's Witch Hazel Flora of China: Hamamelis (http://www.efloras.org/florataxon.aspx?flora_id=2&taxon_id=114541) Flora of North America: Hamamelis (http://www.efloras.org/florataxon.aspx?flora_id=1&taxon_id=114541) Huxley, A., ed. (1992). New RHS Dictionary of Gardening. Macmillan. Close up of Hamamelis Hamamelis in Fürth Flowering Hamamelis Hamamelis × sp. flowers, Menai City Park (Germany), in the Colonial Park intermedia (H. Bridge, Wales. 2004-02-08. Arboretum and japonica × H. mollis) Gardens. H. japonica H. Moliis tree in the H. Moliis in the H. Moliis leaves in the Autumn Autumn Autumn 2 of 3 6/3/08 11:12 AM Witch-hazel - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Witch-hazel Retrieved from "http://en.wikipedia.org/wiki/Witch-hazel" Categories: Saxifragales | Medicinal plants This page was last modified on 20 April 2008, at 16:53. All text is available under the terms of the GNU Free Documentation License. (See Copyrights for details.) Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a U.S. registered 501(c)(3) tax-deductible nonprofit charity. 3 of 3 6/3/08 11:12 AM.
Recommended publications
  • Phytophthora Ramorum Sudden Oak Death Pathogen
    NAME OF SPECIES: Phytophthora ramorum Sudden Oak Death pathogen Synonyms: Common Name: Sudden Oak Death pathogen A. CURRENT STATUS AND DISTRIBUTION I. In Wisconsin? 1. YES NO X 2. Abundance: 3. Geographic Range: 4. Habitat Invaded: 5. Historical Status and Rate of Spread in Wisconsin: 6. Proportion of potential range occupied: II. Invasive in Similar Climate YES NO X Zones United States: In 14 coastal California Counties and in Curry County, Oregon. In nursery in Washington. Canada: Nursery in British Columbia. Europe: Germany, the Netherlands, the United Kingdom, Poland, Spain, France, Belgium, and Sweden. III. Invasive in Similar Habitat YES X NO Types IV. Habitat Affected 1. Habitat affected: this disease thrives in cool, wet climates including areas in coastal California within the fog belt or in low- lying forested areas along stream beds and other bodies of water. Oaks associated with understory species that are susceptible to foliar infections are at higher risk of becoming infected. 2. Host plants: Forty-five hosts are regulated for this disease. These hosts have been found naturally infected by P. ramorum and have had Koch’s postulates completed, reviewed and accepted. Approximately fifty-nine species are associated with Phytophthora ramorum. These species are found naturally infected; P. ramorum has been cultured or detected with PCR but Koch’s postulates have not been completed or documented and reviewed. Northern red oak (Quercus rubra) is considered an associated host. See end of document for complete list of plant hosts. National Risk Model and Map shows susceptible forest types in the mid-Atlantic region of the United States.
    [Show full text]
  • Colored Illustrations and Popular Descriptions of Plants
    ADDISONIA COLORED ILLUSTRATIONS AND POPULAR DESCRIPTIONS OP PLANTS Volume 3 1918 BOTA' 3CAL PUBLISHED BY THE NEW YORK BOTANICAL GARDEN (ADDISON BROWN FUND) PRESS OF THE NEW ERA PRINTINQ COMPANY LANCASTER, PA. m CONTENTS Part 1 March 30, 1918 platb pagb 81 Aronia atropurpurea 1 82 Aster Novae-Angliae 3 83A Gymnocalycium multiflorum 5 83B Gymnocalycium Mostii 5 84 Euonymus alata 7 85 Diospyros virginiana 9 86 Lepadena marginata 11 87 Maackia amurensis Buergeri 13 88 Hibiscus oculiroseus 15 89 Comus ofl&cinalis 17 90 Opuntia lasiacantha 19 Part 2 June 29, 1918 91 Cotoneaster Simonsii 21 92 Echeveria nodulosa 23 93 Helianthus orgyalis 25 94 Symphoricarpos albus laevigatus 27 95 Sinningia speciosa 29 96 Stylophorum diphyllum 31 97 Aronia arbutifolia 33 98 Hamamelis japonica 35 99 Hibiscus Moscheutos 37 100 Sobralia sessilis 39 Part 3 September 30, 1918 101 Comus Mas 41 102 Solidago squarrosa 43 103 Callicarpa japonica 45 104 Aster laevis 47 105 Opuntia Opuntia .49 106 Ilex serrata argutidens 51 107 Othonna crassifolia 53 108 Magnolia Kobus 55 109 Crassula portulacea 57 110 Viburnum prunifolium 59 «•• lU iv Addisonia Part 4 December 31, 1918 111 Symphoricarpos Symphoricarpos 61 112 Spiraea Thunbergii 63 j 113 Coreopsis Leavenworthii 65 114 Echinacea purpurea 67 115 Lantana 69 depressa ; 116 Ilex verticillata 71 j 117 Vioma Baldwinii 73 ] 118 Jussiaea peruviana 75 i 119 Salvia farinacea 77 i 120 Dianthera crassifolia 79 i Index 81 i 1 ADDISONIA COLORED ILLUSTRATIONS AND POPULAR DESCRIPTIONS OF PLANTS Volume 3 Number i MARCH, 1918 PUBLISHED BY
    [Show full text]
  • Scientific Name Common Name NATURAL ASSOCIATIONS of TREES and SHRUBS for the PIEDMONT a List
    www.rainscapes.org NATURAL ASSOCIATIONS OF TREES AND SHRUBS FOR THE PIEDMONT A list of plants which are naturally found growing with each other and which adapted to the similar growing conditions to each other Scientific Name Common Name Acer buergeranum Trident maple Acer saccarum Sugar maple Acer rubrum Red Maple Betula nigra River birch Trees Cornus florida Flowering dogwood Fagus grandifolia American beech Maple Woods Liriodendron tulipifera Tulip-tree, yellow poplar Liquidamber styraciflua Sweetgum Magnolia grandiflora Southern magnolia Amelanchier arborea Juneberry, Shadbush, Servicetree Hamamelis virginiana Autumn Witchhazel Shrubs Ilex opaca American holly Ilex vomitoria*** Yaupon Holly Viburnum acerifolium Maple leaf viburnum Aesulus parvilflora Bottlebrush buckeye Aesulus pavia Red buckeye Carya ovata Shadbark hickory Cornus florida Flowering dogwood Halesia carolina Crolina silverbell Ilex cassine Cassina, Dahoon Ilex opaca American Holly Liriodendron tulipifera Tulip-tree, yellow poplar Trees Ostrya virginiana Ironwood Prunus serotina Wild black cherry Quercus alba While oak Quercus coccinea Scarlet oak Oak Woods Quercus falcata Spanish red oak Quercus palustris Pin oak Quercus rubra Red oak Quercus velutina Black oak Sassafras albidum Sassafras Azalea nudiflorum Pinxterbloom azalea Azalea canescens Piedmont azalea Ilex verticillata Winterberry Kalmia latifolia Mountain laurel Shrubs Rhododenron calendulaceum Flame azalea Rhus copallina Staghorn sumac Rhus typhina Shining sumac Vaccinium pensylvanicum Low-bush blueberry Magnolia
    [Show full text]
  • T1)E Bedford,1)Ire Naturaii,T 45
    T1)e Bedford,1)ire NaturaIi,t 45 Journal for the year 1990 Bedfordshire Natural History Society 1991 'ISSN 0951 8959 I BEDFORDSHffiE NATURAL HISTORY SOCIETY 1991 Chairman: Mr D. Anderson, 88 Eastmoor Park, Harpenden, Herts ALS 1BP Honorary Secretary: Mr M.C. Williams, 2 Ive! Close, Barton-le-Clay, Bedford MK4S 4NT Honorary Treasurer: MrJ.D. Burchmore, 91 Sundon Road, Harlington, Dunstable, Beds LUS 6LW Honorary Editor (Bedfordshire Naturalist): Mr C.R. Boon, 7 Duck End Lane, Maulden, Bedford MK4S 2DL Honorary Membership Secretary: Mrs M.]. Sheridan, 28 Chestnut Hill, Linslade, Leighton Buzzard, Beds LU7 7TR Honorary Scientific Committee Secretary: Miss R.A. Brind, 46 Mallard Hill, Bedford MK41 7QS Council (in addition to the above): Dr A. Aldhous MrS. Cham DrP. Hyman DrD. Allen MsJ. Childs Dr P. Madgett MrC. Baker Mr W. Drayton MrP. Soper Honorary Editor (Muntjac): Ms C. Aldridge, 9 Cowper Court, Markyate, Herts AL3 8HR Committees appointed by Council: Finance: Mr]. Burchmore (Sec.), MrD. Anderson, Miss R. Brind, Mrs M. Sheridan, Mr P. Wilkinson, Mr M. Williams. Scientific: Miss R. Brind (Sec.), Mr C. Boon, Dr G. Bellamy, Mr S. Cham, Miss A. Day, DrP. Hyman, MrJ. Knowles, MrD. Kramer, DrB. Nau, MrE. Newman, Mr A. Outen, MrP. Trodd. Development: Mrs A. Adams (Sec.), MrJ. Adams (Chairman), Ms C. Aldridge (Deputy Chairman), Mrs B. Chandler, Mr M. Chandler, Ms]. Childs, Mr A. Dickens, MrsJ. Dickens, Mr P. Soper. Programme: MrJ. Adams, Mr C. Baker, MrD. Green, MrD. Rands, Mrs M. Sheridan. Trustees (appointed under Rule 13): Mr M. Chandler, Mr D. Green, Mrs B.
    [Show full text]
  • Downloaded from Brill.Com10/08/2021 11:33:23AM Via Free Access 116 IAWA Bulletin N.S., Vol
    1AWA Bulletin n.s., Vol. 11 (2), 1990: 115-140 IAWA·IUFRO WOOD ANATOMY SYMPOSIUM 1990 The third Euro-African regional wood anatomy symposium organised by the Wood Science and Technology Laboratories of the ETH (Swiss Federal Institute ofTechnology), Zürich, Switzerland, July 22-27, 1990. Organising Committee Prof. Dr. H.H. Bosshard, Honorary President Dr. L.J. Kucera, Executive Secretary and Local Host Ms. C. Dominquez, Symposium Office Secretary Dr. K. J. M. Bonsen, Deputy Executive Secretary lng. B.J.H. ter Welle, on behalf ofIAWA Prof. Dr. P. Baas, on behalf of IUFRO S 5.01 ABSTRACfS OF PAPERS AND POSTERS C. ANGELACCIO, A. SCffiRONE and B. SCHI­ MARIAN BABIAK, 1GOR CuNDERLfK and JO­ RONE, Dipartimento di Scienze deli' Ambiente ZEF KUDELA, Faculty of Wood Technology, Forestale e delle Sue Risorse, Facolta di University of Forestry and Wood Technol­ Agraria, Universita degli Studi della Tuscia, ogy, Department of Wood Science and Me­ Via S. Camillo de Lellis, 01100 Viterbo, chanical Wood, 96053 Zvolen, Czechoslo­ 1taly. - Wood anatomy of Quercus cre· vakia. - Permeability and structure of nata Lam. beech wood. Quercus crenata Lam. (Q. pseudosuber Flow of water and other liquids through G. Santi) is a natural hybrid between Q. cer­ beech wood (Fagus sylvatica L.) caused by ris x Q. suber. The species is widespread in the external pressure gradient is described by the mediterrane an basin, from France to Al­ the steady-state Darcy's law. The validity of bania. 1t occurs throughout Italy, usually as the law was proved up to a critical value. The single trees recognisable by their evergreen critical external pressure gradient obtained in and polymorphous leaves; the bark and acorn our experiments was 0.15 MPa/cm.
    [Show full text]
  • Garden Moth Scheme Report 2016
    Garden Moth Scheme Report 2016 Heather Young – April 2017 1 GMS Report 2016 CONTENTS PAGE Introduction 2 Top 30 species 2016 3 Population trends (?) of our commonest garden moths 5 Autumn Moths 12 Winter GMS 2016-17 14 Antler Moth infestations 16 GMS Annual Conference 2017 19 GMS Sponsors 20 Links & Acknowledgements 21 Cover photograph: Fan-foot (R. Young) Introduction The Garden Moth Scheme (GMS) welcomes participants from all parts of the United Kingdom and Ireland, and in 2016 received 341 completed recording forms, slightly fewer than last year (355). The scheme is divided into 12 regions, monitoring 233 species of moth in every part of the UK and Ireland (the ‘Core Species’), along with a variable number of ‘Regional Species’. For each of the last seven years, we have had records from over 300 sites across the UK and Ireland, and later in the report there are a series of charts representing the population trends (or fluctuations) of our most abundant species over this period. The database has records dating back to 2003 when the scheme began in the West Midlands, and now contains over 1 ¼ million records, providing a very valuable resource to researchers. Scientists and statisticians from Birmingham and Manchester Universities are amongst those interested in using our data, as well as the ongoing research being undertaken by the GMS’s own John Wilson. There is an interesting follow-up article by Evan Lynn on the Quarter 4 GMS newsletter piece by Duncan Brown on Antler Moth infestations, and a report on the very successful 2017 Annual Conference in Apperley Village Hall, near Tewkesbury.
    [Show full text]
  • Moth Surveys 2020
    Table of Contents Introduction 2 Visit 1 – 20th May, 2020 2 Visit 2 – 15th June, 2020 3 Visit 3 – 14th July, 2020 4 Visit 4 – 8th August, 2020 5 Visit 5 – 8th September, 2020 6 Visit 6 – 10th November, 2020 7 Summary 8 Acknowledgements 8 Appendix I – Recording Details 8 Appendix II – The Complete List 2020 8 Appendix III – National Status & Foodplants 15 Appendix IV – Other Wildlife Recorded During Survey 21 Some Photos From Sun Rising 2020 22 Cover Photo: 2064 (72.024) Ruby Tiger (Phragmatobia fuliginosa) 8th September, 2020 All photos in this report taken at Sun Rising by A. Prior © 2020 1 Sun Rising NBG Moth Surveys 2020 Introduction After the atrocious weather experienced going back to the last couple of months of 2019 it seems miraculous that six visits were made to Sun Rising during 2020. Throw in a frustrating global virus and it is even more so! Most were arranged at very short notice to take advantage of whatever decent weather was on offer. There were a couple of breezy nights, but they were mild enough to make them worthwhile and all were productive with additions of new species to further lengthen the site list. Visit 1 – 20th May, 2020 The weather finally relented towards the end of May and after all that had gone on earlier in the year it was decided that Martin Kennard and I should use this as a “test” night to see if we could carry on moth recording safely. Neither of us thought there should be any problem with that as by the very nature of moth recording we are widely separated.
    [Show full text]
  • The Phytochemistry of Cherokee Aromatic Medicinal Plants
    medicines Review The Phytochemistry of Cherokee Aromatic Medicinal Plants William N. Setzer 1,2 1 Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA; [email protected]; Tel.: +1-256-824-6519 2 Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT 84043, USA Received: 25 October 2018; Accepted: 8 November 2018; Published: 12 November 2018 Abstract: Background: Native Americans have had a rich ethnobotanical heritage for treating diseases, ailments, and injuries. Cherokee traditional medicine has provided numerous aromatic and medicinal plants that not only were used by the Cherokee people, but were also adopted for use by European settlers in North America. Methods: The aim of this review was to examine the Cherokee ethnobotanical literature and the published phytochemical investigations on Cherokee medicinal plants and to correlate phytochemical constituents with traditional uses and biological activities. Results: Several Cherokee medicinal plants are still in use today as herbal medicines, including, for example, yarrow (Achillea millefolium), black cohosh (Cimicifuga racemosa), American ginseng (Panax quinquefolius), and blue skullcap (Scutellaria lateriflora). This review presents a summary of the traditional uses, phytochemical constituents, and biological activities of Cherokee aromatic and medicinal plants. Conclusions: The list is not complete, however, as there is still much work needed in phytochemical investigation and pharmacological evaluation of many traditional herbal medicines. Keywords: Cherokee; Native American; traditional herbal medicine; chemical constituents; pharmacology 1. Introduction Natural products have been an important source of medicinal agents throughout history and modern medicine continues to rely on traditional knowledge for treatment of human maladies [1]. Traditional medicines such as Traditional Chinese Medicine [2], Ayurvedic [3], and medicinal plants from Latin America [4] have proven to be rich resources of biologically active compounds and potential new drugs.
    [Show full text]
  • A Sibling Species of the Persian Parrotia
    The Chinese Parrotia: A Sibling Species of the Persian Parrotia Jianhua Li and Peter Del Tredici he Persian ironwood (Parrotia persica) The Persian and Chinese ironwoods are has a well-deserved reputation as a beau- members of the witch hazel family (Hama- Ttiful garden plant—mainly because of its melidaceae), and in order to appreciate their exfoliating bark and gorgeous fall color—but uniqueness and evolutionary history we need also as a tough species that tolerates drought, to first examine one of their more familiar rela- heat, wind, and cold (Dirr 1998). Less well tives, the witch hazels (Hamamelis). There are known is the fact that Persian ironwood has five species of witch hazel distributed through- a sister species, the Chinese ironwood (Parro- out the temperate regions: H. mollis in eastern tia subaequalis) (Figure 1), growing about 5600 China, H. japonica in Japan, and H. virginiana, kilometers (3500 miles) away in eastern China. H. vernalis, H. mexicana in North America. Remarkably, this species was correctly identi- The genus shows the intercontinental disjunct fied only sixteen years ago (Deng et al. 1992a). distribution between eastern Asia and North Figure 1. Geographic distribution of Parrotia persica (in green) and P. subaequalis (in red). Note that the scale bar is 400 kilometers. Parrotia 3 Hamamelis virginiana ..... Distyliopsis tutcheri 55 84 Distylium racemosum UBC Botanical Garden Sycopsis sinensis ................... 100 ➙ MOBOT Parrotia persica ........... 91 7.8±3.8 mya Parrotia subaequalis ................................. 50 mya Parrotiopsis jacquemontana ......... Fothergilla major .... 10 changes Figure 2. Evolutionary relationships of Hamamelis and petalless genera, showing shift (the arrow) from insect to wind pollination.
    [Show full text]
  • January Review of Butterfly, Moth and Other Natural History Sightings 2019
    Review of butterfly, moth and other natural history sightings 2019 January January started dry and settled but mostly cloudy with high pressure dominant, and it remained generally dry and often mild during the first half of the month. The second half became markedly cooler with overnight frosts and the last week saw a little precipitation, some which was occasionally wintry. With the mild weather continuing from December 2018 there were a small number of migrant moths noted in January, comprising a Dark Sword-grass at Seabrook on the 5th, a Silver Y there on the 13th and 2 Plutella xylostella (Diamond-back Moths) there on the 15th, whilst a very unseasonal Dark Arches at Hythe on the 4th may have been of immigrant origin. Dark Sword-grass at Seabrook (Paul Howe) Dark Arches at Hythe (Ian Roberts) More typical species involved Epiphyas postvittana (Light Brown Apple Moth), Satellite, Mottled Umber, Winter Moth, Chestnut, Spring Usher and Early Moth. Early Moth at Seabrook (Paul Howe) Spring Usher at Seabrook (Paul Howe) The only butterfly noted was a Red Admiral at Nickolls Quarry on the 1st but the mild weather encouraged single Buff-tailed Bumblebees to appear at Seabrook on the 7th and Mill Point on the 8th, whilst a Minotaur Beetle was attracted to light at Seabrook on the 6th. A Common Seal and two Grey Seals were noted regularly off Folkestone, whilst at Hare was seen near Botolph’s Bridge on the 1st and a Mink was noted there on the 17th. February After a cold start to the month it was generally mild from the 5th onwards.
    [Show full text]
  • Hamamelis Virginiana (Common Witchhazel) Witchhazel Family (Hamamelidaceae)
    Hamamelis virginiana (Common Witchhazel) Witchhazel Family (Hamamelidaceae) Introduction: This native large shrub or small tree offers attractive yellow foliage and fragrant fl owers in fall. It is an excellent plant for naturalized settings. Culture: Common witchhazel performs best in moist soils in full sun or shade. It prefers soils that are slightly acidic or neutral, as it is not as tolerant of high pH as Hamamelis vernalis. Common witchhazel is hardy in Zones 3 to 8, possibly 9. Common witchhazel has no serious disease or insect problems, although it may develop galls on the bottom of its leaves if planted near birch trees. Botanical Characteristics: Additional information: The common name witchhazel comes from Native habitat: Canada south to Georgia, west to an old English word that means “to bend.” European Arkansas and Nebraska. species of Hamamelis were once used as divining rods to search for water. Growth habit: Large shrub or small tree with Witchhazel bark has been mixed with water large, spreading branches that form a rounded crown. and alcohol to make an astringent for sores and bruis- es. Tannins found in the bark have also been used to Tree size: 20 to 30 feet tall with a 15- to 20-foot treat hemorrhoids and in eye medications. Witchhazel spread. extract has also been used in after-shave lotion. The bark of witchhazel is light brown and Flower and fruit: Flowers are fragrant and have thin. It peels off to reveal a reddish purple inner bark. four yellow, ribbon-like petals. Flowers are borne Common witchhazel is our native witchhazel in November and are effective for 2 to 4 weeks.
    [Show full text]
  • Abies Concolor (White Fir)
    Compiled here is distribution, characteristics and other information on host species featured as ‘Host of the Month’ in past issues of the COMTF Monthly Report. Abies concolor (white fir) This is an evergreen tree native to the mountains of southern Oregon, California, the southern Rocky Mountains, and Baja California. Large and symmetrical, white fir grows 80 – 120ft tall and 15 – 20ft wide in its native range and in the Pacific Northwest. White fir is one of the top timber species found in the Sierra Nevada Mountains of CA and is a popular Christmas tree, as well as one of the most commonly grown native firs in Western gardens. Young trees are conical in shape, but develop a dome-like crown with age. The flattened needles of white fir are silvery blue-green, blunt at the tip , and grow 2 – 3in long. Often curving upwards, the needles extend at right angles from the twig, and twigs produce a citrus smell when needles are broken. White fir is monoecious, producing yellow- to red-toned, catkin-like male flowers and inconspicuous yellow-brown female flowers. The oblong cones grow 3 – 5 in upright, are yellow-green to purple in color, and are deciduous at maturity, dispersing seed in the fall. New twigs are dark- orange, but become gray-green, then gray with maturity. The bark of saplings is thin, smooth, and gray, turning thick, ash-gray with age, and developing deep irregular furrows. P. ramorum- infected Abies concolor (white fir) was first reported in the October 2005 COMTF newsletter as having been found at a Christmas tree farm in the quarantined county of Santa Clara.
    [Show full text]