Stability & Cloud Development

Total Page:16

File Type:pdf, Size:1020Kb

Stability & Cloud Development Stability & Cloud Development Chapter 6 Part 2 Reversible/Irreversible • Reversible adiabatic process- no precipitation falls and leaves parcel- parcel can return to original temperature and pressure • Irreversible pseudoadiabatic process- precipitation fall out and parcel cannot return to it’s original temperature and pressure (warms) Irreversible pseudoadiabatic process - precipitation falls out and ppgparcel cannot return to it’s original temperature and pressure (warms) 3500 Sinking parcel Precipitation becomes starts 3000 unsaturated (cloud dissipates)- dry 2500 lapse rate )) 2000 sinking T 1500 rising T eight (m HH 1000 500 Condensation 0 occurs- wet 0 10203040 lapse rate Temperature (C) Stability • Determine stability by comparing temperature of rising parcel to surroundings - if colder than surroundings , more dense, parcel sinks toward original position- stable, if warmer, less dense, continues to rise-unstable • Need to know temperature of parcel and it’s environment (surrounding air) at different heights in atmosphere • Environmental lapse rate is lapse rate of atmosphere- can bdtbe determi ned db by radi osond ddtfe data from wea ther balloons • If environmental lapse rate is less than wet adiabatic rate→absolutely stable • Greater that dry adiabatic rate→ absolutely unstable • Between wet & dry adiabatic → conditionally unstable Absolutely stable atmosphere- environmental lapse rate less than moist adiabatic rate Absolutely unstable atmosphere- lapse rate greatthdter than dry a dibtitdiabatic rate Conditionally unstable - stable if rising air not sa turat tded, unst tblifiiable if rising a ir sa tura tdted Summary of stability conditions Stable air • Stable air resists vertical motion - if clouds form from forced lifting, flat tops and bases • Atmosphere becomes more stable if air aloft warms or air below cools • Su bsidence inv ersion – sinking air w arms at dry adiabatic lapse rate, air below often cooler- very common Pacific Coast in summer, with cool marine layer below- high air pollution potential • Cooling in lower layers - radiational cooling; cold air a dvec tion; a ir mov ing over co ld sur face • Cold air drainage into valleys • Invers ion layer ac ts as lid to preven t ver tica l mixing • Neutral stability → environmental lapse rate = dry adiabatic rate – would occur in well mixed atmosphere such as windy conditions or much of lower atmosphere iftin sunny afternoons • Stability changes diurnally and varies with height • Unstable- usually only very near ground during intense solar radiation- air quickly rises and mixes resulting in near neutral stability • Conditionally unstable- between wet & dry adiabatic lapse rates- commonly the case • Average tropospheric lapse rate ≈665.5 º C per Km , typically near or greater than the wet adiabatic rate • Show example radiosonde temperature profiles 0z, 12z Adiabatic Charts • Adiabatic charts show how various atmospheric variables changgg,,ye with height: P, T, humidity The right white line is T profile. The left line is the Td. The pressure lines are plotted horizontally in blue and are also on an inverse log scale. The concept of Skew T means that the temperature itlttdtillbtlfftthihttis not plotted vertically but angles off to the right at a 45 degree angle. The temperature lines of the Skew T are in blue. The green lines are called dry adiabats. The light blue dashed lines are saturation adiabats. The yellow dashed lines are lines of constant mixing ratio. Morning sounding shows ground-based inversion Afternoon sounding shows near dry adiabatic lapse rate to 5000 m Causes of Instability • Cooling aloft- winds bringing in colder air (cold air advection) – radiational cooling from clouds or air • Warming offf surface air- daytime solar heating of the surface (ground); warm air advection by winds; air moving over warm surface • Lifting layer of air- top cools more than bottom, becomes less stable- often conditionally unstable and clouds may form • Convective instability- if lower layer portion moist, upper layer portion dry, lower layer becomes saturated and cools at wet adiabatic rate, upper portion at dry rate, upper portion becomes much cooler and get instability- often associated with thunderstorms and tornadoes Cumulus clouds forming Condensation begins Rising air cooling to dewpoint Rising, cooling, and expanding air Hot unstable air Mixing tends to steepen lapse rate Cloud Development • Clouds develop as an air parcel rises and cools below the dew point. • Usually a trigger or process is need to initiate the rise of an air parcel. Cloud Development • Convection – Differential land surface heating creates areas of high surface temperature. – Air above warm land surface heats, forming a ‘bubble’ of warm air that rises or convection. – Cloud base forms at level of free convection. Development of Cumulus Clouds Stability influences Cumulus Clouds Cloud Development • Topography – Orographic uplift – Orographic clouds – Windward, leeward, rain shadow – Lenticular clouds Orographic Uplift Wave clouds from mountains Mountain Wave Clouds Lenticular Clouds Cloud Development • Changing cloud forms – Stratus clouds can change to cumulus clouds if the top of the cloud cools and the bottom of the cloud warms. – Alto cumulus castellanus: towers on alto stratus – If moist stable air without clouds is mixed or stirred it can form stratocumulus clouds. Billow clouds from wind shear Stratocumulus Formation.
Recommended publications
  • Soaring Weather
    Chapter 16 SOARING WEATHER While horse racing may be the "Sport of Kings," of the craft depends on the weather and the skill soaring may be considered the "King of Sports." of the pilot. Forward thrust comes from gliding Soaring bears the relationship to flying that sailing downward relative to the air the same as thrust bears to power boating. Soaring has made notable is developed in a power-off glide by a conven­ contributions to meteorology. For example, soar­ tional aircraft. Therefore, to gain or maintain ing pilots have probed thunderstorms and moun­ altitude, the soaring pilot must rely on upward tain waves with findings that have made flying motion of the air. safer for all pilots. However, soaring is primarily To a sailplane pilot, "lift" means the rate of recreational. climb he can achieve in an up-current, while "sink" A sailplane must have auxiliary power to be­ denotes his rate of descent in a downdraft or in come airborne such as a winch, a ground tow, or neutral air. "Zero sink" means that upward cur­ a tow by a powered aircraft. Once the sailcraft is rents are just strong enough to enable him to hold airborne and the tow cable released, performance altitude but not to climb. Sailplanes are highly 171 r efficient machines; a sink rate of a mere 2 feet per second. There is no point in trying to soar until second provides an airspeed of about 40 knots, and weather conditions favor vertical speeds greater a sink rate of 6 feet per second gives an airspeed than the minimum sink rate of the aircraft.
    [Show full text]
  • Chapter 7: Stability and Cloud Development
    Chapter 7: Stability and Cloud Development A parcel of air: Air inside can freely expand or contract, but heat and air molecules do not cross boundary. A rising parcel of air expands because the air pressure falls with elevation. This expansion causes cooling: (Adiabatic cooling) V V V-2v V v Wall Stationary Wall Moving Away An air molecule that strikes an expanding wall will lose speed on bouncing off wall (temperature of air will fall) V V+2v v Wall Moving Toward A falling parcel of air contracts because it encounters higher pressure. This falling air heats up because of compression. Stability: If rising air cools more quickly due to expansion than the environmental lapse rate, it will be denser than its surroundings and tend to fall back down. 10°C Definitions: Dry adiabatic rate = 1000 m 10°C Moist adiabatic rate : smaller than because of release of latent heat during 1000 m condensation (use 6° C per 1000m for average) Rising air that cools past dew point will not cool as quickly because of latent heat of condensation. Same compensating effect for saturated, falling air : evaporative cooling from water droplets evaporating reduces heating due to compression. Summary: Rising air expands & cools Falling air contracts & warms 10°C Unsaturated air cools as it rises at the dry adiabatic rate (~ ) 1000 m 6°C Saturated air cools at a lower rate, ~ , because condensing water vapor heats air. 1000 m This is moist adiabatic rate. Environmental lapse rate is rate that air temperature falls as you go up in altitude in the troposphere.
    [Show full text]
  • Chapter 8 Atmospheric Statics and Stability
    Chapter 8 Atmospheric Statics and Stability 1. The Hydrostatic Equation • HydroSTATIC – dw/dt = 0! • Represents the balance between the upward directed pressure gradient force and downward directed gravity. ρ = const within this slab dp A=1 dz Force balance p-dp ρ p g d z upward pressure gradient force = downward force by gravity • p=F/A. A=1 m2, so upward force on bottom of slab is p, downward force on top is p-dp, so net upward force is dp. • Weight due to gravity is F=mg=ρgdz • Force balance: dp/dz = -ρg 2. Geopotential • Like potential energy. It is the work done on a parcel of air (per unit mass, to raise that parcel from the ground to a height z. • dφ ≡ gdz, so • Geopotential height – used as vertical coordinate often in synoptic meteorology. ≡ φ( 2 • Z z)/go (where go is 9.81 m/s ). • Note: Since gravity decreases with height (only slightly in troposphere), geopotential height Z will be a little less than actual height z. 3. The Hypsometric Equation and Thickness • Combining the equation for geopotential height with the ρ hydrostatic equation and the equation of state p = Rd Tv, • Integrating and assuming a mean virtual temp (so it can be a constant and pulled outside the integral), we get the hypsometric equation: • For a given mean virtual temperature, this equation allows for calculation of the thickness of the layer between 2 given pressure levels. • For two given pressure levels, the thickness is lower when the virtual temperature is lower, (ie., denser air). • Since thickness is readily calculated from radiosonde measurements, it provides an excellent forecasting tool.
    [Show full text]
  • 3.2 the Forecast Icing Potential (Fip) Algorithm
    3.2 THE FORECAST ICING POTENTIAL (FIP) ALGORITHM Frank McDonough *, Ben C. Bernstein, Marcia K. Politovich, and Cory A. Wolff National Center for Atmospheric Research, Boulder, CO 1. Introduction The 70% threshold was chosen to allow for expected model moisture errors and to allow for In-flight icing is a serious hazard to the cold clouds to be found without a model forecast aviation community. It occurs when subfreezing of water saturation. The use of a combination of liquid cloud and/or precipitation droplets freeze to relative humidity with respect to both water and ice the exposed surfaces of an aircraft in flight. Icing may allow for the use of a higher threshold in conditions can occur on large scales or in small future versions of FIP. volumes where conditions may change quickly. Cloud base is found by working upward in the Because of the nature of icing conditions, the need same column until the first level with RH≥80% is for a forecast product with high spatial and found. Since the model boundary layer often has temporal resolution is apparent. RH>80%, even in cloud-free air, FIP begins its The FIP (Forecast Icing Potential) algorithm search for a cloud base at 1000ft (305m) AGL. was developed at the National Center for The threshold of 80% for cloud base identification Atmospheric Research under the Federal Aviation is used to also allow for model moisture errors and Administration’s Aviation Weather Research the expectation that cloud base is found at warmer Program. It uses 20-km resolution Rapid Update temperatures where RH and RHi are more Cycle (RUC) model output to determine the equivalent.
    [Show full text]
  • Atmospheric Stability Atmospheric Lapse Rate
    ATMOSPHERIC STABILITY ATMOSPHERIC LAPSE RATE The atmospheric lapse rate ( ) refers to the change of an atmospheric variable with a change of altitude, the variable being temperature unless specified otherwise (such as pressure, density or humidity). While usually applied to Earth's atmosphere, the concept of lapse rate can be extended to atmospheres (if any) that exist on other planets. Lapse rates are usually expressed as the amount of temperature change associated with a specified amount of altitude change, such as 9.8 °Kelvin (K) per kilometer, 0.0098 °K per meter or the equivalent 5.4 °F per 1000 feet. If the atmospheric air cools with increasing altitude, the lapse rate may be expressed as a negative number. If the air heats with increasing altitude, the lapse rate may be expressed as a positive number. Understanding of lapse rates is important in micro-scale air pollution dispersion analysis, as well as urban noise pollution modeling, forest fire-fighting and certain aviation applications. The lapse rate is most often denoted by the Greek capital letter Gamma ( or Γ ) but not always. For example, the U.S. Standard Atmosphere uses L to denote lapse rates. A few others use the Greek lower case letter gamma ( ). Types of lapse rates There are three types of lapse rates that are used to express the rate of temperature change with a change in altitude, namely the dry adiabatic lapse rate, the wet adiabatic lapse rate and the environmental lapse rate. Dry adiabatic lapse rate Since the atmospheric pressure decreases with altitude, the volume of an air parcel expands as it rises.
    [Show full text]
  • ESSENTIALS of METEOROLOGY (7Th Ed.) GLOSSARY
    ESSENTIALS OF METEOROLOGY (7th ed.) GLOSSARY Chapter 1 Aerosols Tiny suspended solid particles (dust, smoke, etc.) or liquid droplets that enter the atmosphere from either natural or human (anthropogenic) sources, such as the burning of fossil fuels. Sulfur-containing fossil fuels, such as coal, produce sulfate aerosols. Air density The ratio of the mass of a substance to the volume occupied by it. Air density is usually expressed as g/cm3 or kg/m3. Also See Density. Air pressure The pressure exerted by the mass of air above a given point, usually expressed in millibars (mb), inches of (atmospheric mercury (Hg) or in hectopascals (hPa). pressure) Atmosphere The envelope of gases that surround a planet and are held to it by the planet's gravitational attraction. The earth's atmosphere is mainly nitrogen and oxygen. Carbon dioxide (CO2) A colorless, odorless gas whose concentration is about 0.039 percent (390 ppm) in a volume of air near sea level. It is a selective absorber of infrared radiation and, consequently, it is important in the earth's atmospheric greenhouse effect. Solid CO2 is called dry ice. Climate The accumulation of daily and seasonal weather events over a long period of time. Front The transition zone between two distinct air masses. Hurricane A tropical cyclone having winds in excess of 64 knots (74 mi/hr). Ionosphere An electrified region of the upper atmosphere where fairly large concentrations of ions and free electrons exist. Lapse rate The rate at which an atmospheric variable (usually temperature) decreases with height. (See Environmental lapse rate.) Mesosphere The atmospheric layer between the stratosphere and the thermosphere.
    [Show full text]
  • VIIRS Cloud Base Height Algorithm Theoretical Basis Document (ATBD)
    Effective Date: April 22, 2011 Revision - GSFC JPSS CMO December 5, 2011 Released Joint Polar Satellite System (JPSS) Ground Project Code 474 474-00045 Joint Polar Satellite System (JPSS) VIIRS Cloud Base Height Algorithm Theoretical Basis Document (ATBD) For Public Release The information provided herein does not contain technical data as defined in the International Traffic in Arms Regulations (ITAR) 22 CFC 120.10. This document has been approved For Public Release to the NOAA Comprehensive Large Array-data Stewardship System (CLASS). Goddard Space Flight Center Greenbelt, Maryland National Aeronautics and Space Administration Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use. JPSS VIIRS Cloud Base Height ATBD 474-00045 Effective Date: April 22, 2011 Revision - This page intentionally left blank. Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use. JPSS VIIRS Cloud Base Height ATBD 474-00045 Effective Date: April 22, 2011 Revision - Joint Polar Satellite System (JPSS) VIIRS Cloud Base Height Algorithm Theoretical Basis Document (ATBD) JPSS Electronic Signature Page Prepared By: Neal Baker JPSS Data Products and Algorithms, Senior Engineering Advisor (Electronic Approvals available online at https://jpssmis.gsfc.nasa.gov/mainmenu_dsp.cfm ) Approved By: Heather Kilcoyne DPA Manager (Electronic Approvals available online at https://jpssmis.gsfc.nasa.gov/mainmenu_dsp.cfm ) Goddard Space Flight Center Greenbelt, Maryland i Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.
    [Show full text]
  • 1 Lecture Note Packet #4: Thunderstorms and Tornadoes I
    Lecture Note Packet #4: Thunderstorms and Tornadoes I. Introduction A. We have a tendency to think specifically of tornadoes when thinking of extreme weather associated with thunderstorms. With good reason....tornadoes are probably the most ³spectacular´ of all weather phenomena and we will focus our discussion of ³convective weather´ on these features and the extreme thunderstorms from which they originate (supercell thunderstorms). However, it is important to discuss the more general topic of thunderstorms since they are important to other types of extreme weather. For example, in addition to tornadoes, they can produce damaging wind and hail. Because of the very vigorous ascent or updrafts that are the important component of thunderstorms they are usually associated with very heavy rain and sometimes flooding. ³Convective´ precipitation (thunderstorms) are the predominant mode of precipitation in the tropics (ITCZ) where flooding is the most important weather issue. In addition, flooding in the United States is frequently associated with clusters of thunderstorms called mesoscale convective systems (MCSs). B. What is a thunderstorm? (Fig. 4.1) 1. These structures are of a smaller scale than the ECs that we have been discussing although when they occur in middle latitudes they are frequently part of a larger EC a. Thunderstorms are on the order of tens of kilometers whereas ECs are usually thousands of kilometers 2. They are designated as ³convective´ systems a. Convection is a mode of heat transfer from low levels to upper levels by the rising motion of warmer air parcels (and the sinking motion of cooler air parcels) b. This process occurs, and these storms develop, due to an ³unstable environment´ (much warmer at the surface than at upper levels) 1.
    [Show full text]
  • CHAPTER 3 Transport and Dispersion of Air Pollution
    CHAPTER 3 Transport and Dispersion of Air Pollution Lesson Goal Demonstrate an understanding of the meteorological factors that influence wind and turbulence, the relationship of air current stability, and the effect of each of these factors on air pollution transport and dispersion; understand the role of topography and its influence on air pollution, by successfully completing the review questions at the end of the chapter. Lesson Objectives 1. Describe the various methods of air pollution transport and dispersion. 2. Explain how dispersion modeling is used in Air Quality Management (AQM). 3. Identify the four major meteorological factors that affect pollution dispersion. 4. Identify three types of atmospheric stability. 5. Distinguish between two types of turbulence and indicate the cause of each. 6. Identify the four types of topographical features that commonly affect pollutant dispersion. Recommended Reading: Godish, Thad, “The Atmosphere,” “Atmospheric Pollutants,” “Dispersion,” and “Atmospheric Effects,” Air Quality, 3rd Edition, New York: Lewis, 1997, pp. 1-22, 23-70, 71-92, and 93-136. Transport and Dispersion of Air Pollution References Bowne, N.E., “Atmospheric Dispersion,” S. Calvert and H. Englund (Eds.), Handbook of Air Pollution Technology, New York: John Wiley & Sons, Inc., 1984, pp. 859-893. Briggs, G.A. Plume Rise, Washington, D.C.: AEC Critical Review Series, 1969. Byers, H.R., General Meteorology, New York: McGraw-Hill Publishers, 1956. Dobbins, R.A., Atmospheric Motion and Air Pollution, New York: John Wiley & Sons, 1979. Donn, W.L., Meteorology, New York: McGraw-Hill Publishers, 1975. Godish, Thad, Air Quality, New York: Academic Press, 1997, p. 72. Hewson, E. Wendell, “Meteorological Measurements,” A.C.
    [Show full text]
  • Severe Weather Forecasting Tip Sheet: WFO Louisville
    Severe Weather Forecasting Tip Sheet: WFO Louisville Vertical Wind Shear & SRH Tornadic Supercells 0-6 km bulk shear > 40 kts – supercells Unstable warm sector air mass, with well-defined warm and cold fronts (i.e., strong extratropical cyclone) 0-6 km bulk shear 20-35 kts – organized multicells Strong mid and upper-level jet observed to dive southward into upper-level shortwave trough, then 0-6 km bulk shear < 10-20 kts – disorganized multicells rapidly exit the trough and cross into the warm sector air mass. 0-8 km bulk shear > 52 kts – long-lived supercells Pronounced upper-level divergence occurs on the nose and exit region of the jet. 0-3 km bulk shear > 30-40 kts – bowing thunderstorms A low-level jet forms in response to upper-level jet, which increases northward flux of moisture. SRH Intense northwest-southwest upper-level flow/strong southerly low-level flow creates a wind profile which 0-3 km SRH > 150 m2 s-2 = updraft rotation becomes more likely 2 -2 is very conducive for supercell development. Storms often exhibit rapid development along cold front, 0-3 km SRH > 300-400 m s = rotating updrafts and supercell development likely dryline, or pre-frontal convergence axis, and then move east into warm sector. BOTH 2 -2 Most intense tornadic supercells often occur in close proximity to where upper-level jet intersects low- 0-6 km shear < 35 kts with 0-3 km SRH > 150 m s – brief rotation but not persistent level jet, although tornadic supercells can occur north and south of upper jet as well.
    [Show full text]
  • Fundamentals of Climate Change (PCC 587): Water Vapor
    Fundamentals of Climate Change (PCC 587): Water Vapor DARGAN M. W. FRIERSON UNIVERSITY OF WASHINGTON, DEPARTMENT OF ATMOSPHERIC SCIENCES DAY 2: 9/30/13 Water… Water is a remarkable molecule ¡ Water vapor ÷ Most important greenhouse gas ¡ Clouds ÷ Albedo effect & greenhouse effect ¡ Ice ÷ Albedo in polar latitudes ÷ Ice sheets affect sea level ¡ Ocean ÷ Circulation, heat capacity, etc Next topic: ¡ Phase changes of water (e.g., condensation, evaporation…) are equally fundamental for climate dynamics ÷ Phase change à heat released or lost (“latent heating”) Outline… Why water vapor content will increase with global warming ¡ Feedback on warming, not a forcing Effect of water vapor on current climate: ¡ Vertical temperature structure ¡ Horizontal temperature structure Along the way… The controversy about whether the upper troposphere has warmed in recent decades ¡ And why global warming would be a lot worse if it didn’t warm up there… Modeled temperature trends due to greenhouse gases Along the way… Why the tropopause will rise with global warming ¡ Three separate effects cause a rise in tropopause height: result is the sum of all three! Tropopause height rise in observations versus models Introduction to Moisture in the Atmosphere Saturation vapor pressure: ¡ Tells how much water vapor can exist in air before condensation occurs Exponential function of temperature ¡ Warmer air can hold much more moisture Saturation Vapor Pressure Winters are much drier than summers ¡ Simply because cold temperatures means small water vapor content
    [Show full text]
  • Sources of Intermodel Spread in the Lapse Rate and Water Vapor Feedbacks
    15 APRIL 2018 P O - C H E D L E Y E T A L . 3187 Sources of Intermodel Spread in the Lapse Rate and Water Vapor Feedbacks STEPHEN PO-CHEDLEY Lawrence Livermore National Laboratory, Livermore, California KYLE C. ARMOUR Department of Atmospheric Sciences, and School of Oceanography, University of Washington, Seattle, Washington CECILIA M. BITZ Department of Atmospheric Sciences, University of Washington, Seattle, Washington MARK D. ZELINKA AND BENJAMIN D. SANTER Lawrence Livermore National Laboratory, Livermore, California QIANG FU Department of Atmospheric Sciences, University of Washington, Seattle, Washington (Manuscript received 11 October 2017, in final form 29 December 2017) ABSTRACT Sources of intermodel differences in the global lapse rate (LR) and water vapor (WV) feedbacks are assessed using CO2 forcing simulations from 28 general circulation models. Tropical surface warming leads to significant warming and moistening in the tropical and extratropical upper troposphere, signifying a nonlocal, tropical influence on extratropical radiation and feedbacks. Model spread in the locally defined LR and WV feedbacks is pronounced in the Southern Ocean because of large-scale ocean upwelling, which reduces surface warming and decouples the surface from the tropospheric response. The magnitude of local extratropical feedbacks across models and over time is well characterized using the ratio of tropical to extratropical surface warming. It is shown that model differences in locally defined LR and WV feedbacks, particularly over the southern extra- tropics, drive model variability in the global feedbacks. The cross-model correlation between the global LR and WV feedbacks therefore does not arise from their covariation in the tropics, but rather from the pattern of warming exerting a common control on extratropical feedback responses.
    [Show full text]