Weed Risk Assessment for Ipomoea Biflora (L.) Pers. (Convolvulaceae) – Bell Vine

Total Page:16

File Type:pdf, Size:1020Kb

Weed Risk Assessment for Ipomoea Biflora (L.) Pers. (Convolvulaceae) – Bell Vine Weed Risk Assessment for Ipomoea United States biflora (L.) Pers. (Convolvulaceae) – Department of Bell vine Agriculture Animal and Plant Health Inspection Service February 18, 2015 Version 1 Ipomoea biflora (sources: left and bottom right: Bart Wursten; top right: Encyclopedia of Life (Encyclopedia of Life, 2014) Agency Contact: Plant Epidemiology and Risk Analysis Laboratory Center for Plant Health Science and Technology Plant Protection and Quarantine Animal and Plant Health Inspection Service United States Department of Agriculture 1730 Varsity Drive, Suite 300 Raleigh, NC 27606 Weed Risk Assessment for Ipomoea biflora Introduction Plant Protection and Quarantine (PPQ) regulates noxious weeds under the authority of the Plant Protection Act (7 U.S.C. § 7701-7786, 2000) and the Federal Seed Act (7 U.S.C. § 1581-1610, 1939). A noxious weed is defined as “any plant or plant product that can directly or indirectly injure or cause damage to crops (including nursery stock or plant products), livestock, poultry, or other interests of agriculture, irrigation, navigation, the natural resources of the United States, the public health, or the environment” (7 U.S.C. § 7701-7786, 2000). We use weed risk assessment (WRA)— specifically, the PPQ WRA model (Koop et al., 2012)—to evaluate the risk potential of plants, including those newly detected in the United States, those proposed for import, and those emerging as weeds elsewhere in the world. Because the PPQ WRA model is geographically and climatically neutral, it can be used to evaluate the baseline invasive/weed potential of any plant species for the entire United States or for any area within it. As part of this analysis, we use a stochastic simulation to evaluate how much the uncertainty associated with the analysis affects the model outcomes. We also use GIS overlays to evaluate those areas of the United States that may be suitable for the establishment of the plant. For more information on the PPQ WRA process, please refer to the document, Background information on the PPQ Weed Risk Assessment, which is available upon request. Ipomoea biflora (L.) Pers. – Bell vine Species Family: Convolvulaceae Information Synonyms: The taxonomy of this species may be unsettled; floras for Africa, Asia, and Malesia recognize two species; I. plebeia and I. sinensis. However, Chinese specimens called I. biflora are similar to what has been called I. plebeia in African and Malesian floras. The epithet biflora is well established in the Chinese literature and the authors describe it as a highly variable taxon (Fang and Staples, 1995). Aniseia biflora (L.) Choisy, A. calycina (Roxburgh) Choisy, Convolvulus biflorus L., C. hardwickii Spreng., C. plebeius (R. Br.) Spreng., C. ser Spreng., C. sinensis Desr., Ipomoea calycina Benth. Ex C.B. Clarke, I. hardwickii (Spreng.) Hemsl., I. plebeia R. Br., I. sinensis (Desr.) Choisy, I. timorensis Blume (Fang and Staples, 1995; The Plant List, 2013). Most sources for Africa and Australia used in this assessment refer to the synonym I. plebeia (Brisbane City Council, 2014; Graham, 2006; Hyde et al., 2014; NGRP, 2014; Sugar Research Australia, 2010). Common names: Bell vine (Sugar Research Australia, 2010), bellvine (Graham, 2006; NGRP, 2014). Botanical description: Ipomoea biflora is a twining or scandent annual herbaceous vine that grows 1 to 2 m tall. It is found in woodlands, grasslands, scrub, and ruderal habitats (Hyde et al., 2014); valleys, mountain slopes, and other dry habitats (Fang and Staples, 1995); and agricultural fields (Chivinge, 1988; Graham, 2006; Sugar Research Ver. 1 February 18, 2015 1 Weed Risk Assessment for Ipomoea biflora Australia, 2010). Initiation: APHIS received a market access request from South Africa for corn seeds for planting in the United States (South Africa DAFF, 2012). During the development of that commodity pest risk analysis, I. biflora was identified as a weed of potential concern to the United States. The PPQ Weeds Cross Functional Working Group decided to evaluate this species with a weed risk assessment. Foreign distribution: Ipomoea biflora is reported to be native to southern Africa and Asia, the Ryukyu Islands of Japan, and Australia (Fang and Staples, 1995; NGRP, 2014; Van Ooststroom and Hoogland, 1953). Its continent of origin is unclear. Ipomoea plebeia subsp. africana is reported as native to Africa, while subsp. plebeia is native to Australia and Malaysia (Hyde et al., 2014; Hyland et al., 2010); however, some sources describe the taxon I. biflora as native to all of these countries (Brisbane City Council, 2014; NGRP, 2014}). It is also known to occur in Papua New Guinea, and its nativity there is also unclear (Esso Highlands Limited, 2010). We found no evidence that it has been introduced elsewhere in the world. U.S. distribution and status: Ipomoea biflora is not known to occur as a weed or a cultivated plant in the United States or its territories (e.g., Kartesz, 2014; NGRP, 2014; NRCS, 2014). WRA area1: Entire United States, including territories. 1. Ipomoea biflora analysis Establishment/Spread Ipomoea biflora is an annual vine (Fang and Staples, 1995) that produces Potential viable seeds (DAFF, 2010; Johnson, 2006) and is a frequent seed contaminant of wheat and corn (DAFF, 2010; Emerald Grain, 2013). It inhabits several climate types and tolerates extreme precipitation (Fang and Staples, 1995; GBIF, 2014). Its score was reduced because it is not spread by wind, water, or birds or other animals, it is easily destroyed during cultivation, and its seedbank does not persist in agricultural sites (Graham, 2006). We had high uncertainty for this risk element due to a lack of information about the species’ life history. Risk score = 3 Uncertainty index = 0.24 Impact Potential In its current range, I. biflora is primarily a weed of cotton (Graham, 2006), wheat (Emerald Grain, 2013), sugar cane (Sugar Research Australia, 2010), and corn (Mashingaidze, 2004). It is a seed contaminant in Australia (DAFF, 2010; Emerald Grain, 2013). It can damage farm equipment (Graham, 2006) and its seeds are reportedly toxic to livestock (DAFF, 2010). Otherwise, we found no evidence that I. biflora negatively impacts natural systems or urban 1 “WRA area” is the area in relation to which the weed risk assessment is conducted [definition modified from that for “PRA area”] (IPPC, 2012). Ver. 1 February 18, 2015 2 Weed Risk Assessment for Ipomoea biflora and suburban areas. We had high uncertainty for this risk element due to a lack of information about its biology and ecology. Risk score = 2.1 Uncertainty index = 0.24 Geographic Potential Based on three climatic variables, we estimate that about 39 percent of the United States is suitable for the establishment of I. biflora (Fig. 1). This predicted distribution is based on the species’ known distribution elsewhere in the world and includes point-referenced localities and areas of occurrence. The map for I. biflora represents the joint distribution of Plant Hardiness Zones 7- 13, areas with nearly 0-100+ inches of annual precipitation, and the following Köppen-Geiger climate classes: tropical rainforest, tropical savanna, steppe, desert, Mediterranean, and humid subtropical. Our determination was based on georeferenced records from Africa, Asia, and Australia (GBIF, 2014), which were representative of reported occurrences in the literature. The area estimated as suitable in the United States likely represents a conservative estimate as it only uses three climatic variables. Other environmental variables, such as soil and habitat type, may further limit the areas in which this species is likely to establish. The adaptive potential of I. biflora may be high based on the broad range of environmental conditions it inhabits. These include grasslands, dry thickets, and areas with a pronounced dry season (Van Ooststroom and Hoogland, 1953); open forests, vine thickets, and monsoon forests (Hyland et al., 2010); mountain slopes, roadsides, (Fang and Staples, 1995), pastures, gardens, disturbed sites, and waste areas (Brisbane City Council, 2014). Additionally, it is a weed of dryland cropping areas (Osten et al., 2007). Entry Potential We found no evidence that I. biflora is present in the United States. This species does not appear to be cultivated. It is known to be a corn and wheat seed contaminant (DAFF, 2010; Emerald Grain, 2013), and this may be its only likely pathway for introduction into the United States. We had average uncertainty for this risk element. Risk score = 0.1 Uncertainty index = 0.15 Ver. 1 February 18, 2015 3 Weed Risk Assessment for Ipomoea biflora Figure 1. Predicted distribution of Ipomoea biflora in the United States. Map insets for Alaska, Hawaii, and Puerto Rico are not to scale. 2. Results and Conclusion Model Probabilities: P(Major Invader) = 10.9% P(Minor Invader) = 69.3% P(Non-Invader) = 19.8% Risk Result = Evaluate Further Secondary Screening = Evaluate Further Ver. 1 February 18, 2015 4 Weed Risk Assessment for Ipomoea biflora Figure 2. Ipomoea biflora risk score (black box) relative to the risk scores of species used to develop and validate the PPQ WRA model (other symbols). See Appendix A for the complete assessment. Figure 3. Model simulation results (N=5,000) for uncertainty around the risk score for Ipomoea biflora. The blue “+” symbol represents the medians of the simulated outcomes. The smallest box contains 50 percent of the outcomes, the second 95 percent, and the largest 99 percent. Ver. 1 February 18, 2015 5 Weed Risk Assessment for Ipomoea biflora 3. Discussion The result of the weed risk assessment for Ipomoea biflora is Evaluate Further, and the result of the secondary screening is also Evaluate Further (Fig. 2). Our conclusion was supported by the results of the uncertainty simulation (Fig. 3). Ipomoea biflora is a weed of agriculture in its known range and does not appear to have been introduced to areas outside of its native range. This lack of information about its behavior in new locations causes a high level of uncertainty about the risk of its introduction.
Recommended publications
  • The Evolution of Sexual Reproduction in Cuscuta (Convolvulaceae)
    Wilfrid Laurier University Scholars Commons @ Laurier Theses and Dissertations (Comprehensive) 2011 The Evolution of Sexual Reproduction in Cuscuta (Convolvulaceae) Michael Wright Wilfrid Laurier University Follow this and additional works at: https://scholars.wlu.ca/etd Part of the Plant Breeding and Genetics Commons Recommended Citation Wright, Michael, "The Evolution of Sexual Reproduction in Cuscuta (Convolvulaceae)" (2011). Theses and Dissertations (Comprehensive). 1039. https://scholars.wlu.ca/etd/1039 This Thesis is brought to you for free and open access by Scholars Commons @ Laurier. It has been accepted for inclusion in Theses and Dissertations (Comprehensive) by an authorized administrator of Scholars Commons @ Laurier. For more information, please contact [email protected]. NOTE TO USERS This reproduction is the best copy available. UMI Library and Archives Bibliotheque et 1*1 Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington OttawaONK1A0N4 OttawaONK1A0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-75396-5 Our file Notre reference ISBN: 978-0-494-75396-5 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, preter, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distribute and sell theses monde, a des fins commerciaies ou autres, sur worldwide, for commercial or non­ support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats.
    [Show full text]
  • Appendix Color Plates of Solanales Species
    Appendix Color Plates of Solanales Species The first half of the color plates (Plates 1–8) shows a selection of phytochemically prominent solanaceous species, the second half (Plates 9–16) a selection of convol- vulaceous counterparts. The scientific name of the species in bold (for authorities see text and tables) may be followed (in brackets) by a frequently used though invalid synonym and/or a common name if existent. The next information refers to the habitus, origin/natural distribution, and – if applicable – cultivation. If more than one photograph is shown for a certain species there will be explanations for each of them. Finally, section numbers of the phytochemical Chapters 3–8 are given, where the respective species are discussed. The individually combined occurrence of sec- ondary metabolites from different structural classes characterizes every species. However, it has to be remembered that a small number of citations does not neces- sarily indicate a poorer secondary metabolism in a respective species compared with others; this may just be due to less studies being carried out. Solanaceae Plate 1a Anthocercis littorea (yellow tailflower): erect or rarely sprawling shrub (to 3 m); W- and SW-Australia; Sects. 3.1 / 3.4 Plate 1b, c Atropa belladonna (deadly nightshade): erect herbaceous perennial plant (to 1.5 m); Europe to central Asia (naturalized: N-USA; cultivated as a medicinal plant); b fruiting twig; c flowers, unripe (green) and ripe (black) berries; Sects. 3.1 / 3.3.2 / 3.4 / 3.5 / 6.5.2 / 7.5.1 / 7.7.2 / 7.7.4.3 Plate 1d Brugmansia versicolor (angel’s trumpet): shrub or small tree (to 5 m); tropical parts of Ecuador west of the Andes (cultivated as an ornamental in tropical and subtropical regions); Sect.
    [Show full text]
  • Birds of Jagdishpur Reservoir, Nepal Forktail 24: 115-119 (PDF, 70
    Forktail 24 (2008) SHORT NOTES 115 König, C., Weick, F. and Becking, J.-H. (1999) Owls: a guide to the owls Warburton, T. (2006) Wonderful Philippines news. World Owl Trust of the world. Robertsbridge, East Sussex, U.K.: Pica Press. Newsletter 32: 3–5. Marshall, J. T. (1978) Systematics of smaller Asian night birds based Warburton, T. (2007) The Philippine Eagle Owls do it again. World on voice. Orn. Monogr. 24. Owl Trust Newsletter 35: 22. Taylor, B. (1998) Rails: a guide to the rails, crakes, gallinules and coots of the world. Robertsbridge, UK: Pica Press. D. N. S. Allen, 97 Sussex Way, London N7 6RU, U.K. N. J. Collar, BirdLife International, Wellbrook Court, Girton Road, Cambridge CB3 0NA, U.K. Email: [email protected] Birds of Jagdishpur Reservoir, Nepal HEM SAGAR BARAL Jagdishpur Reservoir is the largest reservoir in Nepal (at sites in Nepal and the use of such information for the 2.25 km2) and is considered to be among the most conservation, management and wise use of wetlands important wetland sites in the country (Bhandari 1998, (HMGN/MFSC 2003). Ornithological surveys and HMGN/MFSC 2002). In 2003, Jagdishpur was conservation awareness programmes for local designated a Ramsar site. Despite it being listed as a key communities have been recommended as high priority wetland, not much is known about its birds or other fauna. for the conservation of Jagdishpur (Baral and Inskipp The reservoir and its surrounds are believed to provide 2005). Following these recommendations, I carried out important habitat for resident, wintering and passage surveys in 2005–2006 to gather baseline information on migrant wetland birds.
    [Show full text]
  • Appendix 9.2 Plant Species Recorded Within the Assessment Area
    Appendix 9.2: Plant Species Recorded within the Assessment Area Agricultural Area Storm Water Fishponds Mudflat / Native/ Developed Distribution in Protection Village / Drain / Natural Modified and Coastal Scientific Name Growth Form Exotic to Area / Plantation Grassland Shrubland Woodland Marsh Mangrove Hong Kong (1) Status Orchard Recreational Watercourse Watercourse Mitigation Water Hong Kong Wasteland Dry Wet Pond Ponds Body Abrus precatorius climber: vine native common - + subshrubby Abutilon indicum native restricted - ++ herb Acacia auriculiformis tree exotic - - ++++ +++ + ++++ ++ +++ Acacia confusa tree exotic - - ++++ + +++ ++ ++ ++++ ++ ++++ Acanthus ilicifolius shrub native common - + ++++ Acronychia pedunculata tree native very common - ++ Adenosma glutinosum herb native very common - + + Adiantum capillus-veneris herb native common - + ++ ++ Adiantum flabellulatum herb native very common - + +++ +++ shrub or small Aegiceras corniculatum native common - +++ tree Aeschynomene indica shrubby herb native very common - + Ageratum conyzoides herb exotic common - ++ ++ ++ ++ ++ + Ageratum houstonianum herb exotic common - ++ + Aglaia odorata shrub exotic common - +++ + +++ + Aglaonema spp. herb - - - + + rare (listed under Forests and Ailanthus fordii (3) small tree native + Countryside Ordinance Cap. 96) Alangium chinense tree or shrub native common - ++ + ++ + +++ + Albizia lebbeck tree exotic - - +++ Alchornea trewioides shrub native common - + Aleurites moluccana tree exotic common - +++ ++ ++ ++ Allamanda cathartica climbing
    [Show full text]
  • Chloroform Extracts of Ipomoea Alba and Ipomoea Tricolor Seeds Show Strong In-Vitro Antibacterial, Antifungal, and Cytotoxic Activity SIMS K
    Research Horizons Day & Research Week April 6-13, 2018 Chloroform Extracts of Ipomoea alba and Ipomoea tricolor Seeds Show Strong In-vitro Antibacterial, Antifungal, and Cytotoxic Activity SIMS K. LAWSON, MARY N. DAVIS, CAROLYN BRAZELL – Biology Department WILLIAM N. SETZER – Mentor – Chemistry Department Overview Antibiotic and antifungal resistance is a growing concern. Novel anti-tumor compounds are continuously sought after. If a novel phytochemical can be discovered with high specificity for certain types of cancer cells, then this could be an invaluable aid to oncological medicine. Plant-based drugs (phyto-pharmaceuticals) have always made up a considerable portion of our known medicines. The search for these plant medicines often begins with anthropological/ ethnobotanical research, as was the case here. Figure 2. - Ancient Olmec tribes mixed the sap of I. alba with sap from the rubber tree to make their rubber balls extra “bouncy”. Their ancient ball games were played since 1300 B.C.. Often, the losers were sacrificed, and sometimes the ball was made from a human Methods skull wrapped in rubber. Figure 1.- Morning glory (Ipomoea spp.) seeds have long been the subject of folklore, myth, and speculation. Some varieties (I. tricolor and I. Cold extractions of the ground seeds of each Ipomoea violacea) contain lysergic acid derivatives, which are known to be species were made with chloroform. Seven bacteria and hallucinogenic, and are closely related chemically to the famous LSD molecule. The Mayans are known to have used morning glory seeds during three fungi were obtained and cultured for multiple certain religious rituals. generations. Then, minimum inhibitory concentrations Table 1.- Antibacterial (MIC, μg/mL), antifungal (MIC, μg/mL), (MIC’s) of the extracts were determined against the and cytotoxic (IC50, μg/mL) activities of Ipomoea CHCl3 seed bacteria and fungi using broth microdilution (BM) extracts.
    [Show full text]
  • Convolvulaceae1
    Photograph: Helen Owens © Department of Environment, Water and Natural Resources, Government of South Australia Department of All rights reserved Environment, Copyright of illustrations might reside with other institutions or Water and individuals. Please enquire for details. Natural Resources Contact: Dr Jürgen Kellermann Editor, Flora of South Australia (ed. 5) State Herbarium of South Australia PO Box 2732 Kent Town SA 5071 Australia email: [email protected] Flora of South Australia 5th Edition | Edited by Jürgen Kellermann CONVOLVULACEAE1 R.W. Johnson2 Annual or perennial herbs or shrubs, often with trailing or twining stems, or leafless parasites; leaves alternate, exstipulate. Inflorescence axillary, rarely terminal, cymose or reduced to a single flower; flowers regular, (4) 5 (6)-merous, bisexual; sepals free or rarely united, quincuncial; corolla sympetalous, funnel-shaped or campanulate, occasionally rotate or salver-shaped; stamens adnate to the base of the corolla, alternating with the corolla lobes, filaments usually flattened and dilated downwards; anthers 2-celled, dehiscing longitudinally; ovary superior, mostly 2-celled, occasionally with 1, 3 or 4 cells, subtended by a disk; ovules 2, rarely 1, in each cell; styles 1 or 2, stigmas variously shaped. Fruit capsular. About 58 genera and 1,650 species mainly tropical and subtropical; in Australia 20 genera, 1 endemic, with c. 160 species, 17 naturalised. The highly modified parasitic species of Cuscuta are sometimes placed in a separate family, the Cuscutaceae. 1. Yellowish leafless parasitic twiners ...................................................................................................................... 5. Cuscuta 1: Green leafy plants 2. Ovary distinctly 2-lobed; styles 2, inserted between the lobes of ovary (gynobasic style); leaves often kidney-shaped .............................................................................................................
    [Show full text]
  • Studies on Pollen Morphology of Ipomoea Species (Convolvulaceae)
    Research in Plant Biology, 1(5): 41-47, 2011 ISSN : 2231-5101 www.resplantbiol.com Regular Article Studies on pollen morphology of Ipomoea species (Convolvulaceae) Rajurkar A. V., Tidke J. A and G. V. Patil Laboratory of Reproductive Biology of Angiosperms, Department of Botany, Sant Gadge Baba Amravati University, Amravati 444602 (M.S.) India Corresponding author email: [email protected] , [email protected] Pollen morphology of four species of Ipomoea viz., Ipomoea fistulosa (Mart. ex Choisy ), I. palmata Forssk, I. quamoclit L. and I. triloba L. (Convolvulaceae) from Sant Gadge Baba Amravati University Campus have been examined by Light and Scanning Electron Microscope (SEM). Pollen grains are usually pantoporate, radially symmetrical, circular in outline, tectum echinate, circular aperture between the spine, suboblate-oblate spheroidal or spheroidal. Among the four species of Ipomoea maximum pollen size (97.39-100.86µm) across was found in I. quamoclit whereas, minimum pollen size (59.17- 65.75 µm) across was noted in I. palmata. The maximum spine length (8-14µm) was recorded in I. palmata, while it was minimum (4.99-7.33µm) in I. triloba. Considering pore size all four species of Ipomoea showed close similarities with minor differences. Sculpturing pattern was found to be uniform in all studied species of Ipomoea. Key words: Pollen morphology, Ipomoea , LM, SEM. The Convolvulaceae (Morning Glory Sengupta (1966) investigated the Family) is a beautiful family which is pollen morphology of nine Indian species of widely cultivated as ornamentals. About 55 Ipomoea . Nayar (1990) studied seven genera genera and 1930 species of the of Ipomoea based on light microscopy study.
    [Show full text]
  • Status and Diversity of Wetland Birds of Basavanahalli Lake and Hiremagaluru Lake, Chikmagaluru, Karnataka, India
    International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391 Status and Diversity of Wetland Birds of Basavanahalli Lake and Hiremagaluru Lake, Chikmagaluru, Karnataka, India Annpurneshwari .H1, Padmini .N2 Department of Zoology IDSG Government College, Chikkamagaluru -577102, Karnataka Abstract: Wetlands are the unique and most productive ecosystem of the world .They support a wide range of flora and fauna. The present study deals with the study of the Avifaunal diversity of wetlands and adjoining area of lake. In this survey two wetlands of Chikkamagaluru have been studied which include Basavanahalli Lake, and Hiremagaluru Lake . The survey was carried for the period of 14 months i.e. from October 2016 to November 2017. During the study period forty two species of birds, belonging to thirteen families were recorded .Which includes both local and migratory birds. Birds belonging to the family Ardeidae found to be dominated by the representation of 8 species, followed by Anatidae7 species, Scolopacidae 5 species, Phalacrocracidae, Threskiornithidae and Ralidae 3species each, Ciconiidae, Laridae, Jacanidae, Charadriidae and Alcedinidae 2 species each and Podicipedidae 1 species.The study also revealed that the study sites harbor many resident as well as migratory birds. Four species like Black headed ibis(Threskiornismelanocephalus),Black tailed God wit (Limosalimosa) , Painted Stork (Mycterialeucocephala) and River tern(Sterna aurantia ) were near threatened and have a protected status under the schedule IV of Indian Wild life Protection Act,1972. Keywords: Avifauna, Wetland birds, Chikkamagaluru, Diversity, Anthropogenic 1. Introduction in the mega diversity of its flora and fauna.
    [Show full text]
  • (L.) Lam. Commercial Clone 'CEMSA 78- 354' on Weeds
    Global Advanced Research Journal of Agricultural Science (ISSN: 2315-5094) Vol. 4(10) pp. 657-662, October, 2015. Available online http://garj.org/garjas/home Copyright © 2015 Global Advanced Research Journals Full Length Research Paper Scientific Communication Allelopathic influence of Ipomoea batatas (L.) Lam. commercial clone 'CEMSA 78- 354' on weeds 1Hernández, M. A., 2*Hernández R. P. 1Espinosa R.R. 3Guillen D.S. 1Cianna, M.I. 1Central University “Marta Abreu” of Las Villas (UCLV), Faculty of Agricultural Sciences, Camajuaní Road km 6 ½ Santa Clara.VC. Cuba. 54 830. 2Agrobiothenology Center. Fitozoo Group. Emiliano Zapata 10, Int. 3. 59430. Texcoco, Mexico State. 56220. 3 Superior School Studies Xalostoc, Cuautla. Mor. Autonomous University of Morelos, Street Nicolas, Bravo s/n, Industrial Park, Cuautla, Xalostoc, Ayala, Morelos, Mexico. 62740. Accepted 1 October, 2015 The allelopathic potential of extracts and residue of sweet potato (Ipomoea batatas L.) Lam. plant clone 'CEMSA 78-354' on weeds seeds germination was examined. Plant residues inhibited the weed emergence and weed seeds germination. The negative Response Index indicated that monocot weeds were less sensitive than dicot weeds. I. batatas plant parts extracts inhibited seed germination and stimulate radicle length of P. olerasea and A. spinosus . Many phytochemicals (fatty acids, triterpenes, steroids, alkaloids, quinones, phenols, tannins, flavonoids, saponins etc.) with allelochemical potential were detected in I. batatas plant. Keywords: Allopathic effect , sweet potato, extracts, residue, Portulaca oleracea , Amarathus spinosus. INTRODUCTION Ipomoea batatas is cultivated for food in > 100 countries L. and Amaranthus spinosus L. in tropical and subtropical (FAO, 2010) and is major crops in Cuba and developing countries (Blum et al., 2002, Rodríguez et al., 1985).
    [Show full text]
  • Field Bindweed (Convolvulus Arvensis): “All ” Tied Up
    Weed Technology Field bindweed (Convolvulus arvensis): “all ” www.cambridge.org/wet tied up Lynn M. Sosnoskie1 , Bradley D. Hanson2 and Lawrence E. Steckel3 1 2 Intriguing World of Weeds Assistant Professor, School of Integrative Plant Science, Cornell University, Geneva, NY USA; Cooperative Extension Specialist, Department of Plant Science, University of California – Davis, Davis, CA, USA and 3 Cite this article: Sosnoskie LM, Hanson BD, Professor, Department of Plant Sciences, University of Tennessee, Jackson, TN, USA Steckel LE (2020) Field bindweed (Convolvulus arvensis): “all tied up”. Weed Technol. 34: 916–921. doi: 10.1017/wet.2020.61 Received: 22 March 2020 Revised: 2 June 2020 But your snobbiness, unless you persistently root it out like the bindweed it is, sticks by you till your Accepted: 4 June 2020 grave. – George Orwell First published online: 16 July 2020 The real danger in a garden came from the bindweed. That moved underground, then surfaced and took hold. Associate Editor: Strangling plant after healthy plant. Killing them all, slowly. And for no apparent reason, except that it was Jason Bond, Mississippi State University nature. – Louise Penny Author for correspondence: Lynn M. Sosnoskie, Cornell University, 635 W. Introduction North Avenue, Geneva, NY 14456. (Email: [email protected]) Field bindweed (Convolvulus arvensis L.) is a perennial vine in the Convolvulaceae, or morning- glory family, which includes approximately 50 to 60 genera and more than 1,500 species (Preston 2012a; Stefanovic et al. 2003). The family is in the order Solanales and is characterized by alternate leaves (when present) and bisexual flowers that are 5-lobed, folded/pleated in the bud, and trumpet-shaped when emerged (Preston 2012a; Stefanovic et al.
    [Show full text]
  • Larvicide of Aedes Aegypti (Diptera: Culicidae) from Ipomoea Pes-Caprae (Solanales: Convolvulaceae) Musri Musman, Sofyatuddin Karina, Said Almukhsin
    AACL BIOFLUX Aquaculture, Aquarium, Conservation & Legislation International Journal of the Bioflux Society Larvicide of Aedes aegypti (Diptera: Culicidae) from Ipomoea pes-caprae (Solanales: Convolvulaceae) Musri Musman, Sofyatuddin Karina, Said Almukhsin Department of Marine Science, Marine and Fisheries Coordinatorate, Syiah Kuala University, Darussalam-Banda Aceh, Indonesia. Corresponding author: M. Musman, [email protected] Abstract. This research aimed to evaluate larvicidal candidate of the extracts of whole parts (roots, stems, leaves, flowers, and seeds) of Ipomoea pes-caprae (L.) R. Br. on Aedes aegypti (Linnaeus, 1762) larvae. The criteria applied to select larvicidal candidate were (1) the concentration of the extract solution must be ≤ 50 ppm, and (2) the larval mortality due to administration of the extract should be reached ≥ 75%. The I. pes-caprae parts were extracted with methanol and water solvents. Refer to the criteria, the methanol extract of the I. pes-caprae leaf was selected as the larvicidal candidate of the A. aegypti larvae. The 3rd instar of A. aegypti larvae was tested with five kinds of concentration of an aqueous solution of I. pes-caprae leaf extracts by completely random design with four replications. The methanol extract of I. pes-caprae leaf showed a very strong larvicide (LC50 was 12.60 ppm) of A. aegypti larvae. Key Words: larvae, Aedes aegypti, Ipomoea pes-caprae, instar, larvicidal candidate, methanol extract. Introduction. Dengue Hemorrhagic Fever (DHF) is a disease spread by the Aedes aegypti (Linnaeus, 1762) mosquito with a rapid rate of transmission and occurs in tropical regions, subtropical, and temperate in the whole world. DHF is one health problem in the world which the number of sufferers have been gradually increasing in quantity (Rao et al 2011).
    [Show full text]
  • High Risk, Widely Naturalized, Agricultural Weed, Tropical Vine, Seed Contaminant
    Family: Convolvulaceae Taxon: Ipomoea triloba Synonym: Ipomoea krugii Urb. Common Name: little bell three-lobed morning-glory Questionaire : current 20090513 Assessor: Chuck Chimera Designation: H(HPWRA) Status: Assessor Approved Data Entry Person: Chuck Chimera WRA Score 15 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? y=1, n=-1 103 Does the species have weedy races? y=1, n=-1 201 Species suited to tropical or subtropical climate(s) - If island is primarily wet habitat, then (0-low; 1-intermediate; 2- High substitute "wet tropical" for "tropical or subtropical" high) (See Appendix 2) 202 Quality of climate match data (0-low; 1-intermediate; 2- High high) (See Appendix 2) 203 Broad climate suitability (environmental versatility) y=1, n=0 n 204 Native or naturalized in regions with tropical or subtropical climates y=1, n=0 y 205 Does the species have a history of repeated introductions outside its natural range? y=-2, ?=-1, n=0 y 301 Naturalized beyond native range y = 1*multiplier (see y Appendix 2), n= question 205 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see Appendix 2) 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see y Appendix 2) 304 Environmental weed n=0, y = 2*multiplier (see Appendix 2) 305 Congeneric weed n=0, y = 1*multiplier (see y Appendix 2) 401 Produces spines, thorns or burrs y=1, n=0 n 402 Allelopathic y=1, n=0 n 403 Parasitic y=1, n=0 n 404 Unpalatable to grazing animals y=1, n=-1 405 Toxic to animals y=1, n=0 y 406 Host
    [Show full text]