A De Novo Complex Chromosome Rearrangement Associated with Multisystematic Abnormalities, a Case Report
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cytogenomic SNP Microarray - Fetal ARUP Test Code 2002366 Maternal Contamination Study Fetal Spec Fetal Cells
Patient Report |FINAL Client: Example Client ABC123 Patient: Patient, Example 123 Test Drive Salt Lake City, UT 84108 DOB 2/13/1987 UNITED STATES Gender: Female Patient Identifiers: 01234567890ABCD, 012345 Physician: Doctor, Example Visit Number (FIN): 01234567890ABCD Collection Date: 00/00/0000 00:00 Cytogenomic SNP Microarray - Fetal ARUP test code 2002366 Maternal Contamination Study Fetal Spec Fetal Cells Single fetal genotype present; no maternal cells present. Fetal and maternal samples were tested using STR markers to rule out maternal cell contamination. This result has been reviewed and approved by Maternal Specimen Yes Cytogenomic SNP Microarray - Fetal Abnormal * (Ref Interval: Normal) Test Performed: Cytogenomic SNP Microarray- Fetal (ARRAY FE) Specimen Type: Direct (uncultured) villi Indication for Testing: Patient with 46,XX,t(4;13)(p16.3;q12) (Quest: EN935475D) ----------------------------------------------------------------- ----- RESULT SUMMARY Abnormal Microarray Result (Male) Unbalanced Translocation Involving Chromosomes 4 and 13 Classification: Pathogenic 4p Terminal Deletion (Wolf-Hirschhorn syndrome) Copy number change: 4p16.3p16.2 loss Size: 5.1 Mb 13q Proximal Region Deletion Copy number change: 13q11q12.12 loss Size: 6.1 Mb ----------------------------------------------------------------- ----- RESULT DESCRIPTION This analysis showed a terminal deletion (1 copy present) involving chromosome 4 within 4p16.3p16.2 and a proximal interstitial deletion (1 copy present) involving chromosome 13 within 13q11q12.12. This -
Viewed Under 23 (B) Or 203 (C) fi M M Male Cko Mice, and Largely Unaffected Magni Cation; Scale Bars, 500 M (B) and 50 M (C)
BRIEF COMMUNICATION www.jasn.org Renal Fanconi Syndrome and Hypophosphatemic Rickets in the Absence of Xenotropic and Polytropic Retroviral Receptor in the Nephron Camille Ansermet,* Matthias B. Moor,* Gabriel Centeno,* Muriel Auberson,* † † ‡ Dorothy Zhang Hu, Roland Baron, Svetlana Nikolaeva,* Barbara Haenzi,* | Natalya Katanaeva,* Ivan Gautschi,* Vladimir Katanaev,*§ Samuel Rotman, Robert Koesters,¶ †† Laurent Schild,* Sylvain Pradervand,** Olivier Bonny,* and Dmitri Firsov* BRIEF COMMUNICATION *Department of Pharmacology and Toxicology and **Genomic Technologies Facility, University of Lausanne, Lausanne, Switzerland; †Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts; ‡Institute of Evolutionary Physiology and Biochemistry, St. Petersburg, Russia; §School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; |Services of Pathology and ††Nephrology, Department of Medicine, University Hospital of Lausanne, Lausanne, Switzerland; and ¶Université Pierre et Marie Curie, Paris, France ABSTRACT Tight control of extracellular and intracellular inorganic phosphate (Pi) levels is crit- leaves.4 Most recently, Legati et al. have ical to most biochemical and physiologic processes. Urinary Pi is freely filtered at the shown an association between genetic kidney glomerulus and is reabsorbed in the renal tubule by the action of the apical polymorphisms in Xpr1 and primary fa- sodium-dependent phosphate transporters, NaPi-IIa/NaPi-IIc/Pit2. However, the milial brain calcification disorder.5 How- molecular identity of the protein(s) participating in the basolateral Pi efflux remains ever, the role of XPR1 in the maintenance unknown. Evidence has suggested that xenotropic and polytropic retroviral recep- of Pi homeostasis remains unknown. Here, tor 1 (XPR1) might be involved in this process. Here, we show that conditional in- we addressed this issue in mice deficient for activation of Xpr1 in the renal tubule in mice resulted in impaired renal Pi Xpr1 in the nephron. -
CCDC109B (MCUB) (NM 017918) Human Untagged Clone Product Data
OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for SC327798 CCDC109B (MCUB) (NM_017918) Human Untagged Clone Product data: Product Type: Expression Plasmids Product Name: CCDC109B (MCUB) (NM_017918) Human Untagged Clone Tag: Tag Free Symbol: MCUB Synonyms: CCDC109B Vector: pCMV6-Entry (PS100001) E. coli Selection: Kanamycin (25 ug/mL) Cell Selection: Neomycin Fully Sequenced ORF: >OriGene SC327798 ORF sequence for NM_017918, the custom clone sequence may differ by one or more nucleotides ATGTTGTCAACAGTTGGTTCATTCCTTCAGGACCTACAAAATGAAGATAAGGGTATCAAAACTGCAGCCA TCTTCACAGCAGATGGCAACATGATTTCAGCTTCTACCTTGATGGATATTTTGCTAATGAATGATTTTAA ACTTGTCATTAATAAAATAGCATATGATGTGCAGTGTCCAAAGAGAGAAAAACCAAGTAATGAGCACACT GCTGAGATGGAACACATGAAATCCTTGGTTCACAGACTATTTACAATCTTGCATTTAGAAGAGTCTCAGA AAAAGAGAGAGCACCATTTACTGGAGAAAATTGACCACCTGAAGGAACAGCTGCAGCCCCTTGAACAGGT GAAAGCTGGAATAGAAGCTCATTCGGAAGCCAAAACCAGTGGACTCCTGTGGGCTGGATTGGCACTGCTG TCCATTCAGGGTGGGGCACTGGCCTGGCTCACGTGGTGGGTGTACTCCTGGGATATCATGGAGCCAGTTA CATACTTCATCACATTTGCAAATTCTATGGTCTTTTTTGCATACTTTATAGTCACTCGACAGGATTATAC TTACTCAGCTGTTAAGAGTAGGCAATTTCTTCAGTTCTTCCACAAGAAATCAAAGCAACAGCACTTTGAT GTGCAGCAATACAACAAGTTAAAAGAAGACCTTGCTAAGGCTAAAGAATCCCTGAAACAGGCGCGTCATT CTCTCTGTTTGCAAATGCAAGTAGAAGAACTCAATGAAAAGAATTAA Restriction Sites: SgfI-MluI ACCN: NM_017918 OTI Disclaimer: Our molecular clone sequence data has been matched to the reference identifier above as a point -
No Evidence of Association Between Complement Factor I Genetic Variant
European Journal of Human Genetics (2012) 20, 1–3 & 2012 Macmillan Publishers Limited All rights reserved 1018-4813/12 www.nature.com/ejhg LETTERS US-based sample of around 1200 cases with advanced AMD and No evidence of association 800 controls. The association signal extended over a region of about 175 kb, the most associated variant (Po10À7)beingtheSNP rs10033900 near the complement factor I (CFI) gene. Two replication between complement studies2,3 published also in this journal provided some additional support for an AMD susceptibility locus in this region. In the course factor I genetic variant of candidate gene studies of AMD, we had previously investigated SNPs spanning CFI including rs10033900 in a UK case–control rs10033900 and sample, which shows the expected associations with the well- established AMD-susceptibility loci CFH, ARMS2, CFB and C3.No age-related macular evidence of association with the CFI variants was observed. Following publication of the reports cited above we have typed rs10033900 degeneration in additional cases and controls in two independent samples from England and Scotland to investigate this further. Full details of the phenotyping criteria have been reported pre- viously.4 The English sample comprised of 859 cases with predomi- European Journal of Human Genetics (2012) 20, 1–2; nantly advanced AMD, either geographic atrophy (GA) or choroidal doi:10.1038/ejhg.2011.118; published online 12 October 2011 neovascularisation (CNV) and 423 examined controls. The Scottish sample consisted of 505 cases with either intermediate disease (age-related maculopathy, ARM) or advanced AMD, and 351 exam- In 2008, an association between age-related macular degeneration ined controls. -
Mutations in Diphosphoinositol- Pentakisphosphate Kinase PPIP5K2 Are Associated with Hearing Loss in Human and Mouse
RESEARCH ARTICLE Mutations in Diphosphoinositol- Pentakisphosphate Kinase PPIP5K2 are associated with hearing loss in human and mouse Rizwan Yousaf1, Chunfang Gu2, Zubair M. Ahmed3, Shaheen N. Khan4, Thomas B. Friedman5, Sheikh Riazuddin6, Stephen B. Shears2, Saima Riazuddin1* a1111111111 1 Laboratory of Molecular Genetics, Department of Otorhinolaryngology-Head & Neck Surgery, School of Medicine University of Maryland, Baltimore, MD, United States of America, 2 Signal Transduction Laboratory, a1111111111 National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, a1111111111 NC, United States of America, 3 Laboratory of Neurogenetics and Regenerative Medicine, Department of a1111111111 Otorhinolaryngology-Head & Neck Surgery, School of Medicine University of Maryland, Baltimore, MD, United a1111111111 States of America, 4 National Center for Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan, 5 Section on Human Genetics, Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States of America, 6 Shaheed Zulfiqar Ali Bhutto Medical University, Pakistan Institute of Medical Sciences, Islamabad, Pakistan * [email protected] OPEN ACCESS Citation: Yousaf R, Gu C, Ahmed ZM, Khan SN, Friedman TB, Riazuddin S, et al. (2018) Mutations Abstract in Diphosphoinositol-Pentakisphosphate Kinase PPIP5K2 are associated with hearing loss in Autosomal recessive nonsyndromic hearing loss is a genetically heterogeneous disorder. human and mouse. PLoS Genet 14(3): e1007297. https://doi.org/10.1371/journal.pgen.1007297 Here, we report a severe-to-profound sensorineural hearing loss locus, DFNB100 on chro- mosome 5q13.2-q23.2. Exome enrichment followed by massive parallel sequencing Editor: Karen B. Avraham, Tel Aviv University, ISRAEL revealed a c.2510G>A transition variant in PPIP5K2 that segregated with DFNB100-associ- ated hearing loss in two large apparently unrelated Pakistani families. -
Stelios Pavlidis3, Matthew Loza3, Fred Baribaud3, Anthony
Supplementary Data Th2 and non-Th2 molecular phenotypes of asthma using sputum transcriptomics in UBIOPRED Chih-Hsi Scott Kuo1.2, Stelios Pavlidis3, Matthew Loza3, Fred Baribaud3, Anthony Rowe3, Iaonnis Pandis2, Ana Sousa4, Julie Corfield5, Ratko Djukanovic6, Rene 7 7 8 2 1† Lutter , Peter J. Sterk , Charles Auffray , Yike Guo , Ian M. Adcock & Kian Fan 1†* # Chung on behalf of the U-BIOPRED consortium project team 1Airways Disease, National Heart & Lung Institute, Imperial College London, & Biomedical Research Unit, Biomedical Research Unit, Royal Brompton & Harefield NHS Trust, London, United Kingdom; 2Department of Computing & Data Science Institute, Imperial College London, United Kingdom; 3Janssen Research and Development, High Wycombe, Buckinghamshire, United Kingdom; 4Respiratory Therapeutic Unit, GSK, Stockley Park, United Kingdom; 5AstraZeneca R&D Molndal, Sweden and Areteva R&D, Nottingham, United Kingdom; 6Faculty of Medicine, Southampton University, Southampton, United Kingdom; 7Faculty of Medicine, University of Amsterdam, Amsterdam, Netherlands; 8European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, Université de Lyon, France. †Contributed equally #Consortium project team members are listed under Supplementary 1 Materials *To whom correspondence should be addressed: [email protected] 2 List of the U-BIOPRED Consortium project team members Uruj Hoda & Christos Rossios, Airways Disease, National Heart & Lung Institute, Imperial College London, UK & Biomedical Research Unit, Biomedical Research Unit, Royal -
Evidence for Differential Alternative Splicing in Blood of Young Boys With
Stamova et al. Molecular Autism 2013, 4:30 http://www.molecularautism.com/content/4/1/30 RESEARCH Open Access Evidence for differential alternative splicing in blood of young boys with autism spectrum disorders Boryana S Stamova1,2,5*, Yingfang Tian1,2,4, Christine W Nordahl1,3, Mark D Shen1,3, Sally Rogers1,3, David G Amaral1,3 and Frank R Sharp1,2 Abstract Background: Since RNA expression differences have been reported in autism spectrum disorder (ASD) for blood and brain, and differential alternative splicing (DAS) has been reported in ASD brains, we determined if there was DAS in blood mRNA of ASD subjects compared to typically developing (TD) controls, as well as in ASD subgroups related to cerebral volume. Methods: RNA from blood was processed on whole genome exon arrays for 2-4–year-old ASD and TD boys. An ANCOVA with age and batch as covariates was used to predict DAS for ALL ASD (n=30), ASD with normal total cerebral volumes (NTCV), and ASD with large total cerebral volumes (LTCV) compared to TD controls (n=20). Results: A total of 53 genes were predicted to have DAS for ALL ASD versus TD, 169 genes for ASD_NTCV versus TD, 1 gene for ASD_LTCV versus TD, and 27 genes for ASD_LTCV versus ASD_NTCV. These differences were significant at P <0.05 after false discovery rate corrections for multiple comparisons (FDR <5% false positives). A number of the genes predicted to have DAS in ASD are known to regulate DAS (SFPQ, SRPK1, SRSF11, SRSF2IP, FUS, LSM14A). In addition, a number of genes with predicted DAS are involved in pathways implicated in previous ASD studies, such as ROS monocyte/macrophage, Natural Killer Cell, mTOR, and NGF signaling. -
Primate Specific Retrotransposons, Svas, in the Evolution of Networks That Alter Brain Function
Title: Primate specific retrotransposons, SVAs, in the evolution of networks that alter brain function. Olga Vasieva1*, Sultan Cetiner1, Abigail Savage2, Gerald G. Schumann3, Vivien J Bubb2, John P Quinn2*, 1 Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, U.K 2 Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, The University of Liverpool, Liverpool L69 3BX, UK 3 Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, D-63225 Germany *. Corresponding author Olga Vasieva: Institute of Integrative Biology, Department of Comparative genomics, University of Liverpool, Liverpool, L69 7ZB, [email protected] ; Tel: (+44) 151 795 4456; FAX:(+44) 151 795 4406 John Quinn: Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, The University of Liverpool, Liverpool L69 3BX, UK, [email protected]; Tel: (+44) 151 794 5498. Key words: SVA, trans-mobilisation, behaviour, brain, evolution, psychiatric disorders 1 Abstract The hominid-specific non-LTR retrotransposon termed SINE–VNTR–Alu (SVA) is the youngest of the transposable elements in the human genome. The propagation of the most ancient SVA type A took place about 13.5 Myrs ago, and the youngest SVA types appeared in the human genome after the chimpanzee divergence. Functional enrichment analysis of genes associated with SVA insertions demonstrated their strong link to multiple ontological categories attributed to brain function and the disorders. SVA types that expanded their presence in the human genome at different stages of hominoid life history were also associated with progressively evolving behavioural features that indicated a potential impact of SVA propagation on a cognitive ability of a modern human. -
4P Duplications
4p Duplications rarechromo.org Sources 4p duplications The information A 4p duplication is a rare chromosome disorder in which in this leaflet some of the material in one of the body’s 46 chromosomes comes from the is duplicated. Like most other chromosome disorders, this medical is associated to a variable extent with birth defects, literature and developmental delay and learning difficulties. from Unique’s 38 Chromosomes come in different sizes, each with a short members with (p) and a long (q) arm. They are numbered from largest to 4p duplications, smallest according to their size, from number 1 to number 15 of them with 22, in addition to the sex chromosomes, X and Y. We a simple have two copies of each of the chromosomes (23 pairs), duplication of 4p one inherited from our father and one inherited from our that did not mother. People with a chromosome 4p duplication have a involve any other repeat of some of the material on the short arm of one of chromosome, their chromosomes 4. The other chromosome 4 is the who were usual size. 4p duplications are sometimes also called surveyed in Trisomy 4p. 2004/5. Unique is This leaflet explains some of the features that are the same extremely or similar between people with a duplication of 4p. grateful to the People with different breakpoints have different features, families who but those with a duplication that covers at least two thirds took part in the of the uppermost part of the short arm share certain core survey. features. References When chromosomes are examined, they are stained with a dye that gives a characteristic pattern of dark and light The text bands. -
Generating High Variability of B Chromosomes in Eyprepocnemis Plorans (Grasshopper)
Heredity 71 (1993) 352—362 Received 5 January 1993 Genetical Society of Great Britain Generating high variability of B chromosomes in Eyprepocnemis plorans (grasshopper) M. D. LOPEZ-LEON, J. CABRERO, M. C. PARDO, E. VISERAS, J. P. M. CAMACHO* & J. L. SANTOSI Departamento de Genética, Facu/tad de Ciencias, Un/versidad de Granada, E- 18071 Granada, Spa/n and tDepartamento de Genét/ca, Facultad de B/o/ogIa, Un/vers/dad Comp/utense de Madrid, E-28040 Madrid, Spa/n Twenty-eightprogeny analyses (PAs) performed on specimens of E. plorans collected from four natural Iberian populations have been informative about the transmission of rare B chromosome types or the de novo origin of some of them. At least ii rare B-types have been found in addition to the predominant ones: B1 in Daimuz, B2 in Jete and Salobreña, and B5 in Fuengirola. The presence in two controlled crosses of one embryo carrying a B-type which was absent in the parents suggests that these B variants (B20 and B )haveoriginated de novo. Eleven other PAs suggest that new B derivatives are recurrently arising in these populations. The most frequent B chromosome mutation was centromere misdivision that originated four different B-types (B2m1,B110,B210 and Bmjnj). Other rearrangements were pericentric inversions (B211, B212 and B213), inverse tandem fusion (B211), centric fusion (B11) and deletions (B2d1andB2d2).Thefour B derivatives produced by centromeric misdivision are significantly eliminated during sexual transmission, most probably owing to deficiencies in the control of chromosome movement by their hemicentromeres. Those derived from translocations showed Mendelian transmission but deletion B variants showed a tendency to elimination. -
Continuous Variation in Y-Chromosome Structure of Rumex Acetosa
Heredity 57 (1986) 247-254 The Genetical Society of Great Britain Received 16 December 1985 Continuous variation in Y-chromosome structure of Rumex acetosa A. S. Wilby and School of Biological Sciences, J. S. Parker Queen Mary College, Mile End Road, London El 4NS. The dioecious angiosperm Rumex acetosa has an XXIXY1Y2sex-chromosomesystem. Each V-chromosome is heterochromatic except for a minute terminal euchromatic pairing segment. The Vs are constant in size but have a variable centromere position. The centromeres can be located anywhere within the central 40 per cent of the chromosome but are excluded from the two distal 30 per cent regions. In a sample of 270 males from 18 different populations 68 distinct variants have been identified on the basis of V-morphology. All populations are highly polymorphic with a minimum of four variants in a sample of ten males. The origin and significance of this massive variability is considered in this paper. Increased mutation rate of the Ys may be implicated in maintenance of this variation. I NTRO DUCTI ON these "inert" Ys has been described (Vana, 1972) variation in their structure has been overlooked. Sex-determinationin animals is usually genic and Extensive heterochroinatic content is a charac- frequently associated with visibly-differentiated teristic of many Y- and W-chromosomes. Indeed, sex-chromosomes. Sex expression in plants, some have argued that the process of hetero- however, is usually more plastic, and is subject to chromatinisation itself was implicated in the initial environmental influences such as temperature and phase of sex-chromosome differentiation (Jones, photoperiod (Heslop-Harrison, 1957). -
ANALYSIS of CHROMOSOME 4 in DROSOPHZLA MELANOGASTER. 11: ETHYL METHANESULFONATE INDUCED Lethalsl’
ANALYSIS OF CHROMOSOME 4 IN DROSOPHZLA MELANOGASTER. 11: ETHYL METHANESULFONATE INDUCED LETHALSl’ BENJAMIN HOCHMAN Department of Zoology, The University of Tennessee, Knoxville, Tenn. 37916 Received October 30, 1970 OUTSIDE the realm of the prokaryotes, it may appear unlikely that a com- plete inventory of the genetic material contained in the individual vehicles of hereditary transmission, the chromosomes, can be obtained. The chromosomes of higher plants and animals are either too large or the methods required for such an analysis are lacking. However, an approach to the problem is possible with the smallest autosome (number 4) in Drosophila melanogaster. In this genetically best-known diploid organism appropriate methods are available and the size of chromosome 4 (0.2-0.3 p at oogonial metaphase) suggests that the number of loci might be a relatively small, workable figure. An attempt is being made to uncover all of the major loci on chromosome 4, i.e., those loci capable of mutating to either a recessive lethal, semilethal, sterile, or visible state. In the first paper of this series (HOCHMAN,GLOOR and GREEN 1964), we reported that a study of some 50 spontaneous and X-ray-induced lethals had revealed a minimum of 22 vital loci on the fourth chromosome. Subsequently, two brief communications (HOCHMAN1967a,b) noted that the use of chemical mutagens had substantially increased the number of lethal chro- mosomes recovered and raised the number of loci detected. This paper contains an account of approximately 100 chromosome 4 mutations induced by chemical means (primarily recessive lethals which occurred follow- ing treatments with ethyl methanesulfonate) .