And Abdominal-B in Drosqbhilu Melanogaster
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Generating High Variability of B Chromosomes in Eyprepocnemis Plorans (Grasshopper)
Heredity 71 (1993) 352—362 Received 5 January 1993 Genetical Society of Great Britain Generating high variability of B chromosomes in Eyprepocnemis plorans (grasshopper) M. D. LOPEZ-LEON, J. CABRERO, M. C. PARDO, E. VISERAS, J. P. M. CAMACHO* & J. L. SANTOSI Departamento de Genética, Facu/tad de Ciencias, Un/versidad de Granada, E- 18071 Granada, Spa/n and tDepartamento de Genét/ca, Facultad de B/o/ogIa, Un/vers/dad Comp/utense de Madrid, E-28040 Madrid, Spa/n Twenty-eightprogeny analyses (PAs) performed on specimens of E. plorans collected from four natural Iberian populations have been informative about the transmission of rare B chromosome types or the de novo origin of some of them. At least ii rare B-types have been found in addition to the predominant ones: B1 in Daimuz, B2 in Jete and Salobreña, and B5 in Fuengirola. The presence in two controlled crosses of one embryo carrying a B-type which was absent in the parents suggests that these B variants (B20 and B )haveoriginated de novo. Eleven other PAs suggest that new B derivatives are recurrently arising in these populations. The most frequent B chromosome mutation was centromere misdivision that originated four different B-types (B2m1,B110,B210 and Bmjnj). Other rearrangements were pericentric inversions (B211, B212 and B213), inverse tandem fusion (B211), centric fusion (B11) and deletions (B2d1andB2d2).Thefour B derivatives produced by centromeric misdivision are significantly eliminated during sexual transmission, most probably owing to deficiencies in the control of chromosome movement by their hemicentromeres. Those derived from translocations showed Mendelian transmission but deletion B variants showed a tendency to elimination. -
Continuous Variation in Y-Chromosome Structure of Rumex Acetosa
Heredity 57 (1986) 247-254 The Genetical Society of Great Britain Received 16 December 1985 Continuous variation in Y-chromosome structure of Rumex acetosa A. S. Wilby and School of Biological Sciences, J. S. Parker Queen Mary College, Mile End Road, London El 4NS. The dioecious angiosperm Rumex acetosa has an XXIXY1Y2sex-chromosomesystem. Each V-chromosome is heterochromatic except for a minute terminal euchromatic pairing segment. The Vs are constant in size but have a variable centromere position. The centromeres can be located anywhere within the central 40 per cent of the chromosome but are excluded from the two distal 30 per cent regions. In a sample of 270 males from 18 different populations 68 distinct variants have been identified on the basis of V-morphology. All populations are highly polymorphic with a minimum of four variants in a sample of ten males. The origin and significance of this massive variability is considered in this paper. Increased mutation rate of the Ys may be implicated in maintenance of this variation. I NTRO DUCTI ON these "inert" Ys has been described (Vana, 1972) variation in their structure has been overlooked. Sex-determinationin animals is usually genic and Extensive heterochroinatic content is a charac- frequently associated with visibly-differentiated teristic of many Y- and W-chromosomes. Indeed, sex-chromosomes. Sex expression in plants, some have argued that the process of hetero- however, is usually more plastic, and is subject to chromatinisation itself was implicated in the initial environmental influences such as temperature and phase of sex-chromosome differentiation (Jones, photoperiod (Heslop-Harrison, 1957). -
Transvection in 2012: Site-Specific Transgenes Reveal a Plethora of Trans-Regulatory Effects
COMMENTARY Transvection in 2012: Site-Specific Transgenes Reveal a Plethora of Trans-Regulatory Effects Judith A. Kassis1 Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892 In this commentary, Judith Kassis discusses Bateman et al., widespread in the Drosophila genome (Bateman et al. 2012; “Comparing Enhancer Action in cis and in trans” and Mellert Mellert and Truman 2012). and Truman “Transvection is Common Throughout the Dro- Both groups of researchers used the phi-C31 system to in- sophila Genome”, which are published in this issue of GENETICS. tegrate transgenes into specific genomic locations to look at the ability of one transgene to activate the expression of another, N Drosophila, homologous chromosomes are paired in so- greatly increasing our knowledge of trans-interactions and sug- Imatic cells (reviewed in McKee 2004), leading to the oppor- gesting many experiments for the future. However, beyond that, tunity for regulatory DNA on one chromosome to influence their approaches to studying transvection and the questions they the expression of a promoter located on the homologous addressed differ. Bateman et al. (2012) used recombination- chromosome (reviewed in Duncan 2002; Kennison and mediated cassette exchange (Bateman et al. 2006) to insert Southworth 2002). Such trans-regulatory interactions were a simple, defined enhancer, the GMR (which consists of five first reported by Ed Lewis (Lewis 1954) who found that binding sites for the eye transcriptional activator Glass) and allelic complementation between particular mutations within adefined promoter driving the expression of either GFP or the bithorax complex did not occur when the pairing of ho- mCherry into three different chromosomal insertion sites to ad- mologous chromosomes was disrupted. -
Gene Expression Changes Elicited by a Parasitic B Chromosome in the Grasshopper Eyprepocnemis Plorans Are Consistent with Its Phenotypic Effects
Gene expression changes elicited by a parasitic B chromosome in the grasshopper Eyprepocnemis plorans are consistent with its phenotypic effects Beatriz Navarro-Domínguez, María Martín-Peciña, Francisco J. Ruiz-Ruano, Josefa Cabrero, José María Corral, María Dolores López-León, et al. Chromosoma Biology of the Nucleus ISSN 0009-5915 Chromosoma DOI 10.1007/s00412-018-00689-y 1 23 Your article is protected by copyright and all rights are held exclusively by Springer- Verlag GmbH Germany, part of Springer Nature. This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Chromosoma https://doi.org/10.1007/s00412-018-00689-y ORIGINAL ARTICLE Gene expression changes elicited by a parasitic B chromosome in the grasshopper Eyprepocnemis plorans are consistent with its phenotypic effects Beatriz Navarro-Domínguez1,2 & María Martín-Peciña1 & Francisco J. Ruiz-Ruano1 & Josefa Cabrero1 & José María Corral3,4 & María Dolores López-León1 & Timothy F. Sharbel3,5 & Juan Pedro M. Camacho1 Received: 24 August 2018 /Revised: 20 December 2018 /Accepted: 21 December 2018 # Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract Parasitism evokes adaptive physiological changes in the host, many of which take place through gene expression changes. -
Multi-Scale Organization of the Drosophila Melanogaster Genome
G C A T T A C G G C A T genes Review Multi-Scale Organization of the Drosophila melanogaster Genome Samantha C. Peterson † , Kaylah B. Samuelson † and Stacey L. Hanlon * Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; [email protected] (S.C.P.); [email protected] (K.B.S.) * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: Interphase chromatin, despite its appearance, is a highly organized framework of loops and bends. Chromosomes are folded into topologically associating domains, or TADs, and each chromosome and its homolog occupy a distinct territory within the nucleus. In Drosophila, genome organization is exceptional because homologous chromosome pairing is in both germline and somatic tissues, which promote interhomolog interactions such as transvection that can affect gene expression in trans. In this review, we focus on what is known about genome organization in Drosophila and discuss it from TADs to territory. We start by examining intrachromosomal organization at the sub-chromosome level into TADs, followed by a comprehensive analysis of the known proteins that play a key role in TAD formation and boundary establishment. We then zoom out to examine interhomolog interactions such as pairing and transvection that are abundant in Drosophila but rare in other model systems. Finally, we discuss chromosome territories that form within the nucleus, resulting in a complete picture of the multi-scale organization of the Drosophila genome. Keywords: Drosophila; topologically associating domain; insulator; pairing; transvection; B chromo- some; cytogenetics Citation: Peterson, S.C.; Samuelson, K.B.; Hanlon, S.L. -
Supernumerary B Chromosomes of Aegilops Speltoides Undergo Precise Elimination in Roots Early in Embryo Development
ARTICLE https://doi.org/10.1038/s41467-020-16594-x OPEN Supernumerary B chromosomes of Aegilops speltoides undergo precise elimination in roots early in embryo development Alevtina Ruban 1,2,6, Thomas Schmutzer 1,3,6, Dan D. Wu1,4, Joerg Fuchs1, Anastassia Boudichevskaia 1,2, Myroslava Rubtsova1,5, Klaus Pistrick 1, Michael Melzer1, Axel Himmelbach1, Veit Schubert1, Uwe Scholz 1 & ✉ Andreas Houben 1 1234567890():,; Not necessarily all cells of an organism contain the same genome. Some eukaryotes exhibit dramatic differences between cells of different organs, resulting from programmed elimina- tion of chromosomes or their fragments. Here, we present a detailed analysis of programmed B chromosome elimination in plants. Using goatgrass Aegilops speltoides as a model, we demonstrate that the elimination of B chromosomes is a strictly controlled and highly efficient root-specific process. At the onset of embryo differentiation B chromosomes undergo elimination in proto-root cells. Independent of centromere activity, B chromosomes demonstrate nondisjunction of chromatids and lagging in anaphase, leading to micro- nucleation. Chromatin structure and DNA replication differ between micronuclei and primary nuclei and degradation of micronucleated DNA is the final step of B chromosome elimination. This process might allow root tissues to survive the detrimental expression, or over- expression of B chromosome-located root-specific genes with paralogs located on standard chromosomes. 1 Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland OT Gatersleben, Germany. 2 KWS SAAT SE & Co. KGaA, 37574 Einbeck, Germany. 3 Martin Luther University Halle-Wittenberg, Institute for Agricultural and Nutritional Sciences, 06099 Halle (Saale), Germany. 4 Triticeae Research Institute, Sichuan Agricultural University, 611130 Wenjiang, China. -
1 the Role of Cask in Neuronal Morphogenesis
The Role of CASK in Neuronal Morphogenesis and Brain Size in Drosophila: A Genetic Model of Human Intellectual Disability with Microcephaly Item Type text; Electronic Dissertation Authors Tello Vega, Judith Arane Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction, presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 29/09/2021 20:08:46 Link to Item http://hdl.handle.net/10150/630252 THE ROLE OF CASK IN NEURONAL MORPHOGENESIS AND BRAIN SIZE IN DROSOPHILA: A GENETIC MODEL OF HUMAN INTELLECTUAL DISABILITY WITH MICROCEPHALY by Judith Arane Tello Vega Copyright © Judith Arane Tello Vega 2018 A Dissertation Submitted to the Faculty of the GRADUATE INTERDISCIPLINARY PROGRAM IN NEUROSCIENCE In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2018 1 2 STATEMENT BY AUTHOR This dissertation has been submitted in partial fulfillment of the requirements for an advanced degree at the University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this dissertation are allowable without special permission, provided that an accurate acknowledgement of the source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his or her judgment the proposed use of the material is in the interests of scholarship. -
Interallelic Transcriptional Enhancement As an in Vivo Measure of Transvection in Drosophila Melanogaster
INVESTIGATION Interallelic Transcriptional Enhancement as an in Vivo Measure of Transvection in Drosophila melanogaster Geoffrey P. Noble,*,† Patrick J. Dolph,‡ and Surachai Supattapone*,†,1 *Department of Biochemistry and Cell Biology and †Department of Medicine, Geisel School of Medicine, and ‡Department of Biology, Dartmouth College, Hanover, New Hampshire 03755 ABSTRACT Transvection—pairing-dependent interallelic regulation resulting from enhancer action in KEYWORDS trans—occurs throughout the Drosophila melanogaster genome, likely as a result of the extensive somatic transvection homolog pairing seen in Dipteran species. Recent studies of transvection in Drosophila have demonstrated enhancer important qualitative differences between enhancer action in cis vs. in trans, as well as a modest synergistic somatic pairing effect of cis- and trans-acting enhancers on total tissue transcript levels at a given locus. In the present study, GAL4-UAS we identify a system in which cis- and trans-acting GAL4-UAS enhancer synergism has an unexpectedly large quantitative influence on gene expression, boosting total tissue transcript levels at least fourfold relative to those seen in the absence of transvection. We exploit this strong quantitative effect by using publicly available UAS-shRNA constructs from the TRiP library to assay candidate genes for transvection activity in vivo. The results of the present study, which demonstrate that in trans activation by simple UAS enhancers can have large quantitative effects on gene expression in Drosophila, have important new implications for experimental design utilizing the GAL4-UAS system. The nuclear genome is often pictured to function as a linear arrange- which there is widespread physical interaction between maternal and ment of nucleotides grouped into genes and regulatory elements paternal homologous chromosomes (McKee 2004; Metz 1916; Stevens operating more or less locally in cis . -
How Next-Generation Sequencing Has Aided Our Understanding of the Sequence Composition and Origin of B Chromosomes
G C A T T A C G G C A T genes Review How Next-Generation Sequencing Has Aided Our Understanding of the Sequence Composition and Origin of B Chromosomes Alevtina Ruban ID , Thomas Schmutzer, Uwe Scholz ID and Andreas Houben * ID Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben, 06466 Seeland, Germany; [email protected] (A.R.); [email protected] (T.S.); [email protected] (U.S.) * Correspondence: [email protected]; Tel.: +49-(0)-39482-5486 Received: 28 August 2017; Accepted: 24 October 2017; Published: 25 October 2017 Abstract: Accessory, supernumerary, or—most simply—B chromosomes, are found in many eukaryotic karyotypes. These small chromosomes do not follow the usual pattern of segregation, but rather are transmitted in a higher than expected frequency. As increasingly being demonstrated by next-generation sequencing (NGS), their structure comprises fragments of standard (A) chromosomes, although in some plant species, their sequence also includes contributions from organellar genomes. Transcriptomic analyses of various animal and plant species have revealed that, contrary to what used to be the common belief, some of the B chromosome DNA is protein-encoding. This review summarizes the progress in understanding B chromosome biology enabled by the application of next-generation sequencing technology and state-of-the-art bioinformatics. In particular, a contrast is drawn between a direct sequencing approach and a strategy based on a comparative genomics as alternative routes that can be taken towards the identification of B chromosome sequences. Keywords: B chromosome; supernumerary chromosome; evolution; next generation sequencing 1. Recent Discoveries Related to the Origin and Evolution of B Chromosomes The origin and evolution of the B chromosomes, which appear to make a non-essential contribution to the overall genome, have puzzled cytogeneticists for over a century. -
Rare Allelic Forms of PRDM9 Associated with Childhood Leukemogenesis
Rare allelic forms of PRDM9 associated with childhood leukemogenesis Julie Hussin1,2, Daniel Sinnett2,3, Ferran Casals2, Youssef Idaghdour2, Vanessa Bruat2, Virginie Saillour2, Jasmine Healy2, Jean-Christophe Grenier2, Thibault de Malliard2, Stephan Busche4, Jean- François Spinella2, Mathieu Larivière2, Greg Gibson5, Anna Andersson6, Linda Holmfeldt6, Jing Ma6, Lei Wei6, Jinghui Zhang7, Gregor Andelfinger2,3, James R. Downing6, Charles G. Mullighan6, Philip Awadalla2,3* 1Departement of Biochemistry, Faculty of Medicine, University of Montreal, Canada 2Ste-Justine Hospital Research Centre, Montreal, Canada 3Department of Pediatrics, Faculty of Medicine, University of Montreal, Canada 4Department of Human Genetics, McGill University, Montreal, Canada 5Center for Integrative Genomics, School of Biology, Georgia Institute of Technology, Atlanta, Georgia, USA 6Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA 7Department of Computational Biology and Bioinformatics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA. *corresponding author : [email protected] SUPPLEMENTARY INFORMATION SUPPLEMENTARY METHODS 2 SUPPLEMENTARY RESULTS 5 SUPPLEMENTARY TABLES 11 Table S1. Coverage and SNPs statistics in the ALL quartet. 11 Table S2. Number of maternal and paternal recombination events per chromosome. 12 Table S3. PRDM9 alleles in the ALL quartet and 12 ALL trios based on read data and re-sequencing. 13 Table S4. PRDM9 alleles in an additional 10 ALL trios with B-ALL children based on read data. 15 Table S5. PRDM9 alleles in 76 French-Canadian individuals. 16 Table S6. B-ALL molecular subtypes for the 24 patients included in this study. 17 Table S7. PRDM9 alleles in 50 children from SJDALL cohort based on read data. 18 Table S8: Most frequent translocations and fusion genes in ALL. -
Transvection Is Common Throughout the Drosophila Genome
INVESTIGATION Transvection Is Common Throughout the Drosophila Genome David J. Mellert1 and James W. Truman Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147 ABSTRACT Higher-order genome organization plays an important role in transcriptional regulation. In Drosophila, somatic pairing of homologous chromosomes can lead to transvection, by which the regulatory region of a gene can influence transcription in trans.We observe transvection between transgenes inserted at commonly used phiC31 integration sites in the Drosophila genome. When two transgenes that carry endogenous regulatory elements driving the expression of either LexA or GAL4 are inserted at the same integration site and paired, the enhancer of one transgene can drive or repress expression of the paired transgene. These transvection effects depend on compatibility between regulatory elements and are often restricted to a subset of cell types within a given expression pattern. We further show that activated UAS transgenes can also drive transcription in trans. We discuss the implication of these findings for (1) understanding the molecular mechanisms that underlie transvection and (2) the design of experiments that utilize site- specific integration. HOUGH much of transcriptional regulation is due to hypomorphic or loss-of-function alleles of a gene exhibit Tregulatory elements that act in cis, relatively near the pairing-dependent complementation. Because of the low transcriptional start site of a gene, long-range and trans frequency of finding such complementary mutations, work interactions can also affect gene regulation (reviewed in on understanding transvection has focused on test cases in- Henikoff and Comai 1998; Dekker 2008). To understand cluding, but not limited to, the yellow (Geyer et al. -
Functional Analysis of a New Dominant-Negative Allele of Miranda During CNS Development in Drosophila
Functional analysis of a new dominant-negative allele of miranda during CNS development in Drosophila Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf Vorgelegt von Chieko Takizawa aus Tokyo, Japan Düsseldorf, 2006 Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf Tag der mündlich Prüfung: 22. Mai 2006 Berichterstatter: Prof. Dr. A. Wodarz Prof. Dr. E. Knust 1 Introduction..................................................................................................... 1 1.1 Generation of cell diversity .............................................................................. 1 1.2 Development of the central nervous system in Drosophila ............................... 2 1.3 Asymmetric cell division of Drosophila neuroblasts......................................... 4 1.4 Proteins involved in the asymmetric cell division of neuroblasts....................... 5 1.4.1 Basally localized proteins .......................................................................... 6 1.4.2 Apically localized proteins......................................................................... 6 1.4.3 Other proteins involved in asymmetric cell division................................... 8 1.5 Control of daughter cell size asymmetry......................................................... 11 1.6 Asymmetric cell division in other systems: common features and differences. 11 1.6.1 Drosophila