Keratins As the Main Component for the Mechanical Integrity of Keratinocytes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Significant Soluble Keratin Fraction In
Journal of Cell Science 105, 433-444 (1993) 433 Printed in Great Britain © The Company of Biologists Limited 1993 A significant soluble keratin fraction in ‘simple’ epithelial cells Lack of an apparent phosphorylation and glycosylation role in keratin solubility Chih-Fong Chou*, Carrie L. Riopel, Lusijah S. Rott and M. Bishr Omary† Palo Alto Veterans Administration Medical Center and the Digestive Disease Center at Stanford University, School of Medicine, 3801 Miranda Avenue, GI 111, Palo Alto, CA 94304, USA *Author for reprint requests †Author for correspondence SUMMARY We studied the solubility of keratin polypeptides 8 and aments in vitro as determined by electron microscopy. 18 (K8/18), which are the predominant intermediate fil- Cross-linking of soluble K8/18 followed by immunopre- aments in the human colonic epithelial cell line HT29. cipitation resulted in dimeric and tetrameric forms, We find that asynchronously growing cells (G0/G1 stage based on migration in SDS-polyacrylamide gels. In of the cell cycle) have a substantial pool of soluble ker- addition, cross-linked and native soluble K8/18 showed atin that constitutes approx. 5% of total cellular ker- similar migration on nondenaturing gels and similar atin. This soluble keratin pool was observed after sedimentation after sucrose density gradient centrifu- immunoprecipitation of K8/18 from the cytosolic frac- gation. Our results indicate that simple epithelial ker- tion of cells disrupted using three detergent-free meth- atins are appreciably more soluble than previously rec- ods. Several other cell lines showed a similar significant ognized. The soluble keratin form is assembly competent soluble cytosolic K8/18 pool. -
Transgenic Cyclooxygenase-2 Overexpression Sensitizes Mouse Skin for Carcinogenesis
Transgenic cyclooxygenase-2 overexpression sensitizes mouse skin for carcinogenesis Karin Mu¨ ller-Decker*†, Gitta Neufang*, Irina Berger‡, Melanie Neumann*, Friedrich Marks*, and Gerhard Fu¨ rstenberger* *Research Program Tumor Cell Regulation, Deutsches Krebsforschungszentrum, and ‡Department of Pathology, Ruprecht-Karls-University, 69120 Heidelberg, Germany Edited by Philip Needleman, Pharmacia Corporation, St. Louis, MO, and approved July 29, 2002 (received for review May 30, 2002) Genetic and pharmacological evidence suggests that overexpres- there is a causal relationship between COX-2 overexpression sion of cyclooxygenase-2 (COX-2) is critical for epithelial carcino- and tumor development. Recently, we have shown that the genesis and provides a major target for cancer chemoprevention keratin 5 (K5) promoter-driven overexpression of COX-2 in by nonsteroidal antiinflammatory drugs. Transgenic mouse lines basal cells of interfollicular epidermis and the pilosebaceous unit with keratin 5 promoter-driven COX-2 overexpression in basal led to a preneoplastic skin phenotype in 4 of 4 high-expression epidermal cells exhibit a preneoplastic skin phenotype. As shown mouse lines (15). here, this phenotype depends on the level of COX-2 expression and To delineate COX-2 functions for carcinogenesis, we have COX-2-mediated prostaglandin accumulation. The transgenics did used the initiation–promotion model (2) for the induction of skin not develop skin tumors spontaneously but did so after a single tumors in wild-type (wt) NMRI mice and COX-2 transgenic application of an initiating dose of the carcinogen 7,12-dimethyl- mouse lines. This multistage model allows the analysis of the benz[a]anthracene (DMBA). Long-term treatment with the tumor carcinogenic process in terms of distinct stages, i.e., initiation by promoter phorbol 12-myristate 13-acetate, as required for tumor- application of a subcarcinogenic dose of a carcinogen such as igenesis in wild-type mice, was not necessary for transgenics. -
U·M·I University Microfilms International a Bell & Howell Information Company 300 North Zeeb Road
The functional role(s) of dual intermediate filament expression in tumor cell migration and invasion. Item Type text; Dissertation-Reproduction (electronic) Authors Chu, Yi-Wen. Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 02/10/2021 04:10:29 Link to Item http://hdl.handle.net/10150/186143 INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. -
ITRAQ-Based Quantitative Proteomic Analysis of Processed Euphorbia Lathyris L
Zhang et al. Proteome Science (2018) 16:8 https://doi.org/10.1186/s12953-018-0136-6 RESEARCH Open Access ITRAQ-based quantitative proteomic analysis of processed Euphorbia lathyris L. for reducing the intestinal toxicity Yu Zhang1, Yingzi Wang1*, Shaojing Li2*, Xiuting Zhang1, Wenhua Li1, Shengxiu Luo1, Zhenyang Sun1 and Ruijie Nie1 Abstract Background: Euphorbia lathyris L., a Traditional Chinese medicine (TCM), is commonly used for the treatment of hydropsy, ascites, constipation, amenorrhea, and scabies. Semen Euphorbiae Pulveratum, which is another type of Euphorbia lathyris that is commonly used in TCM practice and is obtained by removing the oil from the seed that is called paozhi, has been known to ease diarrhea. Whereas, the mechanisms of reducing intestinal toxicity have not been clearly investigated yet. Methods: In this study, the isobaric tags for relative and absolute quantitation (iTRAQ) in combination with the liquid chromatography-tandem mass spectrometry (LC-MS/MS) proteomic method was applied to investigate the effects of Euphorbia lathyris L. on the protein expression involved in intestinal metabolism, in order to illustrate the potential attenuated mechanism of Euphorbia lathyris L. processing. Differentially expressed proteins (DEPs) in the intestine after treated with Semen Euphorbiae (SE), Semen Euphorbiae Pulveratum (SEP) and Euphorbiae Factor 1 (EFL1) were identified. The bioinformatics analysis including GO analysis, pathway analysis, and network analysis were done to analyze the key metabolic pathways underlying the attenuation mechanism through protein network in diarrhea. Western blot were performed to validate selected protein and the related pathways. Results: A number of differentially expressed proteins that may be associated with intestinal inflammation were identified. -
Structures of the ß-Keratin Filaments and Keratin Intermediate Filaments in the Epidermal Appendages of Birds and Reptiles (Sauropsids)
G C A T T A C G G C A T genes Review Structures of the ß-Keratin Filaments and Keratin Intermediate Filaments in the Epidermal Appendages of Birds and Reptiles (Sauropsids) David A.D. Parry School of Fundamental Sciences, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand; [email protected]; Tel.: +64-6-9517620; Fax: +64-6-3557953 Abstract: The epidermal appendages of birds and reptiles (the sauropsids) include claws, scales, and feathers. Each has specialized physical properties that facilitate movement, thermal insulation, defence mechanisms, and/or the catching of prey. The mechanical attributes of each of these appendages originate from its fibril-matrix texture, where the two filamentous structures present, i.e., the corneous ß-proteins (CBP or ß-keratins) that form 3.4 nm diameter filaments and the α-fibrous molecules that form the 7–10 nm diameter keratin intermediate filaments (KIF), provide much of the required tensile properties. The matrix, which is composed of the terminal domains of the KIF molecules and the proteins of the epidermal differentiation complex (EDC) (and which include the terminal domains of the CBP), provides the appendages, with their ability to resist compression and torsion. Only by knowing the detailed structures of the individual components and the manner in which they interact with one another will a full understanding be gained of the physical properties of the tissues as a whole. Towards that end, newly-derived aspects of the detailed conformations of the two filamentous structures will be discussed and then placed in the context of former knowledge. -
The Correlation of Keratin Expression with In-Vitro Epithelial Cell Line Differentiation
The correlation of keratin expression with in-vitro epithelial cell line differentiation Deeqo Aden Thesis submitted to the University of London for Degree of Master of Philosophy (MPhil) Supervisors: Professor Ian. C. Mackenzie Professor Farida Fortune Centre for Clinical and Diagnostic Oral Science Barts and The London School of Medicine and Dentistry Queen Mary, University of London 2009 Contents Content pages ……………………………………………………………………......2 Abstract………………………………………………………………………….........6 Acknowledgements and Declaration……………………………………………...…7 List of Figures…………………………………………………………………………8 List of Tables………………………………………………………………………...12 Abbreviations….………………………………………………………………..…...14 Chapter 1: Literature review 16 1.1 Structure and function of the Oral Mucosa……………..…………….…..............17 1.2 Maintenance of the oral cavity...……………………………………….................20 1.2.1 Environmental Factors which damage the Oral Mucosa………. ….…………..21 1.3 Structure and function of the Oral Mucosa ………………...….……….………...21 1.3.1 Skin Barrier Formation………………………………………………….……...22 1.4 Comparison of Oral Mucosa and Skin…………………………………….……...24 1.5 Developmental and Experimental Models used in Oral mucosa and Skin...……..28 1.6 Keratinocytes…………………………………………………….….....................29 1.6.1 Desmosomes…………………………………………….…...............................29 1.6.2 Hemidesmosomes……………………………………….…...............................30 1.6.3 Tight Junctions………………………….……………….…...............................32 1.6.4 Gap Junctions………………………….……………….….................................32 -
Proteomic Expression Profile in Human Temporomandibular Joint
diagnostics Article Proteomic Expression Profile in Human Temporomandibular Joint Dysfunction Andrea Duarte Doetzer 1,*, Roberto Hirochi Herai 1 , Marília Afonso Rabelo Buzalaf 2 and Paula Cristina Trevilatto 1 1 Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80215-901, Brazil; [email protected] (R.H.H.); [email protected] (P.C.T.) 2 Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +55-41-991-864-747 Abstract: Temporomandibular joint dysfunction (TMD) is a multifactorial condition that impairs human’s health and quality of life. Its etiology is still a challenge due to its complex development and the great number of different conditions it comprises. One of the most common forms of TMD is anterior disc displacement without reduction (DDWoR) and other TMDs with distinct origins are condylar hyperplasia (CH) and mandibular dislocation (MD). Thus, the aim of this study is to identify the protein expression profile of synovial fluid and the temporomandibular joint disc of patients diagnosed with DDWoR, CH and MD. Synovial fluid and a fraction of the temporomandibular joint disc were collected from nine patients diagnosed with DDWoR (n = 3), CH (n = 4) and MD (n = 2). Samples were subjected to label-free nLC-MS/MS for proteomic data extraction, and then bioinformatics analysis were conducted for protein identification and functional annotation. The three Citation: Doetzer, A.D.; Herai, R.H.; TMD conditions showed different protein expression profiles, and novel proteins were identified Buzalaf, M.A.R.; Trevilatto, P.C. -
Jonas SG Silvander: Keratins in the Endocrine Pancreas
Jonas S.G. Silvander Keratins in the endocrine pancreas - Novel regulators of cellular processes in β-cells This Ph.D. thesis describes the role of keratins in the endocrine pancreas. It shows that keratins are maintaining normal insulin levels by involvement Jonas S.G. Silvander | Keratins 2018 in the endocrine pancreas| Jonas S.G. Silvander in β-cell mitochondrial ATP production and insulin vesicle morphology. On systemic level, keratins in β-cells regulate basal blood glucose levels, most Keratins in the endocrine pancreas likely in combination with insulin sensitive tissues. In addition, keratins are crucial for β-cell stress - Novel regulators of cellular processes in β-cells protection against chemically induced T1D in mice. These novel findings on insulin production and cell stress protection in β-cells, shed light on the potential role of keratins in diabetes susceptibility and progression. The author graduated from Ålands Lyceum, Marie- hamn, in 2007. He recieved his M.Sc. in Biomedical Imaging from Åbo Akademi University in May 2013. Since August 2013, he has been working as a Ph.D. student in Diana Toivola’s Epithelial Biology Labora- tory at Åbo Akademi University. 9 789521 236648 ISBN 978-952-12-3664-8 Keratins in the endocrine pancreas - Novel regulators of cellular processes in β-cells Jonas S.G. Silvander Cell biology Faculty of Science and Engineering Åbo Akademi University Turku, Finland 2018 The research projects were conducted at Cell biology, Faculty of Science and Engineering, Åbo Akademi University. Supervised by Diana Toivola, Ph.D. Cell biology Faculty of Science and Engineering Åbo Akademi University Finland Reviewed by Emilia Peuhu, Ph.D. -
Transient Activation of ß-Catenin Signaling in Cutaneous Keratinocytes Is Sufficient to Trigger the Active Growth Phase Of
Downloaded from genesdev.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press RESEARCH COMMUNICATION Transient activation cogen synthase kinase-3 (GSK-3; for review, see Peifer  and Polakis 2000). This complex promotes phosphoryla- of -catenin signaling tion of -catenin at a number of N-terminal serine and in cutaneous keratinocytes is threonine residues, and the phosphorylated -catenin is ubiquitinated and subsequently degraded by the protea- sufficient to trigger the active some. growth phase of the hair cycle Binding of Wnts to their cognate frizzled and low-den- sity lipoprotein receptor-related protein receptor com- in mice plexes on the cell surface leads to inhibition of GSK-3 activity and increased levels of free -catenin in the cell David Van Mater,1 Frank T. Kolligs,2,6 (Peifer and Polakis 2000). In cancers, inactivating muta- Andrzej A. Dlugosz,3,5,7 and Eric R. Fearon1,2,4,5,8 tions in the APC or axin proteins or activating mutations affecting N-terminal phosphorylation sites in -catenin 1Departments of Human Genetics, 2Internal Medicine, lead to stabilization of -catenin (Polakis 2000). Regard- 3Dermatology, and 4Pathology, and the 5Cancer Center, less of whether Wnt signals or mutational defects stabi- University of Michigan School of Medicine, lize -catenin, following its accumulation in the cell, Ann Arbor, Michigan 48109, USA -catenin can complex in the nucleus with T cell factor/ lymphoid enhancer factor (TCF/LEF) transcription regu- Wnts have key roles in many developmental processes, lators, leading to activation of TCF-regulated genes (a list including hair follicle growth and differentiation. Stabi- of candidate TCF target genes is provided at: http:// lization of -catenin is essential in the canonical Wnt www.stanford.edu/∼rnusse/wntwindow.html). -
Keratins Couple with the Nuclear Lamina and Regulate Proliferation in Colonic Epithelial Cells Carl-Gustaf A
bioRxiv preprint doi: https://doi.org/10.1101/2020.06.22.164467; this version posted June 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Keratins couple with the nuclear lamina and regulate proliferation in colonic epithelial cells Carl-Gustaf A. Stenvall1*, Joel H. Nyström1*, Ciarán Butler-Hallissey1,5, Stephen A. Adam2, Roland Foisner3, Karen M. Ridge2, Robert D. Goldman2, Diana M. Toivola1,4 1 Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland 2 Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA 3 Max Perutz Labs, Medical University of Vienna, Vienna Biocenter Campus (VBC), Vienna, Austria 4 Turku Center for Disease Modeling, Turku, Finland 5 Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland * indicates equal contribution Running Head: Colonocyte keratins couple to nuclear lamina Corresponding author: Diana M. Toivola Cell Biology/Biosciences, Faculty of Science and Engineering, Åbo Akademi University Tykistökatu 6A, FIN-20520 Turku, Finland Telephone: +358 2 2154092 E-mail: [email protected] Keywords: Keratins, lamin, intermediate filament, colon epithelial cells, LINC proteins, proliferation, pRb, YAP bioRxiv preprint doi: https://doi.org/10.1101/2020.06.22.164467; this version posted June 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. -
Regulation of Keratin Filament Network Dynamics
Regulation of keratin filament network dynamics Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der RWTH Aachen University zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation vorgelegt von Diplom Biologe Marcin Maciej Moch aus Dzierżoniów (früher Reichenbach, NS), Polen Berichter: Universitätsprofessor Dr. med. Rudolf E. Leube Universitätsprofessor Dr. phil. nat. Gabriele Pradel Tag der mündlichen Prüfung: 19. Juni 2015 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar. This work was performed at the Institute for Molecular and Cellular Anatomy at University Hospital RWTH Aachen by the mentorship of Prof. Dr. med. Rudolf E. Leube. It was exclusively performed by myself, unless otherwise stated in the text. 1. Reviewer: Univ.-Prof. Dr. med. Rudolf E. Leube 2. Reviewer: Univ.-Prof. Dr. phil. nat. Gabriele Pradel Ulm, 15.02.2015 2 Publications Publications Measuring the regulation of keratin filament network dynamics. Moch M, and Herberich G, Aach T, Leube RE, Windoffer R. 2013. Proc Natl Acad Sci U S A. 110:10664-10669. Intermediate filaments and the regulation of focal adhesion. Leube RE, Moch M, Windoffer R. 2015. Current Opinion in Cell Biology. 32:13–20. "Panta rhei": Perpetual cycling of the keratin cytoskeleton. Leube RE, Moch M, Kölsch A, Windoffer R. 2011. Bioarchitecture. 1:39-44. Intracellular motility of intermediate filaments. Leube RE, Moch M, Windoffer R. Under review in: The Cytoskeleton. Editors: Pollard T., Dutcher S., Goldman R. Cold Springer Harbor Laboratory Press, Cold Spring Harbor. Multidimensional monitoring of keratin filaments in cultured cells and in tissues. Schwarz N, and Moch M, Windoffer R, Leube RE. -
Proteomics in Forensic Analysis: Applications for Human Samples
applied sciences Review Proteomics in Forensic Analysis: Applications for Human Samples Van-An Duong 1,† , Jong-Moon Park 1,† , Hee-Joung Lim 2,* and Hookeun Lee 1,* 1 College of Pharmacy, Gachon University, Incheon 21936, Korea; [email protected] (V.-A.D.); [email protected] (J.-M.P.) 2 Forensic Science Center for Odor Fingerprint Analysis, Police Science Institute, Korean National Police University, Asan 31539, Korea * Correspondence: [email protected] (H.-J.L.); [email protected] (H.L.); Tel.: +82-41-968-2893 (H.-J.L.); +82-32-820-4927 (H.L.) † These authors contributed equally. Abstract: Proteomics, the large-scale study of all proteins of an organism or system, is a powerful tool for studying biological systems. It can provide a holistic view of the physiological and biochemical states of given samples through identification and quantification of large numbers of peptides and proteins. In forensic science, proteomics can be used as a confirmatory and orthogonal technique for well-built genomic analyses. Proteomics is highly valuable in cases where nucleic acids are absent or degraded, such as hair and bone samples. It can be used to identify body fluids, ethnic group, gender, individual, and estimate post-mortem interval using bone, muscle, and decomposition fluid samples. Compared to genomic analysis, proteomics can provide a better global picture of a sample. It has been used in forensic science for a wide range of sample types and applications. In this review, we briefly introduce proteomic methods, including sample preparation techniques, data acquisition using liquid chromatography-tandem mass spectrometry, and data analysis using database search, Citation: Duong, V.-A.; Park, J.-M.; spectral library search, and de novo sequencing.