Extrusion-Based 3D Printing and Characterization of Edible Materials

Total Page:16

File Type:pdf, Size:1020Kb

Extrusion-Based 3D Printing and Characterization of Edible Materials Extrusion-based 3D Printing and Characterization of Edible Materials by Chu Yin Huang A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Applied Science in Chemical Engineering Waterloo, Ontario, Canada, 2018 © Chu Yin Huang 2018 Author’s declaration I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Abstract 3D printing food offers the ability to customize shapes, texture, as well as nutritional content. In addition, it can automate the cooking process to save time and produce meals on-demand to minimize waste. One potential application is to 3D print food for those suffering from dysphagia, a condition that affects one’s ability to swallow. Texture modified food products for dysphagia often lose their shape and have limited visual appeal. 3D printing could provide shape to these texture modified food products and ultimately improve nutrient intake. One of the limitations that are currently preventing wider adaption of this technology is the lack of understanding of how food properties affect the 3D printing process and quality of the printed object. In this thesis, room temperature extrusion-based 3D printing was investigated using a desktop 3D printer with a syringe extrusion system. Two hydrocolloids, modified starch and xanthan gum, were used as model material to study room temperature extrusion-based 3D printing. The relationship between the 3D printer settings and the extrusion process variables, extrusion rate and nozzle speed, was obtained by investigating the machine command (G-code). The nozzle speed could be controlled by the extrusion multiplier while the extrusion rate could be controlled by the stepper motor speed. In addition, extrusion tests showed that the syringe extrusion system displayed a lag time around 2 to 5 minutes before stable extrusion rate was reached. The extrusion lag time increased with increased material yield stresses and decreased with increased syringe motor speed. Xanthan gum paste, modified starch pastes, and puréed carrot were selected as model inks. Oscillatory rheology measurements including strain and frequency sweep were conducted to study the range of properties suitable for 3D printing. The range of yield stress suitable for extrusion was between 60-730 Pa and around 0.1-0.2 for the loss tangent (tan δ). The printable range of complex modulus (G*) was from 320 to 1200 Pa. Furthermore, data from the frequency sweep of xanthan gum and modified starch pastes was fitted to power law models and compared to published data of foods to assess their potential suitability as food inks for 3D printing. Puréed carrot had higher G* compared to xanthan gum and modified starch pastes but had lower elasticity. Puréed carrot was suitable for 3D printing because of its stiffness and low elasticity. In addition, food texture measurements based on the methods described in the International Dysphagia Diet Standardisation Initiative (IDDSI) were also conducted. Printable inks were able to retain its shape on a fork without dripping through the prongs and slide off a spoon with minimal residue. Two printed objects were considered, a line and a cylinder. The line printing was conducted to find the optimal settings of volumetric extrusion rate, nozzle speed, and layer height. The cylinder printing was iii conducted to assess the effects of ink rheology and infill levels, the fraction of the interior of the object to be filled with material when printed, on maximum build height. Continuous lines and sharp angles were able to be 3D printed when the line diameter was 130% of the nozzle diameter. Slightly thicker lines ensure proper layer adhesion. The layer height of the printed line, determined from the aspect ratio (height over width), ranged from 50% to 80% of the nozzle diameter. Lower aspect ratio indicated spreading of the ink. The cylinder printing experiments indicated that an ink with storage modulus (G’) around 300 Pa produced cylinder up to 20 mm height before collapse, while an ink with G’ around 900 Pa produced a cylinder up to twice the height. Increasing infill levels from 0 to 50% provided additional internal support to the structure but subjected the object to more stress due to nozzle movement. The work presented in this thesis generated information on how rheological characteristics affect the food’s suitability for room temperature extrusion-based 3D printing as well as the quality of the printed object. The relationships between the 3D printer, slicer setting, and G-code were investigated to understand how extrusion rates and nozzle speeds can be controlled for 3D printing paste type inks. Food texture measurements based on the methods described in the International Dysphagia Diet Standardisation Initiative (IDDSI) were conducted with fork and spoon to assess the ink’s consistency and adhesiveness. Rheological characterization of the inks provided upper and lower limit of a printable ink. Power law models were used to analyze the rheology data and the models parameters of the inks were compared to published data of foods to assess their potential suitability as food inks for 3D printing. iv Acknowledgements I would like to express my earnest gratitude to my supervisor Dr. Christine Moresoli for her support, mentorship, and providing the opportunities to help me develop into a better researcher. Thanks to my fellow lab members Huayu Niu, Joseph Khouri, Nikole Lyn, Omar Mustafa Al-Kubaisi, and Rasool Nasseri, for their advice, valuable discussions, and friendship. I would like to thank Madhu Sharma and Dr. Lisa Duizer at University of Guelph for conducting the oscillatory rheology experiments. Thanks to Andrew Finkle and Charles Mire at Structur3D for their technical advice regarding the 3D printer and extruder. I would like to express my earnest gratitude to my readers Dr. Evelyn Yim and Dr. Boxin Zhao for their time to review my thesis. I am grateful to the University of Waterloo and the Natural Sciences and Engineering Research Council of Canada for their financial support in scholarships and grants. Last but not least, I would like to thank my parents for their unending love and support. Their decision to move to Canada offered me the opportunities to expand my horizons and become the person I am today. v Table of Contents Author’s declaration ...................................................................................................................................... ii Abstract ........................................................................................................................................................ iii Acknowledgements ....................................................................................................................................... v List of Tables ............................................................................................................................................... ix List of Figures ............................................................................................................................................... x List of Abbreviations .................................................................................................................................. xii List of Symbols .......................................................................................................................................... xiii Chapter 1. Research motivation and objective ....................................................................................... 1 1.1. Research motivation ...................................................................................................................... 1 1.2. Project Objectives ......................................................................................................................... 2 1.3. Thesis Structure ............................................................................................................................ 2 Chapter 2. Literature review ................................................................................................................... 3 2.1. 3D Printer and extruder set-up ...................................................................................................... 3 2.1.1. 3D printer configuration ........................................................................................................ 3 2.1.2. Extruder ................................................................................................................................. 5 2.1.3. Ink extrusion conditions ........................................................................................................ 6 2.2. Food Hydrocolloids ...................................................................................................................... 7 2.2.1. Xanthan gum ......................................................................................................................... 7 2.2.2. Starch .................................................................................................................................... 8 2.3. Viscosity and viscoelasticity ....................................................................................................... 10 2.3.1. Steady shear viscosity ........................................................................................................
Recommended publications
  • State of the Art in the Use of Bioceramics to Elaborate 3D
    RESEARCH PAPER RESEARCH State of the art in the use of... INTERNATIONAL JOURNAL OF ADVANCES IN MEDICAL BIOTECHNOLOGY State of the art in the use of bioceramics to elaborate 3D structures using robocasting Juliana Kelmy Macário Barboza Daguano1,2*; Claudinei dos Santos3; Manuel Fellipe Rodrigues Pais Alves4; Jorge Vicente Lopes da Silva2; Marina Trevelin Souza5; Maria Helena Figueira Vaz Fernandes6 *Corresponding author: E-mail address:[email protected] Abstract: Robocasting, also known as Direct Ink Writing, is an Additive Manufacturing (AM) technique based on the direct extrusion of colloidal systems consisting of computer-controlled layer-by-layer deposition of a highly concentrated suspension (ceramic paste) through a nozzle into which this suspension is extruded. This paper presents an overview of the contributions and challenges in developing three-dimensional (3D) ceramic biomaterials by this printing method. State-of-art in different bioceramics as Alumina, Zirconia, Calcium Phosphates, Glass/Glass-ceramics, and composites is presented and discussed regarding their applications and biological behavior, in a survey comprising from the production of customized dental prosthesis to biofabricating 3D human tissues. Although robocasting represents a disruption in manufacturing porous structures, such as scaffolds for Tissue Engineering (TE), many drawbacks still remain to overcome and although widely disseminated this technique is far from allowing the obtainment of dense parts. Thus, strategies for manufacturing densified bioceramics are presented aiming at expanding the possibilities of this AM technique. The advantages and disadvantages and also future perspectives of applying robocasting in bioceramic processing are also explored. Keywords: Additive Manufacturing (AM); Direct Ink Writing (DIW); Robocasting; Bioceramics; Challenges; Perspectives.
    [Show full text]
  • Applied Catalysis and Chemical Engineering April 08-10, 2019
    ACC - 2019 International Conference on Applied Catalysis and Chemical Engineering April 08-10, 2019 Venue Crowne Plaza by Deira Salahuddin Rd-Dubai United Arab Emirates Publishing Partner DAY 1 MONDAY, April 08, 2019 Keynote Presentation Towards an Industrial Production of Hydrogen Through Catalytic Autothermal POX/Dry Reforming of Methane Jnicolas Abatzoglou *, Frank Dega and Mostafa Chamoumi Université de Sherbrooke, Sherbrooke, Canada Abstract The diversification of energy sources, especially using non-fossil resources, is an efficient way to contribute to the solution of both environmental and socio-political issues. Hydrogen produced from renewable sources, such as biomass, appears as one of the potential future energy and raw material vectors. Currently, H 2 is mainly produced through natural gas and biogas catalytic steam reforming. This work belongs to a larger endeavour aimed at developing a new family of spinel-based catalysts. More specifically, this study targets the optimization of hydrogen production through a POX/Dry reforming of methane, operated close to the autothermal regime. The used patent-pending catalyst is a spinellized nickel formulation prepared from an ilmenite- derived negative value upgraded slag oxide (UGSO) coming from a TiO2 slag production unit operated by Rio Tinto Iron & Titanium, Quebec, Canada. The initial tests have been done in a tubular fixed bed reactor at 800-850°C, m cat = 0,3g, atmospheric pressure, space velocity between 4000 and 4600 ml STP /h/g cat and molar ratio of CH4 /CO2 = 3. The experiments revealed that CH4 /O2 = 2 molar ratio is the optimum condition, at 850°C. At these conditions, the conversion of CH 4 and CO reached 99% and 65% respectively while the selectivity of H 2 and CO was 104% and 79% respectively.
    [Show full text]
  • Micro-Fabrication of Ceramics: Additive Manufacturing and Conventional Technologies
    Journal of Advanced Ceramics 2021, 10(1): 1–27 ISSN 2226-4108 https://doi.org/10.1007/s40145-020-0422-5 CN 10-1154/TQ Review Micro-fabrication of ceramics: Additive manufacturing and conventional technologies Hany HASSANINa,*, Khamis ESSAb, Amr ELSHAERc, Mohamed IMBABYd,e, Heba H. EL-MONGYd,f, Tamer A. EL-SAYEDd,f aSchool of Engineering, Canterbury Christ Church University, Canterbury, CT1 1QU, UK bUniversity of Birmingham, Edgbaston, B15 2TT, UK cKingston University London, Penrhyn Road, Kingston Upon Thames, Surrey, KT1 2EE, UK dDepartment of Mechanical Design, Faculty of Engineering, Mataria, Helwan University, P. O. Box. 11718, Cairo, Egypt eJubail University College, Mechanical Engineering, Kingdom of Saudi Arabia fCenter for Applied Dynamics Research (CADR), School of Engineering, University of Aberdeen, Aberdeen, AB24 3UE, UK Received: June 7, 2020; Revised: August 31, 2020; Accepted: September 9, 2020 © The Author(s) 2020. Abstract: Ceramic materials are increasingly used in micro-electro-mechanical systems (MEMS) as they offer many advantages such as high-temperature resistance, high wear resistance, low density, and favourable mechanical and chemical properties at elevated temperature. However, with the emerging of additive manufacturing, the use of ceramics for functional and structural MEMS raises new opportunities and challenges. This paper provides an extensive review of the manufacturing processes used for ceramic-based MEMS, including additive and conventional manufacturing technologies. The review covers the micro-fabrication techniques of ceramics with the focus on their operating principles, main features, and processed materials. Challenges that need to be addressed in applying additive technologies in MEMS include ceramic printing on wafers, post-processing at the micro-level, resolution, and quality control.
    [Show full text]
  • C12) United States Patent (10) Patent No.: US 7,306,828 B2 Barrera Et Al
    111111 1111111111111111111111111111111111111111111111111111111111111 US007306828B2 c12) United States Patent (10) Patent No.: US 7,306,828 B2 Barrera et al. (45) Date of Patent: Dec. 11, 2007 (54) FABRICATION OF REINFORCED 6,976,532 B2 * 12/2005 Zhan eta!. ................. 165/185 COMPOSITE MATERIAL COMPRISING 2004/0150140 A1 8/2004 Zhan et a!. CARBON NANOTUBES, FULLERENES, AND 2004/0265489 A1 * 12/2004 Dubin ........................ 427/212 VAPOR-GROWN CARBON FIBERS FOR 2005/0181209 A1 * 8/2005 Karandikar ................. 428/408 THERMAL BARRIER MATERIALS, OTHER PUBLICATIONS STRUCTURAL CERAMICS, AND MULTIFUNCTIONAL NANOCOMPOSITE Nakano et al., "Fabrication and Characterization of Three-Dimen­ CERAMICS sional Carbon Fiber Reinforced Silicon Carbide and Silicon Nitride Composites," J. Am. Ceram. Soc., 78(10), 2811-2814 (1995). (75) Inventors: Enrique V. Barrera, Houston, TX Guo et a!., "Carbon fibre-reinforced silicon nitride composite," J. (US); Leonard Lee Yowell, Jr., Mater. Sci. 17, 3611-3616 (1982). Grenet eta!., "Carbon Fibre-Reinforced Silicon Nitride Composites Houston, TX (US); Brian Mitchell by slurry Infilitration," Ceramic Transactions, 58, 125-130 (1995). Mayeaux, Houston, TX (US); Erica L. Iijima, "Helical microtubules of graphitic carbon," Nature, 354, Corral, Houston, TX (US); Joseph 56-58 (1991). Cesarano, III, Albuquerque, NM (US) Thostenson et a!., "Advances in the science and technology of carbon nanotubes and their composites: a review," Composites (73) Assignee: William Marsh Rice University, Science and Technology, 61, 1899-1912 (2001). Houston, TX (US) Yakobson et a!., "Nanomechanics of carbon tubes: instabilities beyond linear response," Physical Review Letters, 76(14), 2511- ( *) Notice: Subject to any disclaimer, the term of this 2514 ( 1996). patent is extended or adjusted under 35 Walters et a!., "Elastic Strain of Freely Suspended Single Walled U.S.C.
    [Show full text]
  • Graphene Oxide: an All-In-One Processing Additive for 3D Printing
    Graphene oxide: an all-in-one processing additive for 3D printing Esther García-Tuñóna,b,*, Ezra Feildena, Han Zhenga, Eleonora D’Eliaa, Alan Leonga and Eduardo Saiza aCentre for Advanced Structural Ceramics, Department of Materials, Imperial College London, Royal School of Mines, Prince Consort Road, South Kensington, SW7 2BP, London, UK bMaterials Innovation Factory & School of Engineering, Harrison Hughes Building, Brownlow Hill, L69 3GH, University of Liverpool, Liverpool, UK *[email protected] ORCID Esther García-Tuñón: 0000-0001-9507-4501 Keywords: 2D colloids, processing, 3D printing, complex fluids, and oscillatory rheology Abstract Many 3D printing technologies are based on the development of inks and pastes to build objects through droplet or filament deposition (the latter also known as continuous extrusion, robocasting or direct ink writing). Controlling and tuning rheological behaviour is key for successful manufacturing using these techniques. Different formulations have been proposed but the search continues for approaches that are clean, flexible and robust and can be adapted to a wide range of materials. Here we show how graphene oxide (GO) enables the formulation of water-based pastes to print a wide variety of materials (polymers, ceramics and steel) using robocasting. This work combines flow and oscillatory rheology, to provide further insights into the rheological behaviour of suspensions combining GO with other materials. Graphene oxide can be used to manipulate the viscoelastic response enabling the formulation of pastes with excellent printing behaviour that combine shear thinning flow and a fast recovery of their elastic properties. These inks do not contain other additives just GO and the material of interest.
    [Show full text]
  • Extrusion-Based 3D Printing of Ceramic Components M
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Available online at www.sciencedirect.com ScienceDirect Procedia CIRP 28 ( 2015 ) 76 – 81 3rd CIRP Global Web Conference Extrusion-based 3D printing of ceramic components M. Faesa,*, H. Valkenaersa, F. Vogelera, J. Vleugelsb, E. Ferrarisa aKU Leuven, Dept. of Mechanical Engineering, J. De Nayerlaan, B-2860 St.-Katelijne-Waver, Belgium bKU Leuven, Dept. of Metallurgy and Materials Engineering (MTM), Kasteelpark Arenberg 44 bus 2450, B-3001 Heverlee , Belgium * Corresponding author. Tel.: + 32 (0) 15 31 69 44, E-mail address: [email protected]. Abstract Engineering ceramics are becoming increasingly important in the nowadays-industrial landscape, thanks to the exceptional combination of good mechanical, thermal and chemical properties. Nevertheless, traditional ceramic manufacturing technologies lack the ability to compete in a market of customized complex components. Additive Manufacturing therefore provides an important contribution, given the nearly unlimited design freedom. This research aims at developing an extrusion-based AM technology using UV-curable dispersions. The homogeneity, rheology and printability of these dispersions, containing 22,5%vol to 55%vol ZrO2 in different commercially available resins were investigated. A sintered density of 92% was obtained, proving the potential of the technology in development. © 2014 Published by Elsevier B.V This is an open access article under the CC BY-NC-ND license (©http://creativecommons.org/licenses/by-nc-nd/4.0/ 2014 The Authors. Published by Elsevier B.V.). Selection and peer-review under responsibility of the International Scientific SelectionCommittee and of peer the-review 3rd CIRP under Global responsibility Web Conference of the International in the person Scientifi of c Committeethe Conference of the Chair“3rd CIRP Dr.
    [Show full text]
  • Final Announcement Code Number
    SUMMARY Invitation to attend 13th International Ceramics Congress - Flowsheet ..........................................................2nd Cover th rd The 13th senior edition of the 6 Forum on New Materials - Flowsheet ........................................................................ 3 Cover International Conferences Summary ..................................................................................................................................1 on Modern Materials and SCIENTIFIC PROGRAMME Technologies (CIMTEC 2014) to be held in 13th INTERNATIONAL CERAMICS CONGRESS Montecatini Terme, Tuscany, Congress Committees ............................................................................................................................... 2 Italy will consist of the 13th Outline Congress ...................................................................................................................................... 5 International Ceramics Sessions Timetable ................................................................................................................................... 6 Code Number of Contributions by Presenting Author (in alphabetical order) ................................................ 9 Congress (June 8-13) and Symposium CA Ceramic Powders: Advances in Synthesis, Processing and Manufacturing ..................... 15 of the 6th Forum on New Symposium CB Progress in Non Conventional and Novel Manufacturing Routes to Ceramics ................. 18 Materials (June 15-19). Special Session CB-9
    [Show full text]
  • Reinforced 3D Composite Structures of -, -Al2o3 with Carbon Nanotubes
    materials Article Reinforced 3D Composite Structures of γ-, α-Al2O3 with Carbon Nanotubes and Reduced GO Ribbons Printed from Boehmite Gels Cristina Ramírez *, Manuel Belmonte , Pilar Miranzo and Maria Isabel Osendi Instituto de Cerámica y Vidrio (ICV), Consejo Superior de Investigaciones Científicas, CSIC, Kelsen 5, Cantoblanco, 28049 Madrid, Spain; [email protected] (M.B.); [email protected] (P.M.); [email protected] (M.I.O.) * Correspondence: [email protected]; Tel.: +34-917355840 Abstract: The ability of boehmite to form printable inks has sparked interest in the manufacturing of 3D alumina (Al2O3) and composite structures by enabling direct ink writing methods while avoiding the use of printing additives. These materials may exhibit high porosity due to the printing and sintering procedures, depending on the intended application. The 3D-printed porous composite structures of γ-Al2O3 and α-Al2O3 containing 2 wt.% of carbon nanotubes or reduced graphene oxide ribbons were fabricated from boehmite gels, followed by different heat treatments. The reinforcing effect of these carbon nanostructures was evidenced by compression tests carried out on the different alumina structures. A maximum relative increase of 50% in compressive strength was achieved for the γ-Al2O3 composite structure reinforced with reduced graphene oxide ribbons, which was also accompanied by an increase in the specific surface area. Citation: Ramírez, C.; Belmonte, M.; Keywords: reinforced 3D-printed ceramic; nanofiber reinforced 3D-printed materials; alumina Miranzo, P.; Osendi, M.I. Reinforced graphene composites; ceramic graphene composites; graphene nanoribbons; multiwall carbon 3D Composite Structures of γ-, nanotubes; boehmite gels; γ-Al2O3; α-Al2O3 α-Al2O3 with Carbon Nanotubes and Reduced GO Ribbons Printed from Boehmite Gels.
    [Show full text]
  • Foam 3D Printing for Construction: a Review of Applications, Materials, and Processes
    Research Collection Review Article Foam 3D printing for construction: A review of applications, materials, and processes Author(s): Bedarf, Patrick; Dutto, Alessandro; Zanini, Michele; Dillenburger, Benjamin Publication Date: 2021-10 Permanent Link: https://doi.org/10.3929/ethz-b-000499218 Originally published in: Automation in Construction 130, http://doi.org/10.1016/j.autcon.2021.103861 Rights / License: Creative Commons Attribution 4.0 International This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Automation in Construction 130 (2021) 103861 Contents lists available at ScienceDirect Automation in Construction journal homepage: www.elsevier.com/locate/autcon Review Foam 3D printing for construction: A review of applications, materials, and processes Patrick Bedarf a,*, Alessandro Dutto b, Michele Zanini c, Benjamin Dillenburger a a Digital Building Technologies, ETH Zürich, Zürich, Switzerland b Complex Materials, Department of Materials, ETH Zürich, Zürich, Switzerland c FenX AG, Zürich, Switzerland ARTICLE INFO ABSTRACT Keywords: Large-scale additive manufacturing for construction has gained momentum during the last two decades as a Foam 3d printing promising fabrication technology that can save materials, labor, and costs. Although foams are a significant Digital fabrication material group in construction and explored in 3D printing (3DP) studies, no comprehensive review about this Construction automation fieldexists to date.
    [Show full text]
  • Open Final Thesis V2.Pdf
    The Pennsylvania State University The Graduate School College of Earth and Mineral Sciences SCALABLE SYNTHESIS OF GRAPHENE BASED HETEROSTRUCTURES AND THEIR USE IN ENERGY SENSING, CONVERSION AND STORAGE A Dissertation in Material Science and Engineering by Ganesh Rahul Bhimanapati 2017 Ganesh Rahul Bhimanapati Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2017 ii The dissertation of Ganesh Rahul Bhimanapati was reviewed and approved* by the following: Joshua A Robinson Associate Professor in Material Science and Engineering Dissertation Advisor Chair of Committee James Adair Professor in Material Science and Engineering, , Biomedical Engineering and Pharmacology Tom Mallouk Professor in Chemistry, Biochemistry and molecular biology, Physics and Engineering science and Mechanics. Mauricio Terrones Professor in Physics, Chemistry and Material Science & Engineering Susan Mohney Graduate Program Head, Professor in Material Science & Engineering *Signatures are on file in the Graduate School iii ABSTRACT 2D materials are a unique class of materials system which has spread across the entire spectrum of materials including semi-metallic graphene to insulating boron nitride. Since graphene there has been many other 2D material systems (such as boron nitride (hBN), transition metal dichalcogenides (TMDs)) that provide a wider array of unique chemistries and properties to explore for applications specifically in optoelectronics, mechanical and energy applications. Specifically tailored heterostructures can be made which can retain the character of single-atom thick sheets while having an entirely different optical and mechanical properties compared to the parent materials. In the current work, heterostructures based on graphene, hBN and TMDs have been made, which were used to study the fundamental process-property relations and their use in energy conversion and storage have been studied.
    [Show full text]
  • Robocasting of Single and Multi-Functional Calcium Phosphate Scaffolds and Its Hybridization with Conventional Techniques
    applied sciences Article Robocasting of Single and Multi-Functional Calcium Phosphate Scaffolds and Its Hybridization with Conventional Techniques: Design, Fabrication and Characterization Mehdi Mohammadi 1,*, Patricia Pascaud-Mathieu 2, Valeria Allizond 3,*, Jean-Marc Tulliani 1 , Bartolomeo Coppola 1 , Giuliana Banche 3 , Christophe Chaput 4, Anna Maria Cuffini 3, Fabrice Rossignol 2 and Paola Palmero 1 1 Department of Applied Science and Technology, INSTM R.U. Lince Laboratory, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy; [email protected] (J.-M.T.); [email protected] (B.C.); [email protected] (P.P.) 2 IRCER, UMR CNRS 7315, University of Limoges, F-87000 Limoges, France; [email protected] (P.P.-M.); [email protected] (F.R.) 3 Bacteriology and Mycology Laboratory, Department of Public Health and Pediatrics, University of Torino, Via Santena 9, 10126 Turin, Italy; [email protected] (G.B.); annamaria.cuffi[email protected] (A.M.C.) 4 3D-Ceram Company (Sinto Group), 27 Rue du Petit Theil, 87280 Limoges, France; [email protected] * Correspondence: [email protected] (M.M.); [email protected] (V.A.); Tel.: +39-011-0904678 (M.M.); +39-011-6705644 (V.A.) Received: 26 October 2020; Accepted: 1 December 2020; Published: 4 December 2020 Featured Application: Hard tissue repair and replacement including large and small scales injuries with tailored mechanical and biological properties, featured by controlled local drug delivery systems to prevent post-surgical infection, to improve tissue regeneration, and/or for anticancer activities. Abstract: In this work, dense, porous, and, for the first time, functionally-graded bi-layer scaffolds with a cylindrical geometry were produced from a commercially available hydroxyapatite powder using the robocasting technique.
    [Show full text]
  • Robocasting of Self-Setting Bioceramics: from Paste Formulation to 3D Part Characteristics
    OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible This is a Publisher’s version published in: http://oatao.univ-toulouse.fr/27604 Official URL: https://doi.org/10.1016/j.oceram.2021.100070 To cite this version: Paterlini, Ambra and Le Grill, Sylvain and Brouillet, Fabien and Combes, Christèle and Grossin, David and Bertrand, Ghislaine Robocasting of self-setting bioceramics: from paste formulation to 3D part characteristics. (2021) Open Ceramics, 5. 100070. ISSN 2666-5395 Any correspondence concerning this service should be sent to the repository administrator: [email protected] Open Ceramics 5 (2021) 100070 Contents lists available at ScienceDirect Open Ceramics journal homepage: www.editorialmanager.com/oceram Robocasting of self-setting bioceramics: from paste formulation to 3D part characteristics A. Paterlini a,*, S. Le Grill a,b, F. Brouillet b, C. Combes a, D. Grossin a, G. Bertrand a a CIRIMAT, Universite de Toulouse, CNRS, INP- ENSIACET, 4 Allee Emile Monso, BP44362, 31030, Toulouse, Cedex 4, France b CIRIMAT, Universite de Toulouse, CNRS, Faculte des Sciences Pharmaceutiques, 35 Chemin des Maraichers, 31062, Toulouse, Cedex 4, France ARTICLE INFO ABSTRACT Keywords: This study aims to investigate the feasibility of generating three-dimensional scaffold structures by robocasting 3D Robocasting printing for bone tissue engineering and anatomical model applications. Robocasting is an additive manufacturing Self-setting ceramic process that generates parts directly from CAD draws in a layer-wise manner, enabling the construction of Scaffolds complex 3D structures with controlled chemistry and specific interconnected porosity.
    [Show full text]