Next Generation Sequencing Data of a Defined Microbial
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341 -
Spirosoma Endophyticum Sp. Nov., Isolated from Zn- and Cd-Accumulating Salix Caprea
International Journal of Systematic and Evolutionary Microbiology (2013), 63, 4586–4590 DOI 10.1099/ijs.0.052654-0 Spirosoma endophyticum sp. nov., isolated from Zn- and Cd-accumulating Salix caprea Julia Fries, Stefan Pfeiffer, Melanie Kuffner and Angela Sessitsch Correspondence AIT Austrian Institute of Technology GmbH, Bioresources Unit, Tulln, Austria Angela Sessitsch [email protected] A Gram-reaction-negative, yellow-pigmented strain, designated EX36T, was characterized using a polyphasic approach comprising phylogenetic, morphological and genotypic analyses. The endophytic strain was isolated from Zn/Cd-accumulating Salix caprea in Arnoldstein, Austria. Analysis of the 16S rRNA gene demonstrated that the novel strain is most closely related to members of the genus Spirosoma (95 % sequence similarity with Spirosoma linguale). The genomic DNA G+C content was 47.2 mol%. The predominant quinone was and the major cellular fatty acids were summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1v7c), C16 : 1v5c, iso- T C17 : 0 3-OH and iso-C15 : 0. On the basis of its phenotypic and genotypic properties, strain EX36 should be classified as a novel species of the genus Spirosoma, for which the name Spirosoma endophyticum sp. nov. is proposed. The type strain is EX36T (5DSM 26130T5LMG 27272T). The genus Spirosoma was first proposed by Larkin & Borrall rRNA gene was amplified by PCR using the primers 8f (59- (1984) and belongs to the family Flexibacteraceae in the AGAGTTTGATCCTGGCTCAG-39)(Weisburget al., 1991) phylum Bacteroidetes. At the time of writing the genus and 1520r (59-AAGGAGGTGATCCAGCCGCA-39)(Edwards Spirosoma includes five species, the type species Spirosoma et al., 1989). -
Flavobacterium Gliding Motility: from Protein Secretion to Cell Surface Adhesin Movements
University of Wisconsin Milwaukee UWM Digital Commons Theses and Dissertations August 2019 Flavobacterium Gliding Motility: From Protein Secretion to Cell Surface Adhesin Movements Joseph Johnston University of Wisconsin-Milwaukee Follow this and additional works at: https://dc.uwm.edu/etd Part of the Biology Commons, Microbiology Commons, and the Molecular Biology Commons Recommended Citation Johnston, Joseph, "Flavobacterium Gliding Motility: From Protein Secretion to Cell Surface Adhesin Movements" (2019). Theses and Dissertations. 2202. https://dc.uwm.edu/etd/2202 This Dissertation is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UWM Digital Commons. For more information, please contact [email protected]. FLAVOBACTERIUM GLIDING MOTILITY: FROM PROTEIN SECRETION TO CELL SURFACE ADHESIN MOVEMENTS by Joseph J. Johnston A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Biological Sciences at The University of Wisconsin-Milwaukee August 2019 ABSTRACT FLAVOBACTERIUM GLIDING MOTILITY: FROM PROTEIN SECRETION TO CELL SURFACE ADHESIN MOVEMENTS by Joseph J. Johnston The University of Wisconsin-Milwaukee, 2019 Under the Supervision of Dr. Mark J. McBride Flavobacterium johnsoniae exhibits rapid gliding motility over surfaces. At least twenty genes are involved in this process. Seven of these, gldK, gldL, gldM, gldN, sprA, sprE, and sprT encode proteins of the type IX protein secretion system (T9SS). The T9SS is required for surface localization of the motility adhesins SprB and RemA, and for secretion of the soluble chitinase ChiA. This thesis demonstrates that the gliding motility proteins GldA, GldB, GldD, GldF, GldH, GldI and GldJ are also essential for secretion. -
Halophilic Bacteroidetes As an Example on How Their Genomes Interact with the Environment
DOCTORAL THESIS 2020 PHYLOGENOMICS OF BACTEROIDETES; HALOPHILIC BACTEROIDETES AS AN EXAMPLE ON HOW THEIR GENOMES INTERACT WITH THE ENVIRONMENT Raúl Muñoz Jiménez DOCTORAL THESIS 2020 Doctoral Programme of Environmental and Biomedical Microbiology PHYLOGENOMICS OF BACTEROIDETES; HALOPHILIC BACTEROIDETES AS AN EXAMPLE ON HOW THEIR GENOMES INTERACT WITH THE ENVIRONMENT Raúl Muñoz Jiménez Thesis Supervisor: Ramon Rosselló Móra Thesis Supervisor: Rudolf Amann Thesis tutor: Elena I. García-Valdés Pukkits Doctor by the Universitat de les Illes Balears Publications resulted from this thesis Munoz, R., Rosselló-Móra, R., & Amann, R. (2016). Revised phylogeny of Bacteroidetes and proposal of sixteen new taxa and two new combinations including Rhodothermaeota phyl. nov. Systematic and Applied Microbiology, 39(5), 281–296 Munoz, R., Rosselló-Móra, R., & Amann, R. (2016). Corrigendum to “Revised phylogeny of Bacteroidetes and proposal of sixteen new taxa and two new combinations including Rhodothermaeota phyl. nov.” [Syst. Appl. Microbiol. 39 (5) (2016) 281–296]. Systematic and Applied Microbiology, 39, 491–492. Munoz, R., Amann, R., & Rosselló-Móra, R. (2019). Ancestry and adaptive radiation of Bacteroidetes as assessed by comparative genomics. Systematic and Applied Microbiology, 43(2), 126065. Dr. Ramon Rosselló Móra, of the Institut Mediterrani d’Estudis Avançats, Esporles and Dr. Rudolf Amann, of the Max-Planck-Institute für Marine Mikrobiologie, Bremen WE DECLARE: That the thesis titled Phylogenomics of Bacteroidetes; halophilic Bacteroidetes as an example on how their genomes interact with the environment, presented by Raúl Muñoz Jiménez to obtain a doctoral degree, has been completed under our supervision and meets the requirements to opt for an International Doctorate. For all intents and purposes, we hereby sign this document. -
Salinity and Time Can Alter Epibacterial Communities of an Invasive Seaweed
fmicb-10-02870 January 6, 2020 Time: 15:52 # 1 ORIGINAL RESEARCH published: 15 January 2020 doi: 10.3389/fmicb.2019.02870 Salinity and Time Can Alter Epibacterial Communities of an Invasive Seaweed Mahasweta Saha1,2,3*, Robert M. W. Ferguson2, Shawn Dove4,5, Sven Künzel6, Rafael Meichssner7,8, Sven C. Neulinger9, Finn Ole Petersen10 and Florian Weinberger1 1 Benthic Ecology, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany, 2 The School of Life Sciences, University of Essex, Colchester, United Kingdom, 3 Marine Ecology and Biodiversity, Plymouth Marine Laboratory, Plymouth, United Kingdom, 4 Centre for Biodiversity and Environment Research, University College London, London, United Kingdom, 5 Institute of Zoology, Zoological Society of London, London, United Kingdom, 6 Max Planck Institute for Evolutionary Biology, Plön, Germany, 7 Department of Biology, Botanical Institute, Christian-Albrechts-University, Kiel, Germany, 8 Coastal Research & Management, Kiel, Germany, 9 omics2view.consulting GbR, Kiel, Germany, 10 Department of Biology, Institute for General Microbiology, Christian-Albrechts-University, Kiel, Germany The establishment of epibacterial communities is fundamental to seaweed health and Edited by: fitness, in modulating ecological interactions and may also facilitate adaptation to Olga Lage, University of Porto, Portugal new environments. Abiotic factors like salinity can determine bacterial abundance, Reviewed by: growth and community composition. However, influence of salinity as a driver of Hanzhi Lin, epibacterial community composition (until species level) has not been investigated for University of Maryland Center for Environmental Science (UMCES), seaweeds and especially under long time scales. We also do not know how abiotic United States stressors may influence the ‘core’ bacterial species of seaweeds. -
Appendix 1. Validly Published Names, Conserved and Rejected Names, And
Appendix 1. Validly published names, conserved and rejected names, and taxonomic opinions cited in the International Journal of Systematic and Evolutionary Microbiology since publication of Volume 2 of the Second Edition of the Systematics* JEAN P. EUZÉBY New phyla Alteromonadales Bowman and McMeekin 2005, 2235VP – Valid publication: Validation List no. 106 – Effective publication: Names above the rank of class are not covered by the Rules of Bowman and McMeekin (2005) the Bacteriological Code (1990 Revision), and the names of phyla are not to be regarded as having been validly published. These Anaerolineales Yamada et al. 2006, 1338VP names are listed for completeness. Bdellovibrionales Garrity et al. 2006, 1VP – Valid publication: Lentisphaerae Cho et al. 2004 – Valid publication: Validation List Validation List no. 107 – Effective publication: Garrity et al. no. 98 – Effective publication: J.C. Cho et al. (2004) (2005xxxvi) Proteobacteria Garrity et al. 2005 – Valid publication: Validation Burkholderiales Garrity et al. 2006, 1VP – Valid publication: Vali- List no. 106 – Effective publication: Garrity et al. (2005i) dation List no. 107 – Effective publication: Garrity et al. (2005xxiii) New classes Caldilineales Yamada et al. 2006, 1339VP VP Alphaproteobacteria Garrity et al. 2006, 1 – Valid publication: Campylobacterales Garrity et al. 2006, 1VP – Valid publication: Validation List no. 107 – Effective publication: Garrity et al. Validation List no. 107 – Effective publication: Garrity et al. (2005xv) (2005xxxixi) VP Anaerolineae Yamada et al. 2006, 1336 Cardiobacteriales Garrity et al. 2005, 2235VP – Valid publica- Betaproteobacteria Garrity et al. 2006, 1VP – Valid publication: tion: Validation List no. 106 – Effective publication: Garrity Validation List no. 107 – Effective publication: Garrity et al. -
Genome-Based Taxonomic Classification Of
ORIGINAL RESEARCH published: 20 December 2016 doi: 10.3389/fmicb.2016.02003 Genome-Based Taxonomic Classification of Bacteroidetes Richard L. Hahnke 1 †, Jan P. Meier-Kolthoff 1 †, Marina García-López 1, Supratim Mukherjee 2, Marcel Huntemann 2, Natalia N. Ivanova 2, Tanja Woyke 2, Nikos C. Kyrpides 2, 3, Hans-Peter Klenk 4 and Markus Göker 1* 1 Department of Microorganisms, Leibniz Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany, 2 Department of Energy Joint Genome Institute (DOE JGI), Walnut Creek, CA, USA, 3 Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia, 4 School of Biology, Newcastle University, Newcastle upon Tyne, UK The bacterial phylum Bacteroidetes, characterized by a distinct gliding motility, occurs in a broad variety of ecosystems, habitats, life styles, and physiologies. Accordingly, taxonomic classification of the phylum, based on a limited number of features, proved difficult and controversial in the past, for example, when decisions were based on unresolved phylogenetic trees of the 16S rRNA gene sequence. Here we use a large collection of type-strain genomes from Bacteroidetes and closely related phyla for Edited by: assessing their taxonomy based on the principles of phylogenetic classification and Martin G. Klotz, Queens College, City University of trees inferred from genome-scale data. No significant conflict between 16S rRNA gene New York, USA and whole-genome phylogenetic analysis is found, whereas many but not all of the Reviewed by: involved taxa are supported as monophyletic groups, particularly in the genome-scale Eddie Cytryn, trees. Phenotypic and phylogenomic features support the separation of Balneolaceae Agricultural Research Organization, Israel as new phylum Balneolaeota from Rhodothermaeota and of Saprospiraceae as new John Phillip Bowman, class Saprospiria from Chitinophagia. -
Genome in Just 15 S
Lawrence Berkeley National Laboratory Recent Work Title GapMind: Automated Annotation of Amino Acid Biosynthesis. Permalink https://escholarship.org/uc/item/4v72t7wt Journal mSystems, 5(3) ISSN 2379-5077 Authors Price, Morgan N Deutschbauer, Adam M Arkin, Adam P Publication Date 2020-06-23 DOI 10.1128/msystems.00291-20 Peer reviewed eScholarship.org Powered by the California Digital Library University of California RESEARCH ARTICLE Molecular Biology and Physiology crossm GapMind: Automated Annotation of Amino Acid Biosynthesis Morgan N. Price,a Adam M. Deutschbauer,a,b Adam P. Arkina,c aEnvironmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, California, USA bPlant & Microbial Biology, University of California, Berkeley, California, USA cDepartment of Bioengineering, University of California, Berkeley, California, USA ABSTRACT GapMind is a Web-based tool for annotating amino acid biosynthesis in bacteria and archaea (http://papers.genomics.lbl.gov/gaps). GapMind incorporates many variant pathways and 130 different reactions, and it analyzes a genome in just 15 s. To avoid error-prone transitive annotations, GapMind relies primarily on a data- base of experimentally characterized proteins. GapMind correctly handles fusion pro- teins and split proteins, which often cause errors for best-hit approaches. To improve GapMind’s coverage, we examined genetic data from 35 bacteria that grow in defined media without amino acids, and we filled many gaps in amino acid biosynthesis pathways. For example, we identified additional genes for arginine synthesis with succinylated intermediates in Bacteroides thetaiotaomicron, and we propose that Dyella japonica synthesizes tyrosine from phenylalanine. Nevertheless, for many bacteria and archaea that grow in minimal media, genes for some steps still cannot be identified. -
Complete Genome Sequence of Echinicola Rosea JL3085, a Xylan
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Xiamen University Institutional Repository Marine Genomics xxx (xxxx) xxxx Contents lists available at ScienceDirect Marine Genomics journal homepage: www.elsevier.com/locate/margen Complete genome sequence of Echinicola rosea JL3085, a xylan and pectin decomposer ⁎ Peiwen Zhana, Jianing Yea, Xiaopei Lina, Fan Zhangb, Dan Lina, Yao Zhanga, Kai Tanga, a State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China b Department of Molecular Virology & Microbiology, Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA ARTICLE INFO ABSTRACT Keywords: Marine Bacteroidetes are well known for their functional specialization on the decomposition of polysaccharides Bacteroidetes which results from a great number of carbohydrate-active enzymes. Here we represent the complete genome of a Polysaccharides Bacteroitedes member Echinicola rosea JL3085T that was isolated from surface seawater of the South China Sea. Enzyme The genome is 6.06 Mbp in size with a GC content of 44.1% and comprises 4613 protein coding genes. A Degradation remarkable genomic feature is that the number of glycoside hydrolase genes in the genome of E. rosea JL3085T is high in comparison with most of the sequenced members of marine Bacteroitedes. E. rosea JL3085T genome harbored multi-gene polysaccharide utilization loci (PUL) systems involved in the degradation of pectin, xylan and arabinogalactan. The large diversity of hydrolytic enzymes supports the use of E. rosea JL3085T as a can- didate for biotechnological applications in enzymatic conversion of plant polysaccharides. -
Ecology of the Elusive: Genome-Informed Investigation of Soil Microbial Diversity
University of Massachusetts Amherst ScholarWorks@UMass Amherst Doctoral Dissertations Dissertations and Theses October 2019 ECOLOGY OF THE ELUSIVE: GENOME-INFORMED INVESTIGATION OF SOIL MICROBIAL DIVERSITY Lauren Alteio University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2 Part of the Terrestrial and Aquatic Ecology Commons Recommended Citation Alteio, Lauren, "ECOLOGY OF THE ELUSIVE: GENOME-INFORMED INVESTIGATION OF SOIL MICROBIAL DIVERSITY" (2019). Doctoral Dissertations. 1680. https://doi.org/10.7275/hsq9-ph87 https://scholarworks.umass.edu/dissertations_2/1680 This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. ECOLOGY OF THE ELUSIVE: GENOME-INFORMED INVESTIGATION OF SOIL MICROBIAL DIVERSITY A Dissertation Presented by LAUREN VICTORIA ALTEIO Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY September 2019 Graduate Program in Organismic and Evolutionary Biology © Copyright by Lauren Victoria Alteio 2019 All Rights Reserved ECOLOGY OF THE ELUSIVE: GENOME-INFORMED INVESTIGATION OF SOIL MICROBIAL DIVERSITY A Dissertation Presented by LAUREN VICTORIA ALTEIO Approved as to style and content by: __________________________________________ Laura A. Katz, Chair __________________________________________ Courtney C. Babbitt, Member __________________________________________ Kristina Stinson, Member __________________________________________ Tanja Woyke, Member ___________________________________________________ Paige S. Warren, Graduate Program Director Graduate Program in Organismic and Evolutionary Biology DEDICATION To Jeremy Hayward for your unrelenting passion for science and fungi, and for your belief in me from the start. -
Genome-Based Taxonomic Classification of Bacteroidetes
Lawrence Berkeley National Laboratory Recent Work Title Genome-Based Taxonomic Classification of Bacteroidetes. Permalink https://escholarship.org/uc/item/2fs841cf Journal Frontiers in microbiology, 7(DEC) ISSN 1664-302X Authors Hahnke, Richard L Meier-Kolthoff, Jan P García-López, Marina et al. Publication Date 2016 DOI 10.3389/fmicb.2016.02003 Peer reviewed eScholarship.org Powered by the California Digital Library University of California ORIGINAL RESEARCH published: 20 December 2016 doi: 10.3389/fmicb.2016.02003 Genome-Based Taxonomic Classification of Bacteroidetes Richard L. Hahnke 1 †, Jan P. Meier-Kolthoff 1 †, Marina García-López 1, Supratim Mukherjee 2, Marcel Huntemann 2, Natalia N. Ivanova 2, Tanja Woyke 2, Nikos C. Kyrpides 2, 3, Hans-Peter Klenk 4 and Markus Göker 1* 1 Department of Microorganisms, Leibniz Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany, 2 Department of Energy Joint Genome Institute (DOE JGI), Walnut Creek, CA, USA, 3 Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia, 4 School of Biology, Newcastle University, Newcastle upon Tyne, UK The bacterial phylum Bacteroidetes, characterized by a distinct gliding motility, occurs in a broad variety of ecosystems, habitats, life styles, and physiologies. Accordingly, taxonomic classification of the phylum, based on a limited number of features, proved difficult and controversial in the past, for example, when decisions were based on unresolved phylogenetic trees of the 16S rRNA gene sequence. Here we use a large collection of type-strain genomes from Bacteroidetes and closely related phyla for Edited by: assessing their taxonomy based on the principles of phylogenetic classification and Martin G. -
Taxonomie Des Bactéries Anaérobies : De La Reclassification À La Découverte De Nouveaux Pathogènes Corentine Alauzet
Taxonomie des bactéries anaérobies : De la reclassification à la découverte de nouveaux pathogènes Corentine Alauzet To cite this version: Corentine Alauzet. Taxonomie des bactéries anaérobies : De la reclassification à la découverte de nouveaux pathogènes. Biochimie, Biologie Moléculaire. Université Henri Poincaré - Nancy 1, 2009. Français. NNT : 2009NAN10123. tel-01748308 HAL Id: tel-01748308 https://hal.univ-lorraine.fr/tel-01748308 Submitted on 29 Mar 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. AVERTISSEMENT Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie. Il est soumis à la propriété intellectuelle de l'auteur. Ceci implique une obligation de citation et de référencement lors de l’utilisation de ce document. D'autre part, toute contrefaçon, plagiat, reproduction illicite encourt une poursuite pénale. Contact : [email protected] LIENS Code de la Propriété Intellectuelle. articles L 122. 4 Code de la Propriété Intellectuelle.