Nitrogen Laser Emissions of Short and Long Durations Generated in Air Mladen M

Total Page:16

File Type:pdf, Size:1020Kb

Nitrogen Laser Emissions of Short and Long Durations Generated in Air Mladen M IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 48, NO. 3, MARCH 2020 647 Nitrogen Laser Emissions of Short and Long Durations Generated in Air Mladen M. Kekez and David M. Villeneuve Abstract— This article describes two sets of experiments. pressure, the excitation of the N2 molecules, and consequently An eight-stage, pulse-forming network (PFN) Marx generator the laser emission would yield only short duration light pulses, of 50- internal impedance produces a “square”-shaped voltage from one nanosecond down to some tens of picoseconds. waveform and induces multiphoton ionization, excitation of molecules and ions to generate laser pulses of long (<3 μs) and From the research and development on CO2 lasers, it was short (∼10 ns) durations in air, when the principal laser line of learned that the delay in the transition from the glow-like the N laser at 337.1 nm was observed. The visible blue laser discharge to a fully developed spark channel is possible, when 2 + lines coming from the first negative band of N2 ions due to the the characteristic impedance of the driver is of relatively large 2 + → 2 + B u X g transition at 391.4 and 427.8 nm were studied. value (>10 ). The wideband (300–800 nm) Schott BG 39 interference filter was To explore the importance, the nine-stage Marx generator also employed to examine whether some other lines participate in the emission being generated. The scaling law was derived of 18- internal impedance was used in [5]. The electro- describing the attenuation of theemissionversusthedistance magnetic radiation pulses were observed both at the single for long-duration pulses (<3 μs) at 337.1 nm. The second set microwave frequency close to 1 GHz and the pulses of long of experiments was introduced to support the data obtained. duration (<220 ns) at 337.1 nm (= prominent N2 laser line) It offers information pertinent to the visible blue line emissions in the pressure range from 100 to 200 torr in nitrogen, as well as to the photoionization processes, lighting phenomena, and processes occurring at high altitudes. and also in air, without the use of the laser resonator and mirrors. These radiation pulses can be considered as the Index Terms— Corona, lighting, nitrogen laser, photoioniza- coherent radiation due to the maser action and the laser action, tion, spark channels. respectively [5]. I. INTRODUCTION To explore further the importance of impedance, an eight- LASER is a useful source of pulsed ultraviolet (UV) stage, pulse-forming network (PFN) Marx generator with laser radiation. With the low (<1 )-internal impedance 50- internal impedance was used in [6]. The pulses of N2 < μ Blumlein driver, the commercial N laser operates usually nitrogen emission at 337.1 nm of long duration ( 3 s) and 2 ∼ with voltages ranging from 8 to 14 kV and pressures between of short duration ( 10 ns) were obtained. This article is organized as follows. For both the short- 70 and 250 torr of N2. Under optimum conditions, the laser provides pulses with energies of <30 mJ and the width of the and long-duration pulses, attention is given to the electronic– 3 → 3 ) pulse not exceeding 19 ns [1]. vibrational–rotational transitions (C u B g of the second positive system of a nitrogen molecule with a charac- The classical N2 laser is pumped by an electrical discharge teristic peak at 337.1 nm. The visible blue laser lines coming to create numerous filamentary streamer/corona channels in + + from the first negative band of N ions due to the (B2 → the glow-like discharge formed between the two parallel elec- + 2 u X2 ) transition at 391.4 nm and 427.8 nm were studied. trodes. The gas discharges formed in N2 and/or air provides g the N laser gain medium. The preionization had to be applied Emphasis is given toward understanding the attenuation of the 2 = to produce a semi-uniform glow-like column [1]–[4]. 337.1 nm line ( principal laser line of N2 laser) of long- < μ The duration of the laser pulse as a function of pressure is duration pulses ( 3 s) as it propagates in air proportional to the time interval of the voltage fall from the To support the data obtained, the second set of experiments full value of the voltage supplied by the Blumlein driver to was introduced to provide additional information regarding the almost zero value, due to the formation of the spark channel. visible blue line emissions, as well as regarding the processes of photoionization, ionization by the electric field, lighting When the N2 laser is made to operate at a high (<760 torr) phenomena, and processes occurring at high altitudes. Manuscript received September 14, 2019; revised December 9, 2019; accepted January 20, 2020. Date of publication February 19, 2020; date of current version March 10, 2020. The review of this article was arranged by II. EXPERIMENTAL SETUP Senior Editor S. J. Gitomer. (Corresponding author: Mladen M. Kekez.) Mladen M. Kekez, deceased, was with High-Energy Frequency Tesla Inc., In this article, an eight-stage PFN Marx generator described Ottawa, ON K1H 7L8, Canada (e-mail: [email protected]). in [6] was used. David M. Villeneuve is with the National Research Council of Canada, Ottawa, ON K1A 0R6, Canada, and also with the Department of Physics, When the nipple 4 in the experimental setup (see Fig. 1) Faculty of Science, University of Ottawa, Ottawa, K1N 6N5, Canada (e-mail: is removed and the voltage impulse of negative polarity from [email protected]). an eight-stage PFN Marx generator is applied, it creates the Color versions of one or more of the figures in this article are available online at http://ieeexplore.ieee.org. spark channel breakdown between the copper wire 6 and the Digital Object Identifier 10.1109/TPS.2020.2969420 metallic electrode 5. The gap between the tip of the wire 6 and 0093-3813 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information. Authorized licensed use limited to: National Research Council Canada. Downloaded on March 10,2020 at 20:14:58 UTC from IEEE Xplore. Restrictions apply. 648 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 48, NO. 3, MARCH 2020 To avoid the interference problems mentioned in [5], the laser signals recorded by the photodiode have been viewed with the aid of a low (150 MHz)-pass filter. IV. EXPERIMENTAL RESULTS The emissions recorded with four narrow bandpass interference filters and a wideband BG 39 filter are shown in Figs. 2–4. The analysis of the data obtained is given in Figs. 5 and 6. It may be useful to understand the mechanism of the laser beam generation of short duration, as registered with the aid of a 337.1-nm filter. When the Plexiglas tube was replaced with the nipple 4 shown in Fig. 1, the data were obtained and are Fig. 1. Schematics of the experimental setup. 1: Hamamatsu R 727 pho- shown in Fig. 2. When an eight-stage PFN Marx generator todiode, 2: optical filter, 3: Plexiglas flange with an aperture (i.e., orifice) is energized, the spark breakdown takes place between the of 6.25 mm and the additional recess to accommodate the filter, 4: 2¾-in (Var- ian) nipple, 5: metallic post, 6: copper wire attached to the central electrode, 7: metallic post 5 and the copper wire attached to the central central electrode, 8: upper edge of the conical structure, 9: Plexiglas thimble electrode 6. The spontaneous emission coming from the spark with a hole in the center machined to fit well the polyethylene insulation of channel causes the photoionization of air. the coaxial cable, 10: conical structure connected to the ground of the Marx generator, and 11: inner conductor of the coaxial cable with connection to the In general, photoionization from excited states is the mech- generator. anism of gas breakdown by the visible and UV spectrum electromagnetic waves of high intensity, without the benefit the metallic electrode 5 is ∼3 mm. The separation between the of ionization by the external electric field [7]. As a function metallic electrode 5 and the metallic post 7 is varied between of gas density/pressure, the electron densities produced by 4 and 7 mm until the reproducible data for the emission at the UV source have been derived for several gases and gas 337.1 nm of short duration is obtained. The diameter of the mixtures using, for example, the microwave interferometry central electrode 7 is 15.9 mm with the height set initially at method [8]. The microsecond time scale was applied in these 55 mm and later made to be 80 mm in length. The metallic measurements. post is of 2.5-mm diameter. The detailed studies of plasma density created by photoion- The thimble 9 machined out of Plexiglas was placed over ization versus distance from the spark channel d reported in the polyethylene surface of the RG 217/U coaxial cable to [8] and [9] show that the experimental data can be summarized minimize the harmful effect of corona tracking along the by the following expression: surface of the cable. The height of the thimble above the upper ( −3) =[ .(− / )]/ 2. edge of the conical structure 8 was 32 mm. Plasma density cm A exp d k d (1) The precise alignment in the vertical direction is required, At 6 cm away from the spark channel, the plasma density so that the photodiode 1 indicated in Fig. 1 can view the glow- reaches the level of 1011cm−3, and at 30 cm away, the density like discharges formed between the central electrode 7 and the falls to 2 × 108cm−3.
Recommended publications
  • An Application of the Theory of Laser to Nitrogen Laser Pumped Dye Laser
    SD9900039 AN APPLICATION OF THE THEORY OF LASER TO NITROGEN LASER PUMPED DYE LASER FATIMA AHMED OSMAN A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Physics. UNIVERSITY OF KHARTOUM FACULTY OF SCIENCE DEPARTMENT OF PHYSICS MARCH 1998 \ 3 0-44 In this thesis we gave a general discussion on lasers, reviewing some of are properties, types and applications. We also conducted an experiment where we obtained a dye laser pumped by nitrogen laser with a wave length of 337.1 nm and a power of 5 Mw. It was noticed that the produced radiation possesses ^ characteristic^ different from those of other types of laser. This' characteristics determine^ the tunability i.e. the possibility of choosing the appropriately required wave-length of radiation for various applications. DEDICATION TO MY BELOVED PARENTS AND MY SISTER NADI A ACKNOWLEDGEMENTS I would like to express my deep gratitude to my supervisor Dr. AH El Tahir Sharaf El-Din, for his continuous support and guidance. I am also grateful to Dr. Maui Hammed Shaded, for encouragement, and advice in using the computer. Thanks also go to Ustaz Akram Yousif Ibrahim for helping me while conducting the experimental part of the thesis, and to Ustaz Abaker Ali Abdalla, for advising me in several respects. I also thank my teachers in the Physics Department, of the Faculty of Science, University of Khartoum and my colleagues and co- workers at laser laboratory whose support and encouragement me created the right atmosphere of research for me. Finally I would like to thank my brother Salah Ahmed Osman, Mr.
    [Show full text]
  • Theoretical Model of TEA Nitrogen Laser Excited by Electric Discharge. Part 3
    Optica Applicata, Vol. X X III, No. 4, 1993 Theoretical model of TEA nitrogen laser excited by electric discharge. Part 3. Construction and the preliminary results of the experimental setup examination J. Makuchowski, L. Pokora Laser Technics Centre, uL Kasprzaka 29/31, 01-234 Warszawa, Poland. A construction of two utilizable setups of nitrogen laser of the TEA-type produced on the basis of the experimental model described in Parts 1 and 2 [1], [2] of this work has been described. The realized models of nitrogen lasers were subjected to examinations. The preliminary results of these examinations were compared with the results of the respective theoretical calculations. High degree of consistence of the measurement results with those of the corresponding simulation calculations was achieved. 1. Introduction Due to attractive properties of radiation emitted by nitrogen lasers, in this field research in this field is being carried out almost continuously by different centres of science and technology. In a series of articles devoted to construction of nitrogen lasers pumped with transversal electric discharge [3] — [15], the energies and durations of pulses are reported together with some parameters of electric circuits (usually the energy accumulated in the capacitors and the supply voltage). There are very few descriptions of the scheme of electric circuit and details of the chamber structure of nitrogen laser are rarely provided. As was mentioned in the previous parts of this work [1], [2], the constructions described in the literature are difficult to reproduce so as to obtain either optimal or required parameters (or characteristics). In practice, two regions of nitrogen laser parameters are useful, ie., those for lasers generating nano- or subnanosecond pulses of radiation of high peak power, or those for lasers of relatively high energy generated in longer pulses.
    [Show full text]
  • TE-N2 Laser by Using Low Inductance Capacitor
    Nahrain University, College of Engineering Journal (NUCEJ) Vol.12, No.1, 2009 pp.58-61 Dr. Mohammed T. Hussein Assist .Prof in Physics Department University of Baghdad TE-N2 Laser by Using Low Inductance Capacitor Dr. Mohammed T. Hussein Abstract inter nuclear separation than that of C state the The design, construction and operation of a lifetime ( radiative ) of the C state is 40 ns, while transversely excited N2 laser using low the lifetime of the B state is 10 s . Clearly the inductance capacitors, is presented, the laser laser can not operate CW since condition ( 1< 21) pulse generation is 1200µJ with pulse width 8ns is not satisfied. It can however be excited on a when operated at about 30mbar with applied pulsed basis provided the electrical pulse is voltage of 15-30 kV. The system is capable of appreciably shorter than 40 ns [2,3]. giving 150 kW peak power. The best values of specific energy and breakdown voltage are 0.03 J/L and 600 V/cm-mbar respectively. Keywords:Lasers, 1. Introduction As a particularly relevant example of vibronic laser we will consider the N2 laser. This laser has its most important oscillation at =337 nm (UV), and belongs to the category of self terminating lasers. The pulsed nitrogen laser is commonly used as a pump for dye lasers. The relevant energy level scheme for the N2 molecule is shown in figure (1). Laser action takes place in the so-called second 3 positive system i.e., in the transition from C u state (C state) to the B 3 state (B state) [1].
    [Show full text]
  • Pulsed Inductive Discharge As New Method for Gas Lasers Pumping Razhev AM1,2, Churkin DS1,2 and Kargapol’Tsev ES1 1Institute of Laser Physics SB RAS, Lavrentyeva Ave
    cal & Ele tri ct c ro le n i E c f S Razhev et al., J Electr Electron Syst 2013, 2:2 o l y Journal of s a t n e r m DOI: 10.4172/2332-0796.1000112 u s o J ISSN: 2332-0796 Electrical & Electronic Systems ResearchResearch Article Article OpenOpen Access Access Pulsed Inductive Discharge as New Method for Gas Lasers Pumping Razhev AM1,2, Churkin DS1,2 and Kargapol’tsev ES1 1Institute of Laser Physics SB RAS, Lavrentyeva ave. 13/3, Novosibirsk, 630090, Russia 2Novosibirsk State University, Pirogova st. 2, Novosibirsk, 630090, Russia Abstract Results of experimental investigations into the possibility of a pulsed inductive cylindrical discharge as a new method of pumping gas lasers operating at different transitions of atoms and molecules with different mechanisms of formation of inversion population are presented. The excitation systems of a pulsed inductive cylindrical discharge (pulsed inductively coupled plasma) in the gases are developed and experimentally investigated. For the first time five pulsed inductive lasers on the different transitions of atoms and molecules are created. Characteristic feature of the emission of pulsed inductive lasers is ring-shaped laser beam with low divergence and pulse-to-pulse instability is within 1%. Keywords: Pulsed inductive discharge; Gas lasers pumping; Pulsed different photodiodes and photomultipliers. The output laser energy inductively coupled plasma was measured with a PE50-BB Ophir pyroelectric pulse energy meter (Ophir Optronics Ltd). The temporal parameters of electric pulses were Introduction recorded with high-voltage P6015A probes and a 200-MHz TDS-2024 The RF induction excitation of continuous-wave lasing was reported Tektronix oscilloscope.
    [Show full text]
  • Long-Pulse Excimer and Nitrogen Lasers Pumped by Generator with Inductive Energy Storage1
    ___________________________________________________________________________________________Pulsed power applications Long-Pulse Excimer and Nitrogen Lasers Pumped 1 by Generator with Inductive Energy Storage A. N. Panchenko, A. E. Telminov, and V. F. Tarasenko High current electronics institute, 2/3, Academichesky Av., Tomsk, 634055, Russia, Phone (3822)492-392, Fax (3822)492-410, E-mail: [email protected] Abstract – Laser and discharge parameters in lasers with efficiency up to 4-5% with long pulse mixtures of rare gases with halogens driven by a duration. On the other hand, it is difficult task to pre-pulse-sustainer circuit technique are studied. expand the output pulse duration of lasers on gas Inductive energy storage with semiconductor mixtures containing fluorine donor (XeF, KrF, and opening switch was used for the high-voltage pre- ArF and other lasers) due to fast discharge collapse5, 6. pulse formation. It was shown that the pre-pulse Alternative way of the pre-pulse formation is the with a high amplitude and short rise-time along use of inductive energy storage. In this pumping with sharp increase of discharge current and technique part of energy stored in a primary capacitor uniform UV- and x-ray preionization allow to form is transferred into circuit inductor of the pumping long-lived stable discharge in halogen containing generator and than using special device named gas mixtures. Improve of both pulse duration and opening switch to the load. Historically, laser output energy was achieved for XeCl-, XeF- and application of inductive energy storage (IES) was KrF excimer lasers. Maximal laser output was as studied using exploding wires7 or plasma erosion high as 1 J at intrinsic efficiency up to 4%.
    [Show full text]
  • A Nitrogen-Laser-Pumped Dye Laser System ? ' A
    Mr. 'Ian S. NAME OF AUTHOR/NOI# DE L'AUTEUR, GORDON h A Nitrogen-Laser-Pumped Dye . - T %tE OF THESIS/TfTRE DE LA TH& Phission is haQy (panted to ths NATIONAL LlEWW OF L'autwisetiim rst, par !a pr~*(nte:KCOI~@ 4 ,le ~UOTH~- -. 2 -, )-->- >CANADA m rnicrdilrn hi-4 mi s adto lend or ael l wisr WENATIONALE LJU-CANADA dr &rd&er cett* th&m at af the film. de pr4ter w ds VS~Rdes exonpl~jresdu film. The euB## reserves other publication raw,and neithgr the L'sutew se @serve fes eutrtw &&Is do puliHc&tion; ni la - thesis M* extbisiw extpzts from it mybe printed or olheii thdsenl de longs eqreits aGP cslt~ine doivent &re impritnds A NITROGEN- LASER-PUMPED - - * OF T~ REQUIREMENTS FOR THE DE6mE OF MASTER OF SCIENCE* in the Dapartnent A> -A .. is my not be reproduced in whole or in part, by photocopy or other means, without @rmission of the author. % . APPROVAL . \ . I '\ Name : Ian Sydney 'Gordon Degree : ast tar of Science t -~itl$of Themis : A Nf trogen Laser Pumped Dye Lmer - Examining Cowttee : Chairman: Be ?. Clayman .,- J. C. Irwin Senior Supervisor 0 8 I hereby grant to Uproa F -ty th~ r- , ' my thesis or d'ieeertation (the ti of "whgch =--below) to usen of the Simon Freser university Libr,ary, and to make partial or einglc @ copies only for such users or in response to a request from the library : of any other university, or other educational iitstitutim, on i'te 'own s behalf or for one of fts usere.
    [Show full text]
  • Infrared Laser Desorption/Ionization Mass Spectrometry
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2006 Infrared laser desorption/ionization mass spectrometry: fundamental and applications Mark Little Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Chemistry Commons Recommended Citation Little, Mark, "Infrared laser desorption/ionization mass spectrometry: fundamental and applications" (2006). LSU Doctoral Dissertations. 2690. https://digitalcommons.lsu.edu/gradschool_dissertations/2690 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. INFRARED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: FUNDAMENTALS AND APPLICATIONS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Chemistry by Mark Little B.S., Wake Forest University, 1998 December 2006 ACKNOWLEDGMENTS The popular quote, "L'enfer, c'est les autres" from an existential play by Jean-Paul Sartre is translated “Hell is other people”. I chose this quote because if it were not for all the “other people” in my life, I would be sitting on a beach right now sipping margaritas but I would not have my Ph.D. Therefore, I raise my salt covered glass to all my friends, family and colleagues for without their support this program of study would never been completed.
    [Show full text]
  • Gain Dynamics of a Free-Space Nitrogen Laser Pumped by Circularly Polarized Femtosecond Laser Pulses
    Gain dynamics of a free-space nitrogen laser pumped by circularly polarized femtosecond laser pulses Jinping Yao1, Hongqiang Xie1,3, Bin Zeng1, Wei Chu1, Guihua Li1,3, Jielei Ni1, Haisu Zhang1,3, Chenrui Jing1,3, Chaojin Zhang1, Huailiang Xu2,4, Ya Cheng1,5, and Zhizhan Xu1,6 1 State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China 2State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China 3University of Chinese Academy of Sciences, Beijing 100049, China [email protected] [email protected] [email protected] Abstract: We experimentally demonstrate ultrafast dynamic of generation of a strong 337-nm nitrogen laser by injecting an external seed pulse into a femtosecond laser filament pumped by a circularly polarized laser pulse. In the pump-probe scheme, it is revealed that the population inversion between 3 3 the C Πu and B Πg states of N2 for the free-space 337-nm laser is firstly built up on the timescale of several picoseconds, followed by a relatively slow decay on the timescale of tens of picoseconds, depending on the nitrogen gas pressure. By measuring the intensities of 337-nm signal from nitrogen gas mixed with different concentrations of oxygen gas, it is also found that oxygen molecules have a significant quenching effect on the nitrogen laser signal. Our experimental observations agree with the picture of electron-impact excitation. References 1. T. Popmintchev, M. Chen, D. Popmintchev, P. Arpin, S.
    [Show full text]
  • Theoretical Model of TEA Nitrogen Laser Excited by Electric Discharge Part 2
    Optica Appticata, Vol XXIII, No. 2 - 3 , 1993 Theoretical model of TEA nitrogen laser excited by electric discharge Part 2. Results of calculations J. M akuchowski, L. Pokora Laser Technics Center, ul. Kasprzaka 29/31, 01-234 Warszawa, Poland. The results of calculations of characteristics of atmospheric nitrogen laser of TEA type were obtained by applying the formerly elaborated theoretical model described in Part 1 of this work [1]. The results reported show the influence of particular design and external parameters of the laser on its characteristics. The presented results of calculations are qualitatively and quantitatively consistent with the results published in the papers mentioned in this paper [3] —[6], [8], [9]. 1. Description of the numerical programme Theoretical model of nitrogen laser described in the first part of this paper has been presented schematically in a block diagram in Fig. 1. The numerical programme realizing this theoretical model has been written in Fortran language. The block scheme of this computer programme is shown in Fig. 2. Input data Connections Set of differential between equations particular Charging voltage 6as pressure characteristics Fig. 1. Block scheme presenting the constructed theoretical model of nitrogen laser. 1 — electron density, 2 — electron mobility, 3 — electric field strength, 4 — coefficients of reaction kinetics, 5 — population of levels, 6 — photon density, 7 — population of laser levels 132 J. M akuchowskj, L. P okora Fig. 2. Block scheme of numerical operation of programme for calculation of nitrogen laser Fig. 3. Block scheme presenting the construction of the numerical programme to calculate the nitrogen laser The programme consists of several subroutines which have been presented schematically in Fig.
    [Show full text]
  • System Description of the Mobile LIDAR of the CSIR, South Africa
    456 South African Journal of Science 105, November/December 2009 Research Articles System description of the mobile LIDAR of the CSIR, South Africa A. Sharmaa, V. Sivakumara,b*, C. Bolliga, C. van der Westhuizena and D. Moemaa spheric SO2 measurements. Since these pioneering attempts, laser remote sensing of the atmosphere has come a long way. South Africa’s first mobile LIDAR (LIght Detection And Ranging) With the development of different laser sources, improvements system is being developed at the National Laser Centre (NLC) of the in detector technology and improved data collection and analysis Council for Scientific and Industrial Research (CSIR) in Pretoria techniques, LIDAR has become a reliable and effective tool for (25°45’S; 28°17’E). The system is designed primarily for remote atmosphere research.1 sensing of the atmosphere. At present, the system is being optimised In a recent internet survey,20 it was confirmed that, although for measuring vertical atmospheric backscatter profiles of aerosols LIDAR studies of the atmosphere are highly prevalent in other and clouds. In this paper, we describe the complete LIDAR system, parts of the world, LIDAR is yet to become a state of the art system including laser transmission, telescope configuration, data acquisi- for Africa, including South Africa. Using advanced techniques tion, data archival and post-processing. and instrumentation, a mobile LIDAR system was designed and Key words: LIDAR, atmosphere, backscatter, laser, remote sensing is being developed at the Council for Scientific and Industrial Research (CSIR) National Laser Centre (NLC) in Pretoria (25°45’S; 28°17’E). This paper focuses on the technical specifica- Introduction tions of the mobile LIDAR system.
    [Show full text]
  • Your Diy Nitrogen Laser Is NOT a Blumlein!
    Your DiY Nitrogen Laser is NOT a Blumlein! http://www.jonsinger.org/jossresearch/lasers/nitrogen/Joseph-DiVerdi-circuitboardlas... An Examination of the Amateur Scientist Circuitboard Nitrogen Laser Contents: Abstract Preliminaries Blumlein and His Circuit The Issue of Latency Travelling-Wave Excitation Issues Related to Scale Power and Energy Closing Remarks Some Interesting Papers Abstract Many Do-It-Yourselfers have built nitrogen lasers, often from a design published in the Amateur Scientist column of Scientific American magazine. This page discusses the text of that column in some detail, and shows several ways in which the explanation of the design and how it operates is faulty. To Begin In the Amateur Scientist column, on page 122 of the June, 1974 issue of Scientific American, there was a design for a tabletop nitrogen laser. It was written by someone named Jim Small, who was a student at MIT at the time. The article was later republished in the Scientific American book Light and Its Uses, and is also on the CD of Amateur Scientist columns, which you can get from The Society for Amateur Scientists. I have also found this CD available from The Surplus Shed, and from American Science and Surplus. The design isn’t bad at all: it’s easy to build, easy to operate, and puts out enough energy to drive a small dye laser. In fact, people are still building lasers from it today. Unfortunately, there are serious problems with the author’s explanation of how it works. I’m not about to violate copyright by reproducing the drawings from the article, and I don’t have time to redraw them, so it will help you to have a copy in front of you.
    [Show full text]
  • Nitrogen Laser
    Mukhtar Hussain Laser and history of lasers Types of lasers High tension power supply What is TEA N2 laser Design and fabrication of TEA N2 laser Future work 2 3 The idea of stimulated emission was given by Einstein 1916 The basic scientific principle behind a laser was first put forward by DR. Charles H.Townes in 1954. In 1960, Theodore Maiman invented the ruby laser In 1960 Gas laser made by Ali Javan 1n 1962 Robert Hall invented Semiconductor Injection laser In 1963 N2 laser by Heard An energy source Gain medium or laser medium (for population inversion) Two or more mirror that form optical resonator 5 Laser is based upon The stimulated emission process The population inversion. 6 Monochromatic Multi Wavelengths Directional Multi Direction Coherent Incoherent 9 SOLID STATE LASERS EX: RUBY LASER LIQUID AND DYE LASERS GASEOUS LASERS EX:HE-NE LASER Semiconductor Laser EX: GaAs 10 I will design and fabricate the Gas laser Transversely Excited Atmospheric(TEA) N2) High Tension Power Supply using Flyback transformer Then Design and Fabrication of TEA N2 Laser 11 Schematic diagram of HT power supply Flyback 12 V DC Flyback 1KV -20KV Driver 3A Transformer circuit 12 Energy is applied to a medium raising electrons to an unstable energy level. These atoms spontaneously decay to a relatively long-lived, lower energy, metastable state. A population inversion is achieved when the majority of atoms have reached this metastable state. Lasing action occurs when an electron returns to its ground state and produces a photon. If the energy from this photon is of the precise wavelength, it will stimulate the production of another photon of the same wavelength and resulting in a cascading effect.
    [Show full text]