A Thesis Entitled Detection of Oxidized Lipids by Laser

Total Page:16

File Type:pdf, Size:1020Kb

A Thesis Entitled Detection of Oxidized Lipids by Laser A Thesis Entitled Detection of Oxidized Lipids by Laser Desorption Ionization Time of Flight Mass Spectrometry Using Hydrazine Containing Reagents By Mohammed Abdullah A Alyami Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Master of Science Degree in Pharmaceutical Sciences _________________________________________ Dr. Hermann von Grafenstein, Committee Chair _________________________________________ Dr. Youssef Sari, Committee Member _________________________________________ Dr. Zahoor Shah, Committee Member _________________________________________ Dr. Amanda Bryant-Friedrich, Dean College of Graduate Studies The University of Toledo May-2018 Copyright 2018, Mohammed Abdullah A Alyami This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of Detection of Oxidized Lipids by Laser Desorption Ionization Time of Flight Mass Spectrometry Using Hydrazine Containing Reagents By Mohammed Abdullah A Alyami Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Master of Science Degree in Pharmaceutical Sciences The University of Toledo May-2018 Since matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) was established, it has been advanced as an analytical technique to detect and identify a large range of molecules. Lipids have been analyzed intensively by MALDI-TOF MS for several years. Because lipids are essential components of the body, any change in their structures can produce dramatic effects, either beneficial or detrimental. Oxidation of phospholipids is one of these types of changes. In the brain, it is found that formation of amyloid fibrils has a strong relationship to production of oxidized phospholipids (OxPLs) such as 1-palmitoyl-2-(9-oxo-nonanoyl)-sn-Glycero-3- phosphocholine (PoxnoPC). Due to addition of an aldehyde group in oxidized lipids, it may be possible to selectivity detect them by using fluorescent reagents containing a hydrazine functional group which was the ability to react with the carbonyl group. In the context of the MALDI-TOF MS analysis technique, 2,4-dinitrophenylhydrazine (DNPH) has been used as a reactive matrix holding the promise that this might allow selective detection oxidized lipids among un-oxidized lipids. However, in these studies unreacted excess DNPH was never removed, preventing definitive conclusions to be made as iii regarding the role of DNPH as a fluorescent tag as opposed to functioning as a matrix. Oxidized phosphatidylcholine is derivatized at its carbonyl group with DNPH to form 2,4-dinitrophenylhydrazone (DNPhydrazone). To evaluate the “reactive matrix” concept implying that DNPhydrazone might be used as a selective detection of the analyte, we removed an excess amount of unreacted DNPH by using glyoxylic acid (GA) and added back different concentrations of DNPH. We found that the signal of DNPhydrazone was directly proportional to the DNPH concentration. Moreover, signals for both 1,2- dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) mixed with DNPH were detected. DNPH functioned as a non-reactive matrix molecule as well as an analyte tag, although DNPhydrazone demonstrated a higher signal than DPPC in all experiments. Utilizing DNPH as a matrix molecule, we examined the difference of laser power required for compared with 2,5-dihydroxybenzoic acid (DHB). In the presence of DNPH, our results showed that DPPC needed lower laser intensity to be recorded. In contrast, DHB required more energy for detection of DPPC. Interestingly, we observed that a complex mixture of lipids influenced the DNPhydrazone and DPPC signals significantly. Further experiments showed that although DNPH did not allow matrix-free detection of oxidized lipids and was not selective in positive ion mode, selective detection of oxidized lipids is possible in negative ion mode. Here, DNPH appears to act as a charge-tagging reagent, adding a negative charge to the hydrazine moiety of DNPH. iv Acknowledgements I believe that words are not always enough to thank and appreciate Dr. Grafenstein. Albeit he has much knowledge, he accepted and welcomed all my objections and debating. In fact, we worked as a team listening to each other's ideas, respectively, so it was more than a professor and student relationship. I am proud that I was one of his students. I would like to thank Kirschbaum and Hanson for all of the support that helped me to finish my thesis. Dr. Kirschbaum fought for all students to have a new instrument, which gave all of us hope to complete our experiments. Dr. Hanson never has hesitated to help me and answered all my questions. I appreciate that Dr. Sari and Shah accepted to be members of the committee. They gave helpful comments that I am sure will help me in my future research. Finally, without doubt, I would not be at this level of education and career success career without support from my mother and wife. v Table of Contents Abstract .............................................................................................................................. iii Acknowledgements ..............................................................................................................v Table of Contents ............................................................................................................... vi List of Figures .................................................................................................................. viii List of Abbreviations ...........................................................................................................x 1. Introduction…….. .........................................................................................................1 1.1 Overview ……………………………………………………………………………1 1.2 MALDI ……………………………………………………………………………..2 1.2.1 Ionization Zone ………………………………………………….....................3 1.2.1.1 Hard ionization ……………………………………………………………3 1.2.1.2 Soft ionization …………………………………………………………….4 1.2.1.3 Matrices……………………………………………………………….…..5 1.2.2 Acceleration and flight zone…………………………………………….….…8 1.2.3 Detectors……………………………………………………………….……...8 1.3 Derivatized oxidized lipids ……...………………………………………………...10 1.3.1 Lipid ………………………………………………………………….……...10 1.3.2 DNPH …………………………………………………………………..……11 2. Materials and Method……………………………………………….…………….…12 2.1 Chemicals……………………………………………………...……………...…..12 vi 2.2 Preparations……………………………...……………………………..………....12 2.2.1 Phospholipids…………………………………………………………..…….12 2.2.2 Extracted lipid……………………………………………………………..…13 2.3 MALDI-TOF……………………………………………………………………...13 3. Results and Discussion ……………………………………………………………...14 3.1 Importance of additional amount of DNPH to work as a matrix………………....15 3.2 Comparison DNPH to DHB in consumed laser power………………………...…20 3.3 Effect of the lipid mixture on improving the signal of DNPhydrazone and DPPC…………………………………………………………………………......21 3.4 The possibility of selected oxidized lipids when utilizing DNPhydrazone as a charge tag…………………………………………………………………………23 4. Conclusions…………………………………………………………………………. 24 References ..........................................................................................................................26 Appendix ...………………………………………………………………………………29 vii List of Figures 1-1 MALDI-TOF zones .................................................................................................3 1-2 Hard ionization mechanism .....................................................................................4 1-3 Chemical structure of 2,5-DHB ...............................................................................7 1-4 Chemical structures of PoxnoPC and DNPH.........................................................10 3-1 The mechanism for reaction between DNPH and PoxnoPC .................................15 3-2 Positive ion mode MALDI-TOF of PoxnoPC and DNPhydrazone .......................15 3-3 Peak intensity average of DNPhydrazone in different DNPH concentrations ......16 3-4 Positive ion mode MALDI-TOF spectra of DNPhydrazone ................................17 3-5 Scheme representation steps to remove non-react DNPH ....................................18 3-6 Mass spectra of aqueous and organic phases after adding with GA ......................18 3-7 The mechanism for reaction between DNPH and GA ...........................................18 3-8 Peak intensity average of DPPC and DNPhydrazone after adding GA .................19 3-9 Peak intensity average of DPPC and DNPhydrazone in the separate experiment .19 3-10 Positive ion mode MALDI-TOF spectrum of DPPC mixed with 50mM DNPH ..19 3-11 Different laser power levels needed to detect DPPC ............................................20 3-12 Positive ion mode spectrum of DPPC mixed with different components ...........20 3-13 Effect of the lipid mixture on the signal of the DNPhydrazone ...........................21 3-14 Effect of the lipid mixture on the signal of the DPPC ...........................................22 viii 3-15 MALDI spectra of DPPC and DNPhydrazone in the lipid mixture.......................22 3-16 Negative charge formed in hydrazone moiety after removing H+ ………………23 3-17 Negative ion MALDI-TOF mass spectrum of DNPhydrazone………………….24 3-18 Negative ion MALDI-TOF mass spectrum of DPPC……………………………24 ix List of Abbreviations amu ……………………atomic mass units COX……………………Cyclooxygenases DHB…………………...2,5-Dihydroxybenzoic acid DNPH………………….2,4-dinitrophenylhydrazine DNPhydrazone………...2,4-dinitrophenylhydrazone
Recommended publications
  • An Application of the Theory of Laser to Nitrogen Laser Pumped Dye Laser
    SD9900039 AN APPLICATION OF THE THEORY OF LASER TO NITROGEN LASER PUMPED DYE LASER FATIMA AHMED OSMAN A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Physics. UNIVERSITY OF KHARTOUM FACULTY OF SCIENCE DEPARTMENT OF PHYSICS MARCH 1998 \ 3 0-44 In this thesis we gave a general discussion on lasers, reviewing some of are properties, types and applications. We also conducted an experiment where we obtained a dye laser pumped by nitrogen laser with a wave length of 337.1 nm and a power of 5 Mw. It was noticed that the produced radiation possesses ^ characteristic^ different from those of other types of laser. This' characteristics determine^ the tunability i.e. the possibility of choosing the appropriately required wave-length of radiation for various applications. DEDICATION TO MY BELOVED PARENTS AND MY SISTER NADI A ACKNOWLEDGEMENTS I would like to express my deep gratitude to my supervisor Dr. AH El Tahir Sharaf El-Din, for his continuous support and guidance. I am also grateful to Dr. Maui Hammed Shaded, for encouragement, and advice in using the computer. Thanks also go to Ustaz Akram Yousif Ibrahim for helping me while conducting the experimental part of the thesis, and to Ustaz Abaker Ali Abdalla, for advising me in several respects. I also thank my teachers in the Physics Department, of the Faculty of Science, University of Khartoum and my colleagues and co- workers at laser laboratory whose support and encouragement me created the right atmosphere of research for me. Finally I would like to thank my brother Salah Ahmed Osman, Mr.
    [Show full text]
  • Synthesis of Hydrazide-Hydrazone Derivatives and Their Evaluation of Antidepressant, Sedative and Analgesic Agents R
    R M Mohareb et al, /J. Pharm. Sci. & Res. Vol.2(4), 2010, 185-196 Synthesis of hydrazide-hydrazone derivatives and their evaluation of antidepressant, sedative and analgesic agents 1,2 1 2 3 R. M. Mohareb , K. A. El-Sharkawy , M. M. Hussein and H. M. El-Sehrawi 1Faculty of Pharmacy, Organic Chemistry Department, October University for Modern Sciences and Arts (MSA) – El-Wahat Road – 6 October City – Egypt. 2Department of Chemistry, Faculty of Science, Cairo University, Giza, A. R. Egypt. 3Faculty of Pharmacy (Girls), Pharmaceutical Chemistry Department, Al-Azhar University, Nasr City, Cairo, A.R. Egypt. Abstract: The reaction of cyanoacetylhydrazine (1) with -bromo(4-methoxyacetophenone) (2) gave the hydrazide- hydrazone derivative 3. Compound 3 reacted with either potassium cyanide or potassium thiocyanide to give the cyanide or thiocyanide derivatives 4a or 4b respectively. The reaction of compound 3 with either hydrazine hydrate or phenylhydrazine gave the hydrazine derivatives 6a or 6b respectively. The latter compounds underwent a series of heterocyclization when react with different reagents to give 1,3,4-triazine and pyridine derivatives. The antidepressant, sedative and analgesic activities of the newly synthesized products were evaluated. Keywords: Antidepressant. hydrazide-hydrazone. pyridine. sedative. 1,3,4-triazine, Introduction: Micro Analytical Data Unit at Cairo We report here the synthesis of a series of University, Giza, Egypt. hydrazide-hydrzones via the reaction of Synthetic pathways are presented in cyanoacetylhydrazine 1 with -bromo(4- Schemes 1-2 and physicochemical, methoxyacetophenone) 2. The hydrazide- spectral data for the newly synthesized hydrazones have been demonstrated to compounds are given in Tables 1 and 2.
    [Show full text]
  • The. Reactions Op Semicarbazones, Thiosbmicarbazonbs
    THE. REACTIONS OP SEMICARBAZONES, THIOSBMICARBAZONBS AMD RELATED COMPOUNDS, IMCLTJDIMG THE ACTION OF AMINES ON AMINOCARBOCARBAZONES. A THESIS PRESENTED BY JOHN MCLEAN B.So. IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY OF THE UNIVERSITY OF GLASGOW. / MAY *936. THE ROYAL TECHNICAL COLLEGE, GLASGOW. ProQuest Number: 13905234 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 13905234 Published by ProQuest LLC(2019). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 This research was carried out in the Royal Technical College, Glasgow, under the supervision of Professor F.J. Wilson, whose helpful advice was greatly appreciated by the author. CONTENTS. Page General Introduction, PART 1. The Action of Amines on Amino Carhocarbazones. Introduction... ..... ,..................... 4 Benzylamine......... Theoretical.............. 11 ......... Experimental............. 15 Aniline............. Theoretical............ 21 ............. Experimental............ 22 B-Naphthylamine..... Theoretical............... 27
    [Show full text]
  • Design and Biological Evaluation of Biphenyl-4-Carboxylic Acid Hydrazide-Hydrazone for Antimicrobial Activity
    Acta Poloniae Pharmaceutica ñ Drug Research, Vol. 67 No. 3 pp. 255ñ259, 2010 ISSN 0001-6837 Polish Pharmaceutical Society DESIGN AND BIOLOGICAL EVALUATION OF BIPHENYL-4-CARBOXYLIC ACID HYDRAZIDE-HYDRAZONE FOR ANTIMICROBIAL ACTIVITY AAKASH DEEP1*, SANDEEP JAIN2, PRABODH CHANDER SHARMA3 PRABHAKAR VERMA4, MAHESH KUMAR4, and CHANDER PARKASH DORA1 1Department of Pharmaceutical Sciences, G.V.M. College of Pharmacy, Sonepat-131001, India 2Department of Pharm. Sciences, Guru Jambheshwar University of Science and Technology, Hisar-125001, India 3Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra-136119, India 4Institute of Pharmaceutical Sciences, Maharishi Dayanand University, Rohtak-124001, India Abstract: Seven biphenyl-4-carboxylic acid hydrazide-hydrazones have been synthesized. These hydrazone derivatives were characterized by CHN analysis, IR, and 1H NMR spectral data. All the compounds were eval- uated for their in vitro antimicrobial activity against two Gram negative strains (Escherichia coli and Pseudomonas aeruginosa) and two Gram positive strains (Bacillus subtilis and Staphylococcus aureus) and fun- gal strain Candida albicans and Aspergillus niger. All newly synthesized compounds exhibited promising results. Keywords: synthesis, hydrazide-hydrazones, antimicrobial activity Development of novel chemotherapeutic EXPERIMENTAL agents is an important and challenging task for the medicinal chemists and many research programs are Melting points were determined in open capil- directed towards the design and synthesis of new lary tubes and are uncorrected. Infra-red spectra drugs for their chemotherapeutic usage. Hydrazone were recorded on Perkin Elmer Spectrum RXI FTIR compounds constitute an important class for new spectrophotomer in KBr phase. 1H NMR spectra drug development in order to discover an effective were run on BRUKER spectrometer (300 MHz) compound against multidrug resistant microbial using TMS as an internal standard.
    [Show full text]
  • Toxicological Profile for Hydrazines. US Department Of
    TOXICOLOGICAL PROFILE FOR HYDRAZINES U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Agency for Toxic Substances and Disease Registry September 1997 HYDRAZINES ii DISCLAIMER The use of company or product name(s) is for identification only and does not imply endorsement by the Agency for Toxic Substances and Disease Registry. HYDRAZINES iii UPDATE STATEMENT Toxicological profiles are revised and republished as necessary, but no less than once every three years. For information regarding the update status of previously released profiles, contact ATSDR at: Agency for Toxic Substances and Disease Registry Division of Toxicology/Toxicology Information Branch 1600 Clifton Road NE, E-29 Atlanta, Georgia 30333 HYDRAZINES vii CONTRIBUTORS CHEMICAL MANAGER(S)/AUTHOR(S): Gangadhar Choudhary, Ph.D. ATSDR, Division of Toxicology, Atlanta, GA Hugh IIansen, Ph.D. ATSDR, Division of Toxicology, Atlanta, GA Steve Donkin, Ph.D. Sciences International, Inc., Alexandria, VA Mr. Christopher Kirman Life Systems, Inc., Cleveland, OH THE PROFILE HAS UNDERGONE THE FOLLOWING ATSDR INTERNAL REVIEWS: 1 . Green Border Review. Green Border review assures the consistency with ATSDR policy. 2 . Health Effects Review. The Health Effects Review Committee examines the health effects chapter of each profile for consistency and accuracy in interpreting health effects and classifying end points. 3. Minimal Risk Level Review. The Minimal Risk Level Workgroup considers issues relevant to substance-specific minimal risk levels (MRLs), reviews the health effects database of each profile, and makes recommendations for derivation of MRLs. HYDRAZINES ix PEER REVIEW A peer review panel was assembled for hydrazines. The panel consisted of the following members: 1. Dr.
    [Show full text]
  • Nitrogen Laser Emissions of Short and Long Durations Generated in Air Mladen M
    IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 48, NO. 3, MARCH 2020 647 Nitrogen Laser Emissions of Short and Long Durations Generated in Air Mladen M. Kekez and David M. Villeneuve Abstract— This article describes two sets of experiments. pressure, the excitation of the N2 molecules, and consequently An eight-stage, pulse-forming network (PFN) Marx generator the laser emission would yield only short duration light pulses, of 50- internal impedance produces a “square”-shaped voltage from one nanosecond down to some tens of picoseconds. waveform and induces multiphoton ionization, excitation of molecules and ions to generate laser pulses of long (<3 μs) and From the research and development on CO2 lasers, it was short (∼10 ns) durations in air, when the principal laser line of learned that the delay in the transition from the glow-like the N laser at 337.1 nm was observed. The visible blue laser discharge to a fully developed spark channel is possible, when 2 + lines coming from the first negative band of N2 ions due to the the characteristic impedance of the driver is of relatively large 2 + → 2 + B u X g transition at 391.4 and 427.8 nm were studied. value (>10 ). The wideband (300–800 nm) Schott BG 39 interference filter was To explore the importance, the nine-stage Marx generator also employed to examine whether some other lines participate in the emission being generated. The scaling law was derived of 18- internal impedance was used in [5]. The electro- describing the attenuation of theemissionversusthedistance magnetic radiation pulses were observed both at the single for long-duration pulses (<3 μs) at 337.1 nm.
    [Show full text]
  • Synthesis, Characterization of New Hydrazone Derivatives Containing Heterocyclic Meioty Ahmed A
    Saheeb & Damdoom (2020): Synthesis and characterization of new hydrazine compound Oct 2020 Vol. 23 Issue 16 Synthesis, Characterization of new Hydrazone derivatives containing heterocyclic meioty Ahmed A. Saheeb1 and Wasan k.Damdoom2 1Col. of Agric. , University of Summer , Iraq. 2Col. of pharmacy, National of Science and Technology, Thi-Qar, Iraq. *Corresponding author: [email protected], [email protected] ( Damdoom) Abstract The present work includes synthesis and characterization of new hydrazine, compound (F1) derived from ethyl benzoate. Firstly, benzoate hydrazide [A1] has been synthesized from the condensation of ethyl benzoate with hydrazine. Then the benzoate hydrazide was reacted with phenylisothiocynate to prepare [B1]. Cyclization reaction of product [B1] with sodium hydroxide produced terazole derivative [C1].On the other hand, alkylation reaction of compound [C1] with chloroethylacetate in the presence of Sodium acetatetrihydrate as a catalyst resulted [D]. The acid hydrazide derivative [E1] has been synthesized by the reaction of compound [D1] with hydrazine hydrate. Finally, hydrazone derived [F1] was synthesized by the condensation reaction of the acid hydrazide [E1] with isatin. The synthesized compound was characterized by, FT-IR, 1H-NMR, 13C-NMR and Mass spectra. Compound (F2) derived from Methyl-4-hydroxybenzoate react with ethylchloroacetate ton prepare (A2) this compound react with hydrazine by reflux and used ethanol as as asolvent to give (B2). The hyrazone [C2] was synthesized by the condensation of 4-(2-hydrazino-2-oxoethoxy) benzohydrazide, and add 5 drops of acetic acid. Then the mixture refluxed for 8 hours (monitored by TLC). The hydrazone was precipitated, filtered and recrystallized from ethanol) to get white solid.
    [Show full text]
  • Theoretical Model of TEA Nitrogen Laser Excited by Electric Discharge. Part 3
    Optica Applicata, Vol. X X III, No. 4, 1993 Theoretical model of TEA nitrogen laser excited by electric discharge. Part 3. Construction and the preliminary results of the experimental setup examination J. Makuchowski, L. Pokora Laser Technics Centre, uL Kasprzaka 29/31, 01-234 Warszawa, Poland. A construction of two utilizable setups of nitrogen laser of the TEA-type produced on the basis of the experimental model described in Parts 1 and 2 [1], [2] of this work has been described. The realized models of nitrogen lasers were subjected to examinations. The preliminary results of these examinations were compared with the results of the respective theoretical calculations. High degree of consistence of the measurement results with those of the corresponding simulation calculations was achieved. 1. Introduction Due to attractive properties of radiation emitted by nitrogen lasers, in this field research in this field is being carried out almost continuously by different centres of science and technology. In a series of articles devoted to construction of nitrogen lasers pumped with transversal electric discharge [3] — [15], the energies and durations of pulses are reported together with some parameters of electric circuits (usually the energy accumulated in the capacitors and the supply voltage). There are very few descriptions of the scheme of electric circuit and details of the chamber structure of nitrogen laser are rarely provided. As was mentioned in the previous parts of this work [1], [2], the constructions described in the literature are difficult to reproduce so as to obtain either optimal or required parameters (or characteristics). In practice, two regions of nitrogen laser parameters are useful, ie., those for lasers generating nano- or subnanosecond pulses of radiation of high peak power, or those for lasers of relatively high energy generated in longer pulses.
    [Show full text]
  • Synthesis of 1,1-Dialkyhydrazines and Their Hydroxyl Radical Degradation in Aqueous Environments
    Western Michigan University ScholarWorks at WMU Master's Theses Graduate College 8-2012 Synthesis of 1,1-Dialkyhydrazines and their Hydroxyl Radical Degradation in Aqueous Environments Benjamin F. Strong Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses Part of the Environmental Chemistry Commons Recommended Citation Strong, Benjamin F., "Synthesis of 1,1-Dialkyhydrazines and their Hydroxyl Radical Degradation in Aqueous Environments" (2012). Master's Theses. 33. https://scholarworks.wmich.edu/masters_theses/33 This Masters Thesis-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Master's Theses by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. SYNTHESIS OF 1,1-DIALKYLHYDRAZINES AND THEIR HYDROXYL RADICAL DEGRADATION IN AQUEOUS ENVIRONMENTS by Benjamin F. Strong A Thesis Submitted to the Faculty ofthe Graduate College in partial fullilment ofthe requirements for the Degree ofMaster of Science Department ofChemistry Advisor: James J. Kiddle, Ph.D. Western Michigan University Kalamazoo, Michigan August 2012 THE GRADUATE COLLEGE WESTERN MICHIGAN UNIVERSITY KALAMAZOO, MICHIGAN Date June 21, 2012 WE HEREBY APPROVE THE THESIS SUBMITTED BY Benjamin F. Strong ENTITLED Synthesis of 1,1-dialkylhydrazines and their Hydroxyl Radical Degradation in Aqueous Environments AS PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE Master of Science DEGREE OF Chemistry (Department) James J. Kiddle Thesis Committee Chair Chemistry Blht Q(m (Program) Elke Schitffers Thesis Committee Member \ Andre Venter Thesis Committee Member APPROVED Date AjQL<=k ?OiZ Dean of The Graduate College SYNTHESIS OF 1,1-DIALKYLHYDRAZINES AND THEIR HYDROXYL RADICAL DEGRADATION IN AQUEOUS ENVIRONMENTS Benjamin F.
    [Show full text]
  • Synthesis and Characterization of Some Biologically Important 1-Isopropyl Indazolyl Thiadiazole, Triazole and Oxadiazole by Coventional and Nonconventional Methods
    SYNTHESIS AND CHARACTERIZATION OF SOME BIOLOGICALLY IMPORTANT 1-ISOPROPYL INDAZOLYL THIADIAZOLE, TRIAZOLE AND OXADIAZOLE BY COVENTIONAL AND NONCONVENTIONAL METHODS S.B. Kale, M.S. More and B.K.Karale* P.G. Department of Chemistry, S.S.G.M. College, Kopargaon, Ahmednagar - 423601 (M.S.), India e-mail: bkkarale@y ahoo. com Abstract: Compound 1 on treatment with SOCl2 followed by hydrazine hydrate gave acid hydrazide 2. Variously substituted phenyl isothicyanates with acid hydrazide 2 gave thiosemicarbazides 3. These thiosemicarbazides 3 on treatment with Cone. H2S04 and dil. NaOH gave thiadiazoles 4 and triazoles 5 respectively. Compound 3 on treatment with I2 in KI, in presence of NaOH gives oxadiazole 6. Introduction According to the literature survey, indazole compounds are associated with various physiological and biological properties and thus find important use in medicine. Indazole compounds are capable of mediating tyrosine kinase signal transduction and their by inhibit unwanted cell proliferation1,2. Indazole derivatives are examined for analgesic-anti-inflammatory activity3. A ruthenium co-ordination complex (Rulnd) is one the most effective anticancer4 ruthenium compound; poisoning5 of Topoisomerase II by indazole complex is analysed. Indazole ring was used as the initial template to test the hypothesis in order to increase potency as Leukotriene receptor antagonists6, 7' 8.Indazole containing inhibitor series for SAH/MTA nucleosidase are inhibitors with broad spectrum antimicrobial activity9. Indazole derivatives are used as anti-inflammatory agents10, anticancer10,11 agents and also used as sunscreens12. Thiosemicarbazide are found to be associated with antibacterial13, antifungal14 herbicidal15, antiacetyl Cholinesterase16 and antituburcular17 activities. Compounds containing 1,3,4-thiadiazole nucleus have been reported to a variety of biological activities like fungitoxic18, CNS stimulant19,anticholinergic20, hypoglycemia21, and anticonvulsant22,23.
    [Show full text]
  • Synthesis and Bioactivity of Hydrazide-Hydrazones with the 1-Adamantyl-Carbonyl Moiety
    molecules Article Synthesis and Bioactivity of Hydrazide-Hydrazones with the 1-Adamantyl-Carbonyl Moiety Van Hien Pham 1 , Thi Phuong Dung Phan 2, Dinh Chau Phan 3,* and Binh Duong Vu 1,* 1 Drug R&D Center, Vietnam Military Medical University. No.160, Phung Hung str., Phuc La ward, Ha Dong district, Hanoi 100000, Vietnam; [email protected] 2 Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy. No. 15, Le Thanh Tong Str., Hoan Kiem district, Hanoi 100000, Vietnam; [email protected] 3 Hanoi University of Science and Technology. No.1, Dai Co Viet str., Bach Khoa ward, Hai Ba Trung district, Hanoi 100000, Vietnam * Correspondence: [email protected] (D.C.P.); [email protected] (B.D.V.); Tel.: +84-983-425-460 (B.D.V.); Fax: +84-243-688-4077 (B.D.V.) Academic Editor: Simona Collina Received: 3 October 2019; Accepted: 4 November 2019; Published: 5 November 2019 Abstract: Reaction of 1-adamantyl carbohydrazide (1) with various substituted benzaldehydes and acetophenones yielded the corresponding hydrazide-hydrazones with a 1-adamantane carbonyl moiety. The new synthesized compounds were tested for activities against some Gram-negative and Gram-positive bacteria, and the fungus Candida albicans. Compounds 4a, 4b, 5a, and 5c displayed potential antibacterial activity against tested Gram-positive bacteria and C. albicans, while compounds 4e and 5e possessed cytotoxicity against tested human cancer cell lines. Keywords: adamantane derivatives; hydrazide-hydrazone; antimicrobial; cytotoxicity activity 1. Introduction The hydrazide-hydrazones derivatives, which play an important role in organic and medicine chemistry, have attracted a large number of researchers over the years because of their promising biological activities, including antimicrobial [1–4], anticancer [5–7], antituberculosis [2,8–10], antiviral [11], and anticonvulsant [2] activities.
    [Show full text]
  • TE-N2 Laser by Using Low Inductance Capacitor
    Nahrain University, College of Engineering Journal (NUCEJ) Vol.12, No.1, 2009 pp.58-61 Dr. Mohammed T. Hussein Assist .Prof in Physics Department University of Baghdad TE-N2 Laser by Using Low Inductance Capacitor Dr. Mohammed T. Hussein Abstract inter nuclear separation than that of C state the The design, construction and operation of a lifetime ( radiative ) of the C state is 40 ns, while transversely excited N2 laser using low the lifetime of the B state is 10 s . Clearly the inductance capacitors, is presented, the laser laser can not operate CW since condition ( 1< 21) pulse generation is 1200µJ with pulse width 8ns is not satisfied. It can however be excited on a when operated at about 30mbar with applied pulsed basis provided the electrical pulse is voltage of 15-30 kV. The system is capable of appreciably shorter than 40 ns [2,3]. giving 150 kW peak power. The best values of specific energy and breakdown voltage are 0.03 J/L and 600 V/cm-mbar respectively. Keywords:Lasers, 1. Introduction As a particularly relevant example of vibronic laser we will consider the N2 laser. This laser has its most important oscillation at =337 nm (UV), and belongs to the category of self terminating lasers. The pulsed nitrogen laser is commonly used as a pump for dye lasers. The relevant energy level scheme for the N2 molecule is shown in figure (1). Laser action takes place in the so-called second 3 positive system i.e., in the transition from C u state (C state) to the B 3 state (B state) [1].
    [Show full text]