Glossary of Nuclear Terms

Total Page:16

File Type:pdf, Size:1020Kb

Glossary of Nuclear Terms GLOSSARY OF NUCLEAR TERMS Winfried Koelzer © Karlsruhe Institute for Technology, Karlsruhe, January 2013 Postfach 3640 · 76021 Karlsruhe, Germany Original title: Lexikon zur Kernenergie, ISBN 3-923704-32-1 Translaton by Informationskreis KernEnergie The reproduction of trade names, identifications, etc. in this glossary does not justify the assumption that such names may be considered free in the- sense of the laws regulating the protection of trade marks and brands and that therefore they may be used by everyone. No guarantee is given for the correctness of numerical data. Pictures by: Argonne National Lab., Argonne Aulis-Verlag Deubner & Co., Cologne Karlsruher Institut für Technologie, Karlsruhe Informationskreis Kernenergie, Berlin A Absorbed dose The absorbed dose D is the quotient of the average energy transferred to the matter in a volume element by ionizing radiation and the mass of the matter in this volume element: _ d ε D = . dm The unit of the absorbed dose is joule divided by kilogram (J·kg-1) and its special unit name is gray (Gy). The former unit name was rad (symbol: rd or rad).1 Gy = 100 rd; 1 rd = 1/100 Gy. Absorbed dose rate Quotient of absorbed dose per unit of time. Unit: Gy/h. Absorber Any material "stopping" ionizing radiation. Alpha radiation can already be totally absorbed by a sheet of paper; beta radiation is absorbed by a few centimetres of plastic material or 1 cm of aluminium. Materials with a high →atomic number and high density are used for gamma radiation absorbers (lead, steel, concrete, partially with special additions). Neutron absorbers such as boron, hafnium and cadmium are used in control rods for reactors. Absorber rod →control rod Accelerator Device to accelerate electrically charged particles to high energies. Accelerators include e.g.: →betatron, →linear accelerator, →synchrotron, →synchro-cyclotron, →Van de Graaff generator and →cyclotron. Accident Sequence of events which may result in an effective dose of more than 50 millisievert for at least one person. Accounting Most important method of →nuclear material control in a nuclear facility. Its goal is the quantitative determination of the nuclear material to detect inventory deficiencies (unauthorised diversions). The accounting relates to a defined, limited, walled-in space the contents of which results from the difference of all continuously measured nuclear material additions and withdrawals. At the end of the accounting period the plant inventory is determined by an independent direct measurement. →MUF Activation Process to make a material radioactive by bombardment with neutrons, protons or other particles. 1 Activation of iron Activation analysis Procedure for the quantitative and qualitative determination of chemical elements in a sample to be analysed. The sample becomes radioactive through bombardment with neutrons or charged particles. The resulting radioactive atoms of the sample emit characteristic rays by which the type of atoms can be identified and the quantity measured. The activation analysis is frequently more sensitive than a chemical analysis and is used increasingly in research, industry, archaeology and criminology. Activation cross section Measure of the probability of the occurrence of a reaction. The cross section is the apparent surface which a target nucleus exposes to an arriving particle. The cross section is indicated in surface units. Neutron cross sections are frequently measured in the unit of barn, symbol: b. 1 barn is equal to 10-28 m2. Active beam The bundle of rays emitted by a radiation source, e.g. an x-ray tube. Normally, it is limited to the required size by a diaphragm arrangement. Activity Activity is the term used to characterise the number of nuclei which disintegrate in a radioactive substance per unit time usually measured in Becquerel (Bq); a Bq is 1 disintegration per second. Replaces the former unit →curie, symbol: Ci. 1 Ci is equal to 37 000 000 000 Bq. Note: "Activity" is a quantitative term whereas 'radioactivity' is a qualitative term used to describe atoms that decay. Activity concentration 3 Quotient of the activity 'A' of a material and the volume 'V' of this material, Aconc = A / V. Unit: Bq/m . Activity intake The quantity of radioactive substances inhaled or ingested through mouth or nose or which penetrates the intact or injured skin. Activity, specific Quotient of the activity 'A' of a material and the mass 'm' of this material, Asp = A / m. Unit: Bq/kg. After-heat Thermal power of a reactor resulting from the →residual heat in the shut-down reactor. AGR 2 Advanced Gas-Cooled Reactor. A total of 15 reactor units of this type are in operation in England and Scotland. AGR reactors use enriched uranium as fuel, graphite as moderator and CO2 as cooling gas. Air lift Process-based transport and dosing equipment where air is used as a carrier for liquids, e.g. to transport highly active liquids. An air lift has no moving parts and requires twice to five times as much carrier air volume as the transported liquid volume. ALARA Acronym for As Low As Reasonably Achievable. Concept of the International Commission on Radiological Protection for dose limitation, described in detail and substantiated in the recommendation of the International Commission on Radiological Protection of 1990, published in 1991 as →ICRP Publication 60. ALI Annual Limit on Intake →annual limit on intake Alpha decay Radioactive conversion emitting an alpha particle. During alpha decay the →atomic number is reduced by two units and the →mass number by four units. For example, alpha decay generates Rn-222 with the atomic number 86 and the mass number 222 from Ra-226 with the atomic number 88 and the mass number 226. Alpha decay; the figure shows the decay of radium-226 into radon-222 emitting helium with 4 nucleons (2 protons and 2 neutrons = 1 alpha particle, α-particle) Alpha particle Positively charged particle emitted by various radioactive materials during decay. It consists of two neutrons and two protons, and is thus identical to the nucleus of a helium atom. The rest mass of the alpha particle amounts to 6.64424·10-27 kg, or 3.7273·109 eV. Alpha radiation is the radiation with the lowest penetration potential of the three radiation types (alpha, →beta, →gamma radiation). Alpha radiation can already be stopped by a sheet of paper and is only dangerous for living creatures if the substance emitting alpha rays is inhaled or ingested with food or enters wounds. Ambient dose equivalent The ambient dose equivalent H*(10) at the point of interest in the actual radiation field is the dose equivalent which would be generated in the associated oriented and expanded radiation field at a depth of 10 mm on the radius of the ICRU sphere which is oriented opposite to the direction of incident radiation. An oriented and expanded radiation field is an idealized radiation field which is expanded and in which the radiation is additionally oriented in one direction. 3 Schematic representation of an oriented and expanded radiation field Amplitude analysis Process to obtain the energy spectrum of a radiation. The pulses of a detector supplying output pulses proportional to energy are sorted and counted according to their amplitude. The energy spectrum can be derived from the pulse amplitude distribution obtained in this way. Amplitude analyzer Device taking advantage of amplitude analysis to represent the energy spectrum of a radiation. Annihilation radiation Upon the collision of a particle and an anti-particle, e.g. electron and positron, these are „annihilated“ as particles and the mass of these particles converted into energy. Electron and positron have a rest mass which is together equal to an energy of 1.02 MeV. Upon the „annihilation“ of both particles, two gamma quanta of 0.511 MeV each are generated. Occurrence of annihilation radiation upon collision of electron and positron. Two gamma quanta of 0.511 MeV each result. Annual limit on intake (ALI) The intake in the body by inhalation, ingestion or through the skin of a given radionuclide in a year which would result in a committed dose equal to the relevant dose limit. Annular gap Clearance between the two parts of a double containment kept under negative pressure. In the case of leaks in the inner containment, radioactive substances entering the annular gap are aspirated and either repumped or filtered and discharged via the vent stack in a controlled way. Anticoincidence circuit 4 Electronic circuit which only supplies an output pulse when a pulse occurs at one - mostly predetermined - input. No output pulse is sent if pulses occur simultaneously at other inputs or are delayed by a certain period. Antimatter Matter in which the core particles (neutrons, protons, electrons) are replaced by the corresponding antiparticles (antineutrons, antiprotons, positrons). Antiparticles Antiparticles have the same mass, the same average life and the same spin as the corresponding particles, but opposite and equal baryon and lepton numbers. Antiparticles and particles are either both electrically neutral or they have an equal electric charge, but opposite signs. Particle: Proton Antiparticle: Antiproton Mass 1.6726·10-27 kg 1.6726·10-27 kg Average life time Stable Stable Spin 1/2 ħ 1/2 ħ Baryon number +1 -1 Lepton number 0 0 Electric charge +1.6022·10-19 C -1.6022·10-19 C Key data for the proton/antiproton particle/antiparticle pair Argonaut Argonne Nuclear Assembly for University Training; type of training reactor. ASME American Society of Mechanical Engineers, New York, N.Y., USA. Asse Former rock-salt mine 10 km to the south-east of Wolfenbüttel built for the trial ultimate waste disposal of low and medium active waste. More than 120 000 barrels equal to around 24 000 m3 of low active waste have been stored here. A special storage chamber for medium active waste holds 1289 barrels of 200 l capacity.
Recommended publications
  • The Microstructure, Hardness, Impact
    THE MICROSTRUCTURE, HARDNESS, IMPACT TOUGHNESS, TENSILE DEFORMATION AND FINAL FRACTURE BEHAVIOR OF FOUR SPECIALTY HIGH STRENGTH STEELS A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Manigandan Kannan August, 2011 THE MICROSTRUCTURE, HARDNESS, IMPACT TOUGHNESS, TENSILE DEFORMATION AND FINAL FRACTURE BEHAVIOR OF FOUR SPECIALTY HIGH STRENGTH STEELS Manigandan Kannan Thesis Approved: Accepted: _______________________________ _______________________________ Advisor Department Chair Dr. T.S. Srivatsan Dr. Celal Batur _______________________________ _______________________________ Faculty Reader Dean of the College Dr. C.C. Menzemer Dr. George.K. Haritos _______________________________ _______________________________ Faculty Reader Dean of the Graduate School Dr. G. Morscher Dr. George R. Newkome ________________________________ Date ii ABSTRACT The history of steel dates back to the 17th century and has been instrumental in the betterment of every aspect of our lives ever since, from the pin that holds the paper together to the automobile that takes us to our destination steel touch everyone every day. Pathbreaking improvements in manufacturing techniques, access to advanced machinery and understanding of factors like heat treatment and corrosion resistance have aided in the advancement in the properties of steel in the last few years. This thesis report will attempt to elaborate upon the specific influence of composition, microstructure, and secondary processing techniques on both the static (uni-axial tensile) and dynamic (impact) properties of the four high strength steels AerMet®100, PremoMetTM290, 300M and TenaxTM 310. The steels were manufactured and marketed for commercial use by CARPENTER TECHNOLOGY, Inc (Reading, PA, USA). The specific heat treatment given to the candidate steels determines its microstructure and resultant mechanical properties spanning both static and dynamic.
    [Show full text]
  • Basics of Radiation Radiation Safety Orientation Open Source Booklet 1 (June 1, 2018)
    Basics of Radiation Radiation Safety Orientation Open Source Booklet 1 (June 1, 2018) Before working with radioactive material, it is helpful to recall… Radiation is energy released from a source. • Light is a familiar example of energy traveling some distance from its source. We understand that a light bulb can remain in one place and the light can move toward us to be detected by our eyes. • The Electromagnetic Spectrum is the entire range of wavelengths or frequencies of electromagnetic radiation extending from gamma rays to the longest radio waves and includes visible light. Radioactive materials release energy with enough power to cause ionizations and are on the high end of the electromagnetic spectrum. • Although our bodies cannot sense ionizing radiation, it is helpful to think ionizing radiation behaves similarly to light. o Travels in straight lines with decreasing intensity farther away from the source o May be reflected off certain surfaces (but not all) o Absorbed when interacting with materials You will be using radioactive material that releases energy in the form of ionizing radiation. Knowing about the basics of radiation will help you understand how to work safely with radioactive material. What is “ionizing radiation”? • Ionizing radiation is energy with enough power to remove tightly bound electrons from the orbit of an atom, causing the atom to become charged or ionized. • The charged atoms can damage the internal structures of living cells. The material near the charged atom absorbs the energy causing chemical bonds to break. Are all radioactive materials the same? No, not all radioactive materials are the same.
    [Show full text]
  • 4. Particle Generators/Accelerators
    Joint innovative training and teaching/ learning program in enhancing development and transfer knowledge of application of ionizing radiation in materials processing 4. Particle Generators/Accelerators Diana Adlienė Department of Physics Kaunas University of Technolog y Joint innovative training and teaching/ learning program in enhancing development and transfer knowledge of application of ionizing radiation in materials processing This project has been funded with support from the European Commission. This publication reflects the views only of the author. Polish National Agency and the Commission cannot be held responsible for any use which may be made of the information contained therein. Date: Oct. 2017 DISCLAIMER This presentation contains some information addapted from open access education and training materials provided by IAEA TABLE OF CONTENTS 1. Introduction 2. X-ray machines 3. Particle generators/accelerators 4. Types of industrial irradiators The best accelerator in the universe… INTRODUCTION • Naturally occurring radioactive sources: – Up to 5 MeV Alpha’s (helium nuclei) – Up to 3 MeV Beta particles (electrons) • Natural sources are difficult to maintain, their applications are limited: – Chemical processing: purity, messy, and expensive; – Low intensity; – Poor geometry; – Uncontrolled energies, usually very broad Artificial sources (beams) are requested! INTRODUCTION • Beams of accelerated particles can be used to produce beams of secondary particles: Photons (x-rays, gamma-rays, visible light) are generated from beams
    [Show full text]
  • NATO and NATO-Russia Nuclear Terms and Definitions
    NATO/RUSSIA UNCLASSIFIED PART 1 PART 1 Nuclear Terms and Definitions in English APPENDIX 1 NATO and NATO-Russia Nuclear Terms and Definitions APPENDIX 2 Non-NATO Nuclear Terms and Definitions APPENDIX 3 Definitions of Nuclear Forces NATO/RUSSIA UNCLASSIFIED 1-1 2007 NATO/RUSSIA UNCLASSIFIED PART 1 NATO and NATO-Russia Nuclear Terms and Definitions APPENDIX 1 Source References: AAP-6 : NATO Glossary of Terms and Definitions AAP-21 : NATO Glossary of NBC Terms and Definitions CP&MT : NATO-Russia Glossary of Contemporary Political and Military Terms A active decontamination alpha particle A nuclear particle emitted by heavy radionuclides in the process of The employment of chemical, biological or mechanical processes decay. Alpha particles have a range of a few centimetres in air and to remove or neutralise chemical, biological or radioactive will not penetrate clothing or the unbroken skin but inhalation or materials. (AAP-21). ingestion will result in an enduring hazard to health (AAP-21). décontamination active активное обеззараживание particule alpha альфа-частицы active material antimissile system Material, such as plutonium and certain isotopes of uranium, The basic armament of missile defence systems, designed to which is capable of supporting a fission chain reaction (AAP-6). destroy ballistic and cruise missiles and their warheads. It includes See also fissile material. antimissile missiles, launchers, automated detection and matière fissile радиоактивное вещество identification, antimissile missile tracking and guidance, and main command posts with a range of computer and communications acute radiation dose equipment. They can be subdivided into short, medium and long- The total ionising radiation dose received at one time and over a range missile defence systems (CP&MT).
    [Show full text]
  • Installation of the Cyclotron Based Clinical Neutron Therapy System in Seattle
    Proceedings of the Tenth International Conference on Cyclotrons and their Applications, East Lansing, Michigan, USA INSTALLATION OF THE CYCLOTRON BASED CLINICAL NEUTRON THERAPY SYSTEM IN SEATTLE R. Risler, J. Eenmaa, J. Jacky, I. Kalet, and P. Wootton Medical Radiation Physics RC-08, University of Washington, Seattle ~ 98195, USA S. Lindbaeck Instrument AB Scanditronix, Uppsala, Sweden Sumnary radiation areas is via sliding shielding doors rather than a maze, mai nl y to save space. For the same reason A cyclotron facility has been built for cancer a single door is used to alternately close one or the treatment with fast neutrons. 50.5 MeV protons from a other therapy room. All power supplies and the control conventional, positive ion cyclotron are used to b0m­ computer are located on the second floor, above the bard a semi-thick Beryllium target located 150 am from maintenance area. The cooler room contains a heat the treatment site. Two treatment rooms are available, exchanger and other refrigeration equipment. Not shown one with a fixed horizontal beam and one with an iso­ in the diagram is the cooling tower located in another centric gantry capable of 360 degree rotation. In part of the building. Also not shown is the hot lab addition 33 51 MeV protons and 16.5 - 25.5 MeV now under construction an an area adjacent to the deuterons are generated for isotope production inside cyclotron vault. It will be used to process radio­ the cyclotron vault. The control computer is also used isotopes produced at a target station in the vault. to record and verify treatment parameters for indi­ vidual patients and to set up and monitor the actual radiation treatment.
    [Show full text]
  • 22 Thesis Cyclotron Design and Construction Design and Construction of a Cyclotron Capable of Accelerating Protons
    22 Thesis Cyclotron Design and Construction Design and Construction of a Cyclotron Capable of Accelerating Protons to 2 MeV by Leslie Dewan Submitted to the Department of Nuclear Science and Engineering in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science in Nuclear Science and Engineering at the Massachusetts Institute of Technology June 2007 © 2007 Leslie Dewan All rights reserved The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. Signature of Author: Leslie Dewan Department of Nuclear Science and Engineering May 16, 2007 Certified by: David G. Cory Professor of Nuclear Science and Engineering Thesis Supervisor Accepted by: David G. Cory Professor of Nuclear Science and Engineering Chairman, NSE Committee for Undergraduate Students Leslie Dewan 1 of 23 5/16/07 22 Thesis Cyclotron Design and Construction Design and Construction of a Cyclotron Capable of Accelerating Protons to 2 MeV by Leslie Dewan Submitted to the Department of Nuclear Science and Engineering on May 16, 2007 in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science in Nuclear Science and Engineering ABSTRACT This thesis describes the design and construction of a cyclotron capable of accelerating protons to 2 MeV. A cyclotron is a charged particle accelerator that uses a magnetic field to confine particles to a spiral flight path in a vacuum chamber. An applied electrical field accelerates these particles to high energies, typically on the order of mega-electron volts.
    [Show full text]
  • Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
    Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions.
    [Show full text]
  • Mechanical Properties of Biomaterials
    Mechanical properties of biomaterials For any material to be classified for biomedical application there are many requirements must be met , one of these requirement is the material should be mechanically sound; for the replacement of load bearing structures, the material should possess equivalent or greater mechanical stability to ensure high reliability of the graft. The physical properties of ceramics depend on their microstructure, which can be characterized in terms of the number and types of phases present, the relative amount of each, and the size, shape, and orientation of each phase. Elastic Modulus Elastic modulus is simply defined as the ratio of stress to strain within the proportional limit. Physically, it represents the stiffness of a material within the elastic range when tensile or compressive load are applied. It is clinically important because it indicates the selected biomaterial has similar deformable properties with the material it is going to replace. These force-bearing materials require high elastic modulus with low deflection. As the elastic modulus of material increases fracture resistance decreases. The Elastic modulus of a material is generally calculated by bending test because deflection can be easily measured in this case as compared to very small elongation in compressive or tensile load. However, biomaterials (for bone replacement) are usually porous and the sizes of the samples are small. Therefore, nanoindentation test is used to determine the elastic modulus of these materials. This method has high precision and convenient for micro scale samples. Another method of elastic modulus measurement is non-destructive method such as laser ultrasonic technique. It is also clinically very good method because of its simplicity and repeatability since materials are not destroyed.
    [Show full text]
  • Cyclotrons: Old but Still New
    Cyclotrons: Old but Still New The history of accelerators is a history of inventions William A. Barletta Director, US Particle Accelerator School Dept. of Physics, MIT Economics Faculty, University of Ljubljana US Particle Accelerator School ~ 650 cyclotrons operating round the world Radioisotope production >$600M annually Proton beam radiation therapy ~30 machines Nuclear physics research Nuclear structure, unstable isotopes,etc High-energy physics research? DAEδALUS Cyclotrons are big business US Particle Accelerator School Cyclotrons start with the ion linac (Wiederoe) Vrf Vrf Phase shift between tubes is 180o As the ions increase their velocity, drift tubes must get longer 1 v 1 "c 1 Ldrift = = = "# rf 2 f rf 2 f rf 2 Etot = Ngap•Vrf ==> High energy implies large size US Particle Accelerator School ! To make it smaller, Let’s curl up the Wiederoe linac… Bend the drift tubes Connect equipotentials Eliminate excess Cu Supply magnetic field to bend beam 1 2# mc $ 2# mc " rev = = % = const. frf eZion B eZion B Orbits are isochronous, independent of energy ! US Particle Accelerator School … and we have Lawrence’s* cyclotron The electrodes are excited at a fixed frequency (rf-voltage source) Particles remain in resonance throughout acceleration A new bunch can be accelerated on every rf-voltage peak: ===> “continuous-wave (cw) operation” Lawrence, E.O. and Sloan, D.: Proc. Nat. Ac. Sc., 17, 64 (1931) Lawrence, E.O. & Livingstone M.S.: Phys. Rev 37, 1707 (1931). * The first cyclotron patent (German) was filed in 1929 by Leó Szilard but never published in a journal US Particle Accelerator School Synchronism only requires that τrev = N/frf “Isochronous” particles take the same revolution time for each turn.
    [Show full text]
  • Radiation Basics
    Environmental Impact Statement for Remediation of Area IV \'- f Susana Field Laboratory .A . &at is radiation? Ra - -.. - -. - - . known as ionizing radiatios bScause it can produce charged.. particles (ions)..- in matter. .-- . 'I" . .. .. .. .- . - .- . -- . .-- - .. What is radioactivity? Radioactivity is produced by the process of radioactive atmi trying to become stable. Radiation is emitted in the process. In the United State! Radioactive radioactivity is measured in units of curies. Smaller fractions of the curie are the millicurie (111,000 curie), the microcurie (111,000,000 curie), and the picocurie (1/1,000,000 microcurie). Particle What is radioactive material? Radioactive material is any material containing unstable atoms that emit radiation. What are the four basic types of ionizing radiation? Aluminum Leadl Paper foil Concrete Adphaparticles-Alpha particles consist of two protons and two neutrons. They can travel only a few centimeters in air and can be stopped easily by a sheet of paper or by the skin's surface. Betaparticles-Beta articles are smaller and lighter than alpha particles and have the mass of a single electron. A high-energy beta particle can travel a few meters in the air. Beta particles can pass through a sheet of paper, but may be stopped by a thin sheet of aluminum foil or glass. Gamma rays-Gamma rays (and x-rays), unlike alpha or beta particles, are waves of pure energy. Gamma radiation is very penetrating and can travel several hundred feet in air. Gamma radiation requires a thick wall of concrete, lead, or steel to stop it. Neutrons-A neutron is an atomic particle that has about one-quarter the weight of an alpha particle.
    [Show full text]
  • CURIUM Element Symbol: Cm Atomic Number: 96
    CURIUM Element Symbol: Cm Atomic Number: 96 An initiative of IYC 2011 brought to you by the RACI ROBYN SILK www.raci.org.au CURIUM Element symbol: Cm Atomic number: 96 Curium is a radioactive metallic element of the actinide series, and named after Marie Skłodowska-Curie and her husband Pierre, who are noted for the discovery of Radium. Curium was the first element to be named after a historical person. Curium is a synthetic chemical element, first synthesized in 1944 by Glenn T. Seaborg, Ralph A. James, and Albert Ghiorso at the University of California, Berkeley, and then formally identified by the same research tea at the wartime Metallurgical Laboratory (now Argonne National Laboratory) at the University of Chicago. The discovery of Curium was closely related to the Manhattan Project, and thus results were kept confidential until after the end of World War II. Seaborg finally announced the discovery of Curium (and Americium) in November 1945 on ‘The Quiz Kids!’, a children’s radio show, five days before an official presentation at an American Chemical Society meeting. The first radioactive isotope of Curium discovered was Curium-242, which was made by bombarding alpha particles onto a Plutonium-239 target in a 60-inch cyclotron (University of California, Berkeley). Nineteen radioactive isotopes of Curium have now been characterized, ranging in atomic mass from 233 to 252. The most stable radioactive isotopes are Curium- 247 with a half-life of 15.6 million years, Curium-248 (half-life 340,000 years), Curium-250 (half-life of 9000 years), and Curium-245 (half-life of 8500 years).
    [Show full text]
  • MIRD Pamphlet No. 22 - Radiobiology and Dosimetry of Alpha- Particle Emitters for Targeted Radionuclide Therapy
    Alpha-Particle Emitter Dosimetry MIRD Pamphlet No. 22 - Radiobiology and Dosimetry of Alpha- Particle Emitters for Targeted Radionuclide Therapy George Sgouros1, John C. Roeske2, Michael R. McDevitt3, Stig Palm4, Barry J. Allen5, Darrell R. Fisher6, A. Bertrand Brill7, Hong Song1, Roger W. Howell8, Gamal Akabani9 1Radiology and Radiological Science, Johns Hopkins University, Baltimore MD 2Radiation Oncology, Loyola University Medical Center, Maywood IL 3Medicine and Radiology, Memorial Sloan-Kettering Cancer Center, New York NY 4International Atomic Energy Agency, Vienna, Austria 5Centre for Experimental Radiation Oncology, St. George Cancer Centre, Kagarah, Australia 6Radioisotopes Program, Pacific Northwest National Laboratory, Richland WA 7Department of Radiology, Vanderbilt University, Nashville TN 8Division of Radiation Research, Department of Radiology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark NJ 9Food and Drug Administration, Rockville MD In collaboration with the SNM MIRD Committee: Wesley E. Bolch, A Bertrand Brill, Darrell R. Fisher, Roger W. Howell, Ruby F. Meredith, George Sgouros (Chairman), Barry W. Wessels, Pat B. Zanzonico Correspondence and reprint requests to: George Sgouros, Ph.D. Department of Radiology and Radiological Science CRB II 4M61 / 1550 Orleans St Johns Hopkins University, School of Medicine Baltimore MD 21231 410 614 0116 (voice); 413 487-3753 (FAX) [email protected] (e-mail) - 1 - Alpha-Particle Emitter Dosimetry INDEX A B S T R A C T.........................................................................................................................
    [Show full text]