NATO and NATO-Russia Nuclear Terms and Definitions

Total Page:16

File Type:pdf, Size:1020Kb

NATO and NATO-Russia Nuclear Terms and Definitions NATO/RUSSIA UNCLASSIFIED PART 1 PART 1 Nuclear Terms and Definitions in English APPENDIX 1 NATO and NATO-Russia Nuclear Terms and Definitions APPENDIX 2 Non-NATO Nuclear Terms and Definitions APPENDIX 3 Definitions of Nuclear Forces NATO/RUSSIA UNCLASSIFIED 1-1 2007 NATO/RUSSIA UNCLASSIFIED PART 1 NATO and NATO-Russia Nuclear Terms and Definitions APPENDIX 1 Source References: AAP-6 : NATO Glossary of Terms and Definitions AAP-21 : NATO Glossary of NBC Terms and Definitions CP&MT : NATO-Russia Glossary of Contemporary Political and Military Terms A active decontamination alpha particle A nuclear particle emitted by heavy radionuclides in the process of The employment of chemical, biological or mechanical processes decay. Alpha particles have a range of a few centimetres in air and to remove or neutralise chemical, biological or radioactive will not penetrate clothing or the unbroken skin but inhalation or materials. (AAP-21). ingestion will result in an enduring hazard to health (AAP-21). décontamination active активное обеззараживание particule alpha альфа-частицы active material antimissile system Material, such as plutonium and certain isotopes of uranium, The basic armament of missile defence systems, designed to which is capable of supporting a fission chain reaction (AAP-6). destroy ballistic and cruise missiles and their warheads. It includes See also fissile material. antimissile missiles, launchers, automated detection and matière fissile радиоактивное вещество identification, antimissile missile tracking and guidance, and main command posts with a range of computer and communications acute radiation dose equipment. They can be subdivided into short, medium and long- The total ionising radiation dose received at one time and over a range missile defence systems (CP&MT). period so short that biological recovery cannot occur (AAP-6). système d’arme de défense antimissiles (AAP-21) See also radiation dose. противоракетный комплекс dose d’irradiation aiguë доза острого облучения area of militarily significant fallout airburst An explosion of a bomb or projectile above the surface as The area in which radioactive fallout affects the ability of military distinguished from an explosion on contact with the surface or units to carry out their normal mission (AAP-6). after penetration (AAP-6). See also type of burst. zone de retombées radioactives d'importance militaire explosion aérienne воздушный взрыв зона выпадения значительных в военном отношении радиоактивных осадков alarm An indication from any source that a chemical, biological, atomic demolition munition radiological or nuclear attack or release other than attack may A nuclear device designed or adapted for use as a demolition have occurred (AAP-21). See also: warning and reporting. munition (AAP-6). alerte тревога charge nucléaire statique атомный фугас allocation In nuclear warfare planning, the specific numbers and types of nuclear weapons allocated to a commander for a stated time period as a planning factor only (AAP-6). allocation разнарядка ядерных средств NATO/RUSSIA UNCLASSIFIED 1-2 2007 NATO/RUSSIA UNCLASSIFIED PART 1 NATO and NATO-Russia Nuclear Terms and Definitions APPENDIX 1 Source References: AAP-6 : NATO Glossary of Terms and Definitions AAP-21 : NATO Glossary of NBC Terms and Definitions CP&MT : NATO-Russia Glossary of Contemporary Political and Military Terms buffer distance atomic weapon In nuclear warfare: See nuclear weapon (AAP-21). 1. The horizontal distance which, when added to the radius of arme atomique атомное оружие safety will give the desired assurance that the specified degree of risk will not be exceeded. The buffer distance is normally expressed quantitatively in multiples of the delivery error. attenuation factor The ratio of the incident radiation dose or dose rate to the radiation 2. The vertical distance which is added to the fallout safe-height dose or dose rate transmitted through a shielding material. This is of burst in order to determine a desired height of burst which the reciprocal of the transmission factor (AAP-6). will provide the desired assurance that militarily significant facteur d'atténuation коэффициент ослабления fallout will not occur. It is normally expressed quantitatively in multiples of the vertical error (AAP-6). marge de sécurité буферное расстояние B ballistic missile A missile whose flight path, except during the boost phase, follows C a ballistic (free-fall) trajectory. Unlike a cruise missile, a ballistic casualty decontamination missile has no special aerodynamic surfaces to produce lift during The neutralisation or removal of chemical, biological or radioactive flight in the atmosphere (CP&MT). agents or materials from a casualty, allowing the partial or total missile balistique баллистическая ракета removal of individual protective equipment by the casualty and carers, thereby minimising further risks to health and facilitating blast wave subsequent treatment (AAP-21). Wave created by the rapid expansion of hot gases in the décontamination des victimes atmosphere which results from an explosion. The blast wave is обеззараживание пораженных военнослужащих initially a shock wave which subsequently decays into a sound chemical, biological, radiological and nuclear centre wave (AAP-21). An organisational entity holding responsibility for chemical, onde de souffle взрывная волна biological, radiological and nuclear warning and reporting within a hierarchical structure comprising, in descending order, Area blast wave diffraction Control Centres, Zone Control Centres, Collection Centres and The passage around and envelopment of a structure by the Sub-Collection Centres. Ordinarily, Area and Zone Controle nuclear blast wave (AAP-6). Centres are geographically dependent, whereas Collection and diffraction de l'onde de souffle отклонение взрывной волны Sub-Collection centres are integral to military formations. (AAP-21) See also: warning and reporting. centre chimique, biologique, radiologique et nucléaire химический, биологический, радиационный и ядерный центр NATO/RUSSIA UNCLASSIFIED 1-3 2007 NATO/RUSSIA UNCLASSIFIED PART 1 NATO and NATO-Russia Nuclear Terms and Definitions APPENDIX 1 Source References: AAP-6 : NATO Glossary of Terms and Definitions AAP-21 : NATO Glossary of NBC Terms and Definitions CP&MT : NATO-Russia Glossary of Contemporary Political and Military Terms contamination control area chemical, biological, radiological and nuclear surveillance In collective chemical, biological, radiological and nuclear The systematic observation of aerospace, surface areas, places, protection, an area before the toxic free area in which personnel persons, or things by visual, electronic, mechanical, or other can remove and don contaminated individual protective equipment means for determining the presence or absence of chemical, with reduced risk, and where equipment and supplies can be decontaminated. It includes the airlock(s), vapour hazard area, biological, radiological and nuclear hazards (AAP-21). changing booth(s) and liquid hazard area (AAP-21). surveillance chimique, biologique, radiologique et nucléaire aire de contrôle de contamination химический, биологический, радиационный и зона контроля заражения ядерный мониторинг contamination control line A line established by a competent authority, identifying the area circular error probable contaminated to a specific level of the contaminant of interest An indicator of the accuracy of a missile/projectile used as a factor (AAP-6). in determining probable damage to a target. It is the radius of a ligne de contrôle de contamination граница зоны заражения circle within which half of the missiles/projectiles are expected to fall (AAP-21). contamination control point écart circulaire probable круговое вероятное отклонение That portion of the contamination control line used by personnel to control entry to and exit from the contaminated area (AAP-6). contamination point de contrôle de contamination The deposit, absorption or adsorption of radioactive material, or of контрольно-пропускной пункт зоны заражения biological or chemical agents on or by structures, areas, personnel or objects (AAP-6). contamination заражение D decay contamination control The progressive reduction in intensity or viability of a chemical, The employment of policies, doctrine, equipment and procedures, biological or radioactive agent or material with respect to time to avoid, contain, reduce, remove or render harmless radiological, (AAP-21). biological or chemical contaminants (AAP-21). décroissance radioactive ослабление воздействия contrôle de contamination контроль заражения decontaminant Any substance used to encapsulate, remove, neutralise or diminish the toxicity of chemical, biological or radioactive contaminants (AAP-21). décontaminant обеззараживающее вещество NATO/RUSSIA UNCLASSIFIED 1-4 2007 NATO/RUSSIA UNCLASSIFIED PART 1 NATO and NATO-Russia Nuclear Terms and Definitions APPENDIX 1 Source References: AAP-6 : NATO Glossary of Terms and Definitions AAP-21 : NATO Glossary of NBC Terms and Definitions CP&MT : NATO-Russia Glossary of Contemporary Political and Military Terms 4. clearance decontamination. Decontamination of equipment and/or personnel on temporary or permanent removal from an operation to a standard sufficient to allow unrestricted decontamination transportation, maintenance, employment and disposal. The process of making any person, object, or area safe by décontamination pour clairance. absorbing, destroying, neutralising, making harmless, or removing полное
Recommended publications
  • Environmental Consequences of Nuclear War
    Environmental consequences of nuclear war Owen B. Toon, Alan Robock, and Richard P. Turco A regional war involving 100 Hiroshima-sized weapons would pose a worldwide threat due to ozone destruction and climate change. A superpower confrontation with a few thousand weapons would be catastrophic. Brian Toon is chair of the department of atmospheric and oceanic sciences and a member of the laboratory for atmospheric and space physics at the University of Colorado at Boulder. Alan Robock is a professor of atmospheric science at Rutgers University in New Brunswick, New Jersey. Rich Turco is a professor of atmospheric science at the University of California, Los Angeles. More than 25 years ago, three independent research ber of potential fatalities from a nuclear war and in the like- groups made valuable contributions to elaborating the conse- lihood of environmental consequences that threaten the bulk quences of nuclear warfare.1 Paul Crutzen and John Birks pro- of humanity. Unfortunately, that assumption is incorrect. In- posed that massive fires and smoke emissions in the lower at- deed, we estimate that the direct effects of using the 2012 ar- mosphere after a global nuclear exchange would create severe senals would lead to hundreds of millions of fatalities. The short-term environmental aftereffects. Extending their work, indirect effects would likely eliminate the majority of the two of us (Toon and Turco) and colleagues discovered “nuclear human population. winter,” which posited that worldwide climatic cooling from stratospheric smoke would cause agricultural collapse that Casualty and soot numbers threatened the majority of the human population with starva- Any of several targeting strategies might be employed in a tion.
    [Show full text]
  • Basics of Radiation Radiation Safety Orientation Open Source Booklet 1 (June 1, 2018)
    Basics of Radiation Radiation Safety Orientation Open Source Booklet 1 (June 1, 2018) Before working with radioactive material, it is helpful to recall… Radiation is energy released from a source. • Light is a familiar example of energy traveling some distance from its source. We understand that a light bulb can remain in one place and the light can move toward us to be detected by our eyes. • The Electromagnetic Spectrum is the entire range of wavelengths or frequencies of electromagnetic radiation extending from gamma rays to the longest radio waves and includes visible light. Radioactive materials release energy with enough power to cause ionizations and are on the high end of the electromagnetic spectrum. • Although our bodies cannot sense ionizing radiation, it is helpful to think ionizing radiation behaves similarly to light. o Travels in straight lines with decreasing intensity farther away from the source o May be reflected off certain surfaces (but not all) o Absorbed when interacting with materials You will be using radioactive material that releases energy in the form of ionizing radiation. Knowing about the basics of radiation will help you understand how to work safely with radioactive material. What is “ionizing radiation”? • Ionizing radiation is energy with enough power to remove tightly bound electrons from the orbit of an atom, causing the atom to become charged or ionized. • The charged atoms can damage the internal structures of living cells. The material near the charged atom absorbs the energy causing chemical bonds to break. Are all radioactive materials the same? No, not all radioactive materials are the same.
    [Show full text]
  • Cyber Warfare a “Nuclear Option”?
    CYBER WARFARE A “NUCLEAR OPTION”? ANDREW F. KREPINEVICH CYBER WARFARE: A “NUCLEAR OPTION”? BY ANDREW KREPINEVICH 2012 © 2012 Center for Strategic and Budgetary Assessments. All rights reserved. About the Center for Strategic and Budgetary Assessments The Center for Strategic and Budgetary Assessments (CSBA) is an independent, nonpartisan policy research institute established to promote innovative thinking and debate about national security strategy and investment options. CSBA’s goal is to enable policymakers to make informed decisions on matters of strategy, secu- rity policy and resource allocation. CSBA provides timely, impartial, and insight- ful analyses to senior decision makers in the executive and legislative branches, as well as to the media and the broader national security community. CSBA encour- ages thoughtful participation in the development of national security strategy and policy, and in the allocation of scarce human and capital resources. CSBA’s analysis and outreach focus on key questions related to existing and emerging threats to US national security. Meeting these challenges will require transforming the national security establishment, and we are devoted to helping achieve this end. About the Author Dr. Andrew F. Krepinevich, Jr. is the President of the Center for Strategic and Budgetary Assessments, which he joined following a 21-year career in the U.S. Army. He has served in the Department of Defense’s Office of Net Assessment, on the personal staff of three secretaries of defense, the National Defense Panel, the Defense Science Board Task Force on Joint Experimentation, and the Defense Policy Board. He is the author of 7 Deadly Scenarios: A Military Futurist Explores War in the 21st Century and The Army and Vietnam.
    [Show full text]
  • N° 4301 Assemblée Nationale
    N° 4301 ______ ASSEMBLÉE NATIONALE CONSTITUTION DU 4 OCTOBRE 1958 QUATORZIÈME LÉGISLATURE Enregistré à la Présidence de l’Assemblée nationale le 14 décembre 2016. RAPPORT D’INFORMATION DÉPOSÉ en application de l’article 145 du Règlement PAR LA COMMISSION DE LA DÉFENSE NATIONALE ET DES FORCES ARMÉES en conclusion des travaux d’une mission d’information (1) sur les enjeux industriels et technologiques du renouvellement des deux composantes de la dissuasion ET PRÉSENTÉ PAR MM. JEAN-JACQUES BRIDEY ET JACQUES LAMBLIN, Députés. —— (1) La composition de cette mission figure au verso de la présente page. La mission d’information sur les enjeux industriels et technologiques du renouvellement des deux composantes de la dissuasion est composée de : – MM. Jean-Jacques Bridey et Jacques Lamblin, rapporteurs ; – MM. Jean-Jacques Candelier, Nicolas Dhuicq, Mme Geneviève Fioraso, MM. Francis Hillmeyer, Philippe Meunier, et Mme Marie Récalde, membres. — 3 — SOMMAIRE ___ Pages INTRODUCTION ........................................................................................................... 7 PREMIÈRE PARTIE : POURQUOI RENOUVELER LES MOYENS DE LA DISSUASION NUCLÉAIRE ? ........................................................................... 11 I. CONSERVER LA PUISSANCE, PROTÉGER LA NATION ................................... 11 A. LA DISSUASION PARTICIPE DE LA GRANDEUR DE LA FRANCE .......... 11 1. L’héritage dissuasif ................................................................................................. 11 2. La dissuasion aujourd’hui
    [Show full text]
  • The Effects of Nuclear War
    The Effects of Nuclear War May 1979 NTIS order #PB-296946 Library of Congress Catalog Card Number 79-600080 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D C, 20402 — Foreword This assessment was made in response to a request from the Senate Committee on Foreign Relations to examine the effects of nuclear war on the populations and economies of the United States and the Soviet Union. It is intended, in the terms of the Committee’s request, to “put what have been abstract measures of strategic power into more comprehensible terms. ” The study examines the full range of effects that nuclear war would have on civilians: direct effects from blast and radiation; and indirect effects from economic, social, and politicai disruption. Particular attention is devoted to the ways in which the impact of a nuclear war would extend over time. Two of the study’s principal findings are that conditions would con- tinue to get worse for some time after a nuclear war ended, and that the ef- fects of nuclear war that cannot be calculated in advance are at least as im- portant as those which analysts attempt to quantify. This report provides essential background for a range of issues relating to strategic weapons and foreign policy. It translates what is generally known about the effects of nuclear weapons into the best available estimates about the impact on society if such weapons were used. It calls attention to the very wide range of impacts that nuclear weapons would have on a complex industrial society, and to the extent of uncertainty regarding these impacts.
    [Show full text]
  • Assemblée Nationale Constitution Du 4 Octobre 1958
    N° 260 —— ASSEMBLÉE NATIONALE CONSTITUTION DU 4 OCTOBRE 1958 DOUZIÈME LÉGISLATURE Enregistré à la Présidence de l'Assemblée nationale le 10 octobre 2002. AVIS PRÉSENTÉ AU NOM DE LA COMMISSION DE LA DÉFENSE NATIONALE ET DES FORCES ARMÉES, SUR LE PROJET DE loi de finances pour 2003 (n° 230) TOME II DÉFENSE DISSUASION NUCLÉAIRE PAR M. ANTOINE CARRE, Député. —— Voir le numéro : 256 (annexe n° 40) Lois de finances. — 3 — S O M M A I R E _____ Pages INTRODUCTION ................................................................................................................................ 5 I. — UNE DISSUASION GARDANT UNE PLACE CENTRALE DANS LES STRATEGIES DE DEFENSE, MAIS DONT LE ROLE EVOLUE........................................................................................ 7 A. LA DISSUASION NUCLEAIRE AMERICAINE : UNE VOLONTE DE FLEXIBILITE ACCRUE .................................................................................................................................... 7 B. UNE INQUIETANTE PROLIFERATION BALISTIQUE ET NUCLEAIRE ................................... 10 C. LA DISSUASION NUCLEAIRE FRANÇAISE : UNE POSTURE ADAPTEE A L’EVOLUTION DE LA MENACE .............................................................................................. 15 1. Une dissuasion nécessaire pour faire face à l’imprévisible ........................................ 15 2. Un outil d’ores et déjà adapté ......................................................................................... 16 II. — UN BUDGET 2003 PERMETTANT LA POURSUITE DE LA MODERNISATION
    [Show full text]
  • Radiation Basics
    Environmental Impact Statement for Remediation of Area IV \'- f Susana Field Laboratory .A . &at is radiation? Ra - -.. - -. - - . known as ionizing radiatios bScause it can produce charged.. particles (ions)..- in matter. .-- . 'I" . .. .. .. .- . - .- . -- . .-- - .. What is radioactivity? Radioactivity is produced by the process of radioactive atmi trying to become stable. Radiation is emitted in the process. In the United State! Radioactive radioactivity is measured in units of curies. Smaller fractions of the curie are the millicurie (111,000 curie), the microcurie (111,000,000 curie), and the picocurie (1/1,000,000 microcurie). Particle What is radioactive material? Radioactive material is any material containing unstable atoms that emit radiation. What are the four basic types of ionizing radiation? Aluminum Leadl Paper foil Concrete Adphaparticles-Alpha particles consist of two protons and two neutrons. They can travel only a few centimeters in air and can be stopped easily by a sheet of paper or by the skin's surface. Betaparticles-Beta articles are smaller and lighter than alpha particles and have the mass of a single electron. A high-energy beta particle can travel a few meters in the air. Beta particles can pass through a sheet of paper, but may be stopped by a thin sheet of aluminum foil or glass. Gamma rays-Gamma rays (and x-rays), unlike alpha or beta particles, are waves of pure energy. Gamma radiation is very penetrating and can travel several hundred feet in air. Gamma radiation requires a thick wall of concrete, lead, or steel to stop it. Neutrons-A neutron is an atomic particle that has about one-quarter the weight of an alpha particle.
    [Show full text]
  • N° 256 4 Partie ASSEMBLÉE NATIONALE
    Document mis en distribution le 23 octobre 2002 N° 256 4ème partie ______ ASSEMBLÉE NATIONALE CONSTITUTION DU 4 OCTOBRE 1958 DOUZIÈME LÉGISLATURE Enregistré à la Présidence de l'Assemblée nationale le 10 octobre 2002 RAPPORT FAIT AU NOM DE LA COMMISSION DES FINANCES, DE L’ÉCONOMIE GÉNÉRALE ET DU PLAN SUR LE PROJET DE loi de finances pour 2003 (n° 230), PAR M. GILLES CARREZ, Rapporteur Général, Député. —— ANNEXE N° 40 DÉFENSE Rapporteur spécial : M. FRANÇOIS d’AUBERT Député ____ Lois de finances. — 3 — SOMMAIRE — Pages 1ERE PARTIE DU RAPPORT INTRODUCTION AVANT-PROPOS : OU EN EST L’EUROPE DE LA DEFENSE 2EME PARTIE DU RAPPORT II.– LES DÉPENSES D’ÉQUIPEMENT : UN PILOTAGE AMELIORE 3EME PARTIE DU RAPPORT III.– L’ENVIRONNEMENT DES FORCES 4EME PARTIE DU RAPPORT IV.– L’EXECUTION DES GRANDS PROGRAMMES ......................................................5 A.– LA DISSUASION...................................................................................................5 1.– Les crédits transférés au commissariat à l’énergie atomique ..............7 2.– La force océanique stratégique ..........................................................10 a) Les sous-marins.........................................................................................10 b) Les missiles balistiques..............................................................................12 3.– La composante aéroportée ................................................................13 B.– COMMUNICATION ET RENSEIGNEMENT........................................................14
    [Show full text]
  • Nuclear Deterrence and Conventional Conflict
    VIEW Sticks and Stones Nuclear Deterrence and Conventional Conflict DR. KATHRYN M.G. BOEHLEFELD n the night of 15 June 2020, Sino- Indian tensions flared into fighting along the disputed border in the region known as the Galwan Valley. The fighting led to the first casualties along the border in 45 years. However, Ono one on either side fired a single shot.1 Instead, soldiers threw rocks and used wooden clubs wrapped in barbed wire to attack one another. Two of the most powerful armies in the world, both of which possess nuclear weapons, clashed with one another using sticks and stones. Nuclear weapons prevent nuclear states from engaging in large-scale conven- tional war with one another, or at least, the existence of such advanced weapons has correlated with a significant decrease in conventional war between nuclear- armed adversaries over the past 80 years. Nuclear weapons tend to make nuclear adversaries wearier of engaging in conventional warfare with one another because they fear inadvertent escalation: that a war will spiral out of control and end in a nuclear exchange even if the war’s aims were originally fairly limited. However, this fear has not fully prevented the Chinese and Indian militaries from engaging in skirmishes, like the one that occurred in June 2020. Where does escalation to- ward nuclear war start, and what does this conflict teach both us and major world players about the dangers and opportunities associated with low levels of conflict between nuclear powers? Escalation to nuclear use may occur as a deliberate and premeditated choice or inadvertently as the result of a security dilemma, the offensive nature of militaries, and/or due to the fog of war.2 This article argues that the Sino- Indian border dispute demonstrates that the drivers of inadvertent escalation may be present even at exceptionally low levels of conflict.
    [Show full text]
  • Understanding NBC Warfare
    FM 3-100/MCWP 3-3.7.1 The end of the Cold War and the disintegration of the antipathy toward the US — may use WMD to Warsaw Pact introduced a complex strategic escalate the conflict. So, potential use of these environment. That environment is multi-polar, weapons has become a major cause of destabilization interdependent, and regionally oriented. Emerging in regional conflict. powers are rapidly transforming the strategic The lessened chance of global confrontation and a landscape and exhibiting new trends. One such trend concomitant rise in regional instability and conflict is the changing nature of regional conflict. It is an are new realities. We cannot say the threat of WMD alarming prospect that developing nations, with in Europe is extinct. We can only say that it is hostility towards the US, may have nuclear, lessened by the contemporary political climate. While biological, and chemical (NBC) munitions — traditional superpowers no longer have political aims weapons of mass destruction (WMD). The growth of that would justify using these weapons, widespread these weapons increases the chance that many nations growth in developing nations increases their could use them. So, potential use of WMD likelihood of use. dramatically alters the nature of regional conflict across the continuum of operations. The growth of WMD in the developing nations is an arms race within an arms race. Major world powers The premises of the Cold War, rooted in superpower continue to reduce their inventory of conventional adversarial relationships, give way to a new strategic weapons and WMD. However, a significant number pragmatism based on diversified, regional threats that of developing.“ nations maintain ambitious arms may have WMD.
    [Show full text]
  • MIRD Pamphlet No. 22 - Radiobiology and Dosimetry of Alpha- Particle Emitters for Targeted Radionuclide Therapy
    Alpha-Particle Emitter Dosimetry MIRD Pamphlet No. 22 - Radiobiology and Dosimetry of Alpha- Particle Emitters for Targeted Radionuclide Therapy George Sgouros1, John C. Roeske2, Michael R. McDevitt3, Stig Palm4, Barry J. Allen5, Darrell R. Fisher6, A. Bertrand Brill7, Hong Song1, Roger W. Howell8, Gamal Akabani9 1Radiology and Radiological Science, Johns Hopkins University, Baltimore MD 2Radiation Oncology, Loyola University Medical Center, Maywood IL 3Medicine and Radiology, Memorial Sloan-Kettering Cancer Center, New York NY 4International Atomic Energy Agency, Vienna, Austria 5Centre for Experimental Radiation Oncology, St. George Cancer Centre, Kagarah, Australia 6Radioisotopes Program, Pacific Northwest National Laboratory, Richland WA 7Department of Radiology, Vanderbilt University, Nashville TN 8Division of Radiation Research, Department of Radiology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark NJ 9Food and Drug Administration, Rockville MD In collaboration with the SNM MIRD Committee: Wesley E. Bolch, A Bertrand Brill, Darrell R. Fisher, Roger W. Howell, Ruby F. Meredith, George Sgouros (Chairman), Barry W. Wessels, Pat B. Zanzonico Correspondence and reprint requests to: George Sgouros, Ph.D. Department of Radiology and Radiological Science CRB II 4M61 / 1550 Orleans St Johns Hopkins University, School of Medicine Baltimore MD 21231 410 614 0116 (voice); 413 487-3753 (FAX) [email protected] (e-mail) - 1 - Alpha-Particle Emitter Dosimetry INDEX A B S T R A C T.........................................................................................................................
    [Show full text]
  • Interim Guidelines for Hospital Response to Mass Casualties from a Radiological Incident December 2003
    Interim Guidelines for Hospital Response to Mass Casualties from a Radiological Incident December 2003 Prepared by James M. Smith, Ph.D. Marie A. Spano, M.S. Division of Environmental Hazards and Health Effects, National Center for Environmental Health Summary On September 11, 2001, U.S. symbols of economic growth and military prowess were attacked and thousands of innocent lives were lost. These tragic events exposed our nation’s vulnerability to attack and heightened our awareness of potential threats. Further examination of the capabilities of foreign nations indicate that terrorist groups worldwide have access to information on the development of radiological weapons and the potential to acquire the raw materials necessary to build such weapons. The looming threat of attack has highlighted the vital role that public health agencies play in our nation’s response to terrorist incidents. Such agencies are responsible for detecting what agent was used (chemical, biological, radiological), event surveillance, distribution of necessary medical supplies, assistance with emergency medical response, and treatment guidance. In the event of a terrorist attack involving nuclear or radiological agents, it is one of CDC’s missions to insure that our nation is well prepared to respond. In an effort to fulfill this goal, CDC, in collaboration with representatives of local and state health and radiation protection departments and many medical and radiological professional organizations, has identified practical strategies that hospitals can refer
    [Show full text]