Overview of ESSL's Severe Convective Storms Research Using the European Severe Weather Database ESWD
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tropical Cyclone Report for Hurricane Ivan
Tropical Cyclone Report Hurricane Ivan 2-24 September 2004 Stacy R. Stewart National Hurricane Center 16 December 2004 Updated 27 May 2005 to revise damage estimate Updated 11 August 2011 to revise damage estimate Ivan was a classical, long-lived Cape Verde hurricane that reached Category 5 strength three times on the Saffir-Simpson Hurricane Scale (SSHS). It was also the strongest hurricane on record that far south east of the Lesser Antilles. Ivan caused considerable damage and loss of life as it passed through the Caribbean Sea. a. Synoptic History Ivan developed from a large tropical wave that moved off the west coast of Africa on 31 August. Although the wave was accompanied by a surface pressure system and an impressive upper-level outflow pattern, associated convection was limited and not well organized. However, by early on 1 September, convective banding began to develop around the low-level center and Dvorak satellite classifications were initiated later that day. Favorable upper-level outflow and low shear environment was conducive for the formation of vigorous deep convection to develop and persist near the center, and it is estimated that a tropical depression formed around 1800 UTC 2 September. Figure 1 depicts the “best track” of the tropical cyclone’s path. The wind and pressure histories are shown in Figs. 2a and 3a, respectively. Table 1 is a listing of the best track positions and intensities. Despite a relatively low latitude (9.7o N), development continued and it is estimated that the cyclone became Tropical Storm Ivan just 12 h later at 0600 UTC 3 September. -
Skywarn Storm Spotter Guide
Skywarn Storm Spotter Guide ...For Western Nevada and Eastern California... National Weather Service Reno, Nevada CONTENTS Introduction........................................................................................................... 3 A Note to Amateur Radio Operators..................................................................... 4 Who to Call........................................................................................................... 5 NWS Reno County Warning Area Map ................................................................ 6 What to Report -Tornadoes / Severe Thunderstorms ......................................................... 7 -Heavy Rain/Flooding ................................................................................ 8 -Winter Storms......................................................................................... 10 -Fog/Other ............................................................................................... 11 Estimating Precipitation Intensity........................................................................ 12 Beaufort Wind Scale........................................................................................... 13 Handy Dandy Hail Size Estimator....................................................................... 14 After the Storm ................................................................................................... 15 Watch/Warning/Advisory Criteria........................................................................ 16 Sources -
Squall Lines: Meteorology, Skywarn Spotting, & a Brief Look at the 18
Squall Lines: Meteorology, Skywarn Spotting, & A Brief Look At The 18 June 2010 Derecho Gino Izzi National Weather Service, Chicago IL Outline • Meteorology 301: Squall lines – Brief review of thunderstorm basics – Squall lines – Squall line tornadoes – Mesovorticies • Storm spotting for squall lines • Brief Case Study of 18 June 2010 Event Thunderstorm Ingredients • Moisture – Gulf of Mexico most common source locally Thunderstorm Ingredients • Lifting Mechanism(s) – Fronts – Jet Streams – “other” boundaries – topography Thunderstorm Ingredients • Instability – Measure of potential for air to accelerate upward – CAPE: common variable used to quantify magnitude of instability < 1000: weak 1000-2000: moderate 2000-4000: strong 4000+: extreme Thunderstorms Thunderstorms • Moisture + Instability + Lift = Thunderstorms • What kind of thunderstorms? – Single Cell – Multicell/Squall Line – Supercells Thunderstorm Types • What determines T-storm Type? – Short/simplistic answer: CAPE vs Shear Thunderstorm Types • What determines T-storm Type? (Longer/more complex answer) – Lot we don’t know, other factors (besides CAPE/shear) include • Strength of forcing • Strength of CAP • Shear WRT to boundary • Other stuff Thunderstorm Types • Multi-cell squall lines most common type of severe thunderstorm type locally • Most common type of severe weather is damaging winds • Hail and brief tornadoes can occur with most the intense squall lines Squall Lines & Spotting Squall Line Terminology • Squall Line : a relatively narrow line of thunderstorms, often -
SKYWARN Detailed Documentation
SKYWARN Detailed Documentation NWS Terminology Convective Outlook Categories Risk Description 0 - Delineates, to the right of a line, where a 10% or greater probability of General thunderstorms is forecast during the valid period. 1 - An area of severe storms of either limited organization and longevity, or very low Marginal coverage and marginal intensity. An area of organized severe storms, which is not widespread in coverage with 2 - Slight varying levels of intensity. 3 - An area of greater (relative to Slight risk) severe storm coverage with varying Enhanced levels of intensity. An area where widespread severe weather with several tornadoes and/or numerous 4 - severe thunderstorms is likely, some of which should be intense. This risk is Moderate usually reserved for days with several supercells producing intense tornadoes and/or very large hail, or an intense squall line with widespread damaging winds. An area where a severe weather outbreak is expected from either numerous intense and long-tracked tornadoes or a long-lived derecho-producing thunderstorm complex that produces hurricane-force wind gusts and widespread damage. This 5 - High risk is reserved for when high confidence exists in widespread coverage of severe weather with embedded instances of extreme severe (i.e., violent tornadoes or very damaging convective wind events). Hazardous Weather Risks Risk Description An advisory is issued when a hazardous weather or hydrologic event is occurring, imminent, or likely. Advisories are for "less serious" conditions than warnings that may cause significant inconvenience, and if caution is not exercised could lead to Advisory situations that may threaten life or property. The National Weather Service may activate weather spotters in areas affected by advisories to help them better track and analyze the event. -
2005 SKYWARN Agenda
2019 ND Severe Summer Weather Awareness Week Fact Sheet Are you Weather-Ready? North Dakota Severe Summer Weather Awareness Week is set for April 29 through May 3, 2019. Awareness weeks in North Dakota are joint efforts of many agencies, including but not limited to, FEMA (Federal Emergency Management Agency), NDDES (North Dakota Department of Emergency Services), the North Dakota Broadcasters Association, your local emergency manager, and NWS (National Weather Service). Local emergency managers and media partners get the word out about severe weather in North Dakota, helping people to be prepared. Severe Summer Weather Awareness Week is designed to heighten awareness about the coming severe weather season. In this case, to get us thinking less about winter storms and more about thunderstorm hazards such as lightning, hail, high wind, flash floods, and tornadoes. FEMA recommends in their "America's PrepareAthon!" initiative - Be Smart (informed), Take Part (practice drills), and Prepare (have a plan). Be Ready! On Wednesday, May 1, we recommend practicing tornado drills in communities, at schools, at places of business, and at home. Each community, school district, county and Tribal Government will decide whether or not to practice drills and to what extent. Some schools and businesses / factories will conduct a drill for their students / staff / employees and some will not. Some communities will test outdoor warning sirens and some will not. The NWS has no authority over what action is or is not taken. That decision is left to local officials and business owners. We do, of course, recommend safety measures be reviewed and drills be practiced. -
Use of the European Severe Weather Database to Verify Satellite-Based Storm Detection Or Nowcasting
USE OF THE EUROPEAN SEVERE WEATHER DATABASE TO VERIFY SATELLITE-BASED STORM DETECTION OR NOWCASTING Nikolai Dotzek1,2, Caroline Forster1 1 Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, 82234 Wessling, Germany 2 European Severe Storms Laboratory, Münchner Str. 20, 82234 Wessling, Germany Abstract Severe thunderstorms constitute a major weather hazard in Europe, with an estimated total damage of € 5-8 billion each year. Yet a pan-European database of severe weather reports in a homogeneous data format has become available only recently: the European Severe Weather Database (ESWD). We demonstrate the large potential of ESWD applications for storm detection and forecast or now- casting/warning verification purposes. The study of five warm-season severe weather days in Europe from 2007 and 2008 revealed that up to 47% of the ESWD reports were located exactly within the polygons detected by the Cb-TRAM algorithm for three different stages of deep moist convection. The cool-season case study of extratropical cyclone “Emma” on 1 March 2008 showed that low-topped winter thunderstorms can provide a challenge for satellite storm detection and nowcasting adapted to warm-season storms with high, cold cloud tops. However, this case also demonstrated how ESWD reports alone can still be valuable to identify the hazardous regions along the cold front of the cyclone. 1. INTRODUCTION Severe thunderstorms, with their attendant strong winds, hail, flooding, and tornadoes, are common phenomena in many European countries, leading to a total damage estimate of 5 to 8 billion euros per year (source: Munich Re Group). Extreme events like an F4 tornado in France and an F3 downburst in Austria in 2008 exemplify these damage totals. -
SKYWARN TRAINING in LEE COUNTY Americans Live in The
SKYWARN TRAINING IN LEE COUNTY Americans live in the most severe weather-prone country on Earth. Each year, Americans cope with an average of 10,000 thunderstorms, 2,500 floods, 1,000 tornadoes, as well as an average of 6 deadly hurricanes. Some 90% of all presidentially declared disasters are weather related, leading to around 500 deaths per year and nearly $14 billion in damage. What can you do to help protect yourself, your family, and neighbors? Consider becoming a trained SKYWARN Spotter. A trained spotter knows the weather threats in Florida, safety rules, and visual clues regarding thunderstorm strength. You can attend the training even if you do not want to be an official spotter. SKYWARN is a program sponsored by your National Weather Service (NWS) consisting of trained weather spotters who provide reports of severe and hazardous weather to help in the warning process. SKYWARN spotter reports provide vital "ground truth" to the NWS. The reports serve the NWS mission of protecting life and property in 3 ways: assist in present and future warning decisions, confirm hazardous weather detected by NWS radar, and provide verification information which can be used for future research efforts. SKYWARN is a volunteer public service for those 18 years or older. Individuals under 18 may attend the training; however they will not receive a Storm Spotter number. A certificate of Attendance will be given to them. Each year our Spotters donate their time and efforts to help the NWS issue severe weather warnings. A NOAA Weather radio will also -
Extreme Weather Events in Europe: Preparing for Climate Change Adaptation
Extreme Weather Events in Europe: preparing for climate change adaptation October 2013 ISBN (print) 978-82-7144-100-5 ISBN (electronic) 978-82-7144-101-2 In cooperation with This report can be found at www.dnva.no Produced by the Norwegian Meteorological Institute Extreme Weather Events in Europe: preparing for climate change adaptation Øystein Hov, Ulrich Cubasch, Erich Fischer, Peter Höppe, Trond Iversen, Nils Gunnar Kvamstø, Zbigniew W. Kundzewicz, Daniela Rezacova, David Rios, Filipe Duarte Santos, Bruno Schädler, Ottó Veisz, Christos Zerefos, Rasmus Benestad, John Murlis, M. Donat, Gregor C. Leckebusch, Uwe Ulbrich. Extreme Weather Events in Europe: preparing for climate change adaptation In cooperation with CONTRIBUTORS Professor Øystein Hov, Norwegian Meteorological Institute, Norway† Professor Ulrich Cubasch, Free University of Berlin, Germany* Dr Erich Fischer, Institute for Atmospheric and Climatic Science, ETH Zurich, Switzerland* Professor Peter Höppe, Geo Risks Research/Corporate Climate Centre, Munich Re, Germany* Professor Trond Iversen, Norwegian Meteorological Institute, Norway* Professor Nils Gunnar Kvamstø, Department of Geophysics, University of Bergen, Norway* Professor Zbigniew W. Kundzewicz, Polish Academy of Sciences, Warsaw, Poland* Professor Daniela Rezacova, Institute of Atmospheric Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic* Professor David Rios, Royal Academy of Sciences, Spain* Professor Filipe Duarte Santos, Lisbon University, Portugal* Dr Bruno Schädler, University of Berne, Switzerland* Professor Ottó Veisz, Agricultural Research Institute of the Hungarian Academy of Sciences, Budapest, Hungary* Professor Christos Zerefos, University of Athens, Greece* Dr Rasmus Benestad (Working Group Researcher), Norwegian Meteorological Institute, Oslo, Norway Professor John Murlis, EASAC Environment Programme Secretary Dr M. Donat, Institut für Meteorologie, Freie Universität Berlin, Germany; now at Climate Change Research Centre, University of New South Wales, Sydney, Australia Dr Gregor C. -
Lightning Injuries in Northern Ireland Aseel Sleiwah1, Jill Baker2, Christopher Gowers3, Derek M Elsom4, Abid Rashid5
Ulster Med J 2018;87(3):168-172 Clinical Paper Lightning injuries in Northern Ireland Aseel Sleiwah1, Jill Baker2, Christopher Gowers3, Derek M Elsom4, Abid Rashid5. Accepted: 25th January 2018 Provenance: externally peer-reviewed. ABSTRACT Introduction: Lightning injuries are uncommon in Northern Ireland (NI) with scarce reports detailing incidence and local experience. We present a case study of 3 patients involved in a single lightning strike with a review of the incidence of similar injuries in the province. Methods: Data from TORRO’s National Lightning Incidents Database between 1987 and 2016 (30 years) were searched to identify victims of lightning injuries in NI. Information on 3 patients with lightning injuries that were managed in our regional burns and plastic surgery service was collected and examined. A supplementary search in hospital records was conducted over the last 20 years to identify additional data. Results: Prior to our study, 6 victims of lightning injuries were identified of whom 5 survived and 1 died. Our 3 patients comprised of 2 children and 1 accompanying adult. All survived but the adult suffered cardiac arrest and required a prolonged period of cardiopulmonary resuscitation. Conclusion: While lightning injuries are rare in NI, this is the first report of more than one person affected by a single lightning incident in the province. In our limited experience, immediate public response and prolonged cardiopulmonary resuscitation efforts facilitated by automated defibrillators result in a favourable outcome. BACKGROUND: off-duty soldier struck on the Mourne Mountains in 2006. In the United Kingdom (UK), lightning strikes are relatively The hospital data search did not identify any other cases. -
Title Author(S)
th 5 European Conference on Severe Storms 12 - 16 October 2009 - Landshut - GERMANY ECSS 2009 Abstracts by session ECSS 2009 - 5th European Conference on Severe Storms 12-16 October 2009 - Landshut – GERMANY List of the abstract accepted for presentation at the conference: O – Oral presentation P – Poster presentation Session 09: Severe storm case studies and field campaigns, e.g. COPS, THORPEX, VORTEX2 Page Type Abstract Title Author(s) An F3 downburst in Austria - a case study with special G. Pistotnik, A. M. Holzer, R. 265 O focus on the importance of real-time site surveys Kaltenböck, S. Tschannett J. Bech, N. Pineda, M. Aran, J. An observational analysis of a tornadic severe weather 267 O Amaro, M. Gayà, J. Arús, J. event Montanyà, O. van der Velde Case study: Extensive wind damage across Slovenia on July M. Korosec, J. Cedilnik 269 O 13th, 2008 Observed transition from an elevated mesoscale convective J. Marsham, S. Trier, T. 271 O system to a surface based squall line: 13th June, Weckwerth, J. Wilson, A. Blyth IHOP_2002 08/08/08: classification and simulation challenge of the A. Pucillo, A. Manzato 273 O FVG olympic storm H. Bluestein, D. Burgess, D. VORTEX2: The Second Verification of the Origins of Dowell, P. Markowski, E. 275 O Rotation in Tornadoes Experiment Rasmussen, Y. Richardson, L. Wicker, J. Wurman Observations of the initiation and development of severe A. Blyth, K. Browning, J. O convective storms during CSIP Marsham, P. Clark, L. Bennett The development of tornadic storms near a surface warm P. Groenemeijer, U. Corsmeier, 277 O front in central England during the Convective Storm C. -
Skywarn Weather Spotter Powerpoint Presentation
Skywarn Weather Spotter Training 2020 Spring Sessions www.weather.gov/albany NWSAlbany @NWSAlbany NWSAlbany Outline I. Area of Responsibility II. Spotter Safety III. Severe Weather Information IV. Thunderstorm Development V. Lightning VI. Hail VII. Damaging Winds VIII.Cloud formations IX. Tornadoes X. Timeliness of Reports XI. Excessive Rainfall and Flooding XII. New York Mesonet XIII.CoCoRaHS XIV.QUIZ XV.Certificate Area of Responsibility • 15 NY Counties • 2 VT Counties • 1 MA County • 1 CT County • 1/3 of our forecast area is at elevations of 1500 feet and above! Hydrologic Area of Responsibility Skywarn Safety Awareness Communication Escape routes Safety zones Your Safety is ALWAYS #1 Skywarn Safety Heat Safety Heat Index = Temperature + Humidity Heat Advisory Excessive Heat Warning Heat Index >= 95° Heat Index >= 105°F What is a Skywarn Spotter? Skywarn Spotter Information Sheet Timeline of Severe Weather Products Hazardous Weather .SPOTTER INFORMATION STATEMENT ... Outlook Mesoscale Discussion 0289 NWS Storm Prediction Center Norman OK CoordinationPRELIMINARY LOCAL1212 STORMPM EDT REPORT Mon May 07 2018 withNATIONAL the Storm WEATHERAreas SERVICE affected...Portions ALBANY NY of eastern New York Prediction 326 PM EDT MONConcerning...Severe MAY 07 2018 potential...Watch possible Center ..TIME... ...EVENT... URGENT ...CITY – IMMEDIATELOCATION... BROADCAST ...LAT.LON... REQUESTED ..DATE... Watch ....MAG.... Issued Severe ..COUNTY Thunderstorm LOCATION..ST.. Watch Number ...SOURCE.... 46 for ..REMARKS..a large area NWS Storm Prediction Center Norman OK (multiple 245 PM EDT Mon May 7 2018 counties or 0325 PM TSTMstates) WND DMG 1 SE COHOES 42.77N 73.70W 05/07/2018 ALBANY The NWS StormNY Prediction Center COUNTY has OFFICIALissued a * Severe Thunderstorm Watch for portions of eastern New Y ork MULTIPLE TREES AND BRANCHES DOWN. -
Overview of ESSL's Severe Convective Storms Research Using The
Revision submitted to Atmos. Res., Manuscript No. ATMOSRES-D-07-00255R1 Overview of ESSL’s severe convective storms research using the European Severe Weather Database ESWD Nikolai Dotzek1,2,*, Pieter Groenemeijer3,1, Bernold Feuerstein4,1, and Alois M. Holzer5,1 1 European Severe Storms Laboratory (ESSL), Münchner Str. 20, 82234 Wessling, Germany 2 Deutsches Zentrum für Luft- und Raumfahrt (DLR) - Institut für Physik der Atmosphäre, Oberpfaffenhofen, 82234 Wessling, Germany 3 Institut für Meteorologie und Klimaforschung, Forschungszentrum/Universität Karlsruhe, Postfach 3640, 76021 Karlsruhe, Germany 4 Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany 5 HD1 Weather Forecasting Department, ORF Austrian Broadcasting Corporation, Argentinierstr. 30a, 1040 Wien, Austria Special Issue: Proc. 4th European Conf. on Severe Storms Received 2 December 2007, revised 12 October 2008 * Corresponding Author: Dr. Nikolai Dotzek, European Severe Storms Laboratory (ESSL), c/o DLR-IPA, Münchner Str. 20, 82234 Wessling, Germany. Tel: +49-8153-28-1845, Fax: +49-8153-28-1841, eMail: [email protected], http://essl.org/people/dotzek/ 1 1 Abstract 2 3 Severe thunderstorms constitute a major weather hazard in Europe, with an 4 estimated total damage of 5-8 billion euros each year nowadays. Even 5 though there is an upward trend in damage due to increases in vulnerability 6 and possibly also due to climate change impacts, a pan-European database 7 of severe thunderstorm reports in a homogeneous data format did not exist 8 until a few years ago. The development of this European Severe Weather 9 Database (ESWD) provided the final impetus for the establishment of the 10 European Severe Storms Laboratory (ESSL) as a non-profit research 11 organisation in 2006, after having started as an informal network in 2002.