Title Author(S)

Total Page:16

File Type:pdf, Size:1020Kb

Title Author(S) th 5 European Conference on Severe Storms 12 - 16 October 2009 - Landshut - GERMANY ECSS 2009 Abstracts by session ECSS 2009 - 5th European Conference on Severe Storms 12-16 October 2009 - Landshut – GERMANY List of the abstract accepted for presentation at the conference: O – Oral presentation P – Poster presentation Session 09: Severe storm case studies and field campaigns, e.g. COPS, THORPEX, VORTEX2 Page Type Abstract Title Author(s) An F3 downburst in Austria - a case study with special G. Pistotnik, A. M. Holzer, R. 265 O focus on the importance of real-time site surveys Kaltenböck, S. Tschannett J. Bech, N. Pineda, M. Aran, J. An observational analysis of a tornadic severe weather 267 O Amaro, M. Gayà, J. Arús, J. event Montanyà, O. van der Velde Case study: Extensive wind damage across Slovenia on July M. Korosec, J. Cedilnik 269 O 13th, 2008 Observed transition from an elevated mesoscale convective J. Marsham, S. Trier, T. 271 O system to a surface based squall line: 13th June, Weckwerth, J. Wilson, A. Blyth IHOP_2002 08/08/08: classification and simulation challenge of the A. Pucillo, A. Manzato 273 O FVG olympic storm H. Bluestein, D. Burgess, D. VORTEX2: The Second Verification of the Origins of Dowell, P. Markowski, E. 275 O Rotation in Tornadoes Experiment Rasmussen, Y. Richardson, L. Wicker, J. Wurman Observations of the initiation and development of severe A. Blyth, K. Browning, J. O convective storms during CSIP Marsham, P. Clark, L. Bennett The development of tornadic storms near a surface warm P. Groenemeijer, U. Corsmeier, 277 O front in central England during the Convective Storm C. Kottmeier Initiation Project (CSIP) Impact of Dryline Misocyclones on Convection Initiation on Y. Richardson, C. L. Ziegler, M. 279 O 19 June 2002 during IHOP Buban, J. Marquis, J. Wurman A. Dörnbrack, G. Craig, S. Jones, O T-NAWDEX - Basic Research allied to the future of NWP H. Wernli P Analysis of multicell storm development on 22 May 2007 N. Pavlovic Berdon 281 P The Balkan cyclone M. Stojanovic Storm-scale radar observations of supercells observed M. I. Biggerstaff, C. Ziegler, D. P during VORTEX2 Betten, T. Thompson, D. Burgess The January 2009 precipitation extremes over Calabria F. Fusto P region, Southern Italy Severe Winter Storms over the Western and Central State of A. M. Gomes, G. Held 283 P São Paulo, Brazil HARE – A new intelligent hail recorder for networks and M. Löffler-Mang 285 P field campaigns 263 Page Type Abstract Title Author(s) M. Parker, A. French, C. Mobile sounding measurements of the near storm 287 P Letkewicz, M. Morin, K. environment during VORTEX2 Rojowsky, D. Stark, G. H. Bryan Y. Richardson, P. Markowski, J. 289 P Mobile mesonet observations in VORTEX2 Wurman, K. Kosiba K. Kosiba, J. Wurman, Y. P Mesocyclone-scale mobile radar observations in VORTEX2 Richardson, P. Markowski Thunder Activity With Heavy Rain Over Egypt In Early P F. M. El Ashmawy, A. L. Essawy Spring J. Egaña, S. Gaztelumendi, D. Convective storms over Basque Country: June 2008 cases 291 P Pierna, I. R. Gelpi, K. Otxoa de study Alda Study of microphysical and thermodynamic structures K. Friedrich, R. Humphrey, J. P within supercell thunderstorms Wurman, K. Kosiba H. Y. Inoue, K. Kusunoki, W. High resolution X-band Doppler radar observation of 293 P Mashiko, S. Hayashi, H. misocyclones along the convergence line Yamauchi Very strong convection at the Baltic coast of Lithuania on 295 P I. Marcinoniene 25 November 2008 K. Kusunoki, H. Inoue, W. Mashiko, S. Hayashi, W. Kato, K. Wind gust and storm evolutions observed during the Shonai 297 P Araki, K. Bessho, S. Hoshino, M. Area Railroad Weather Project: A preliminary survey Nakazato, T. Imai, Y. Hono, T. Takemi, T. Fukuhara, T. Shibata A case study of severe convection over Central Europe with D. Plačko-Vrsnac, N. Strelec- 299 P a detailed analysis of development over Croatia on 22 nd Mahovic and 23 rd June 2007 T. Púčik, M. Francová, D. Rýva, 301 P Derecho on the 25th June 2008 M. Kolář Case study of severe windstorm over Slovakia and Hungary A. Simon, J. Kanák, A. Sokol, M. 303 P on 25 June 2008 Putsay, L. Uhrínová, K. Csirmaz N. Strelec-Mahovic, D. Plačko- P Snowstorm in southern Croatia, 18 February 2009 Vrsnac Examination of two severe thunderstorm events in southern 305 P H. Tuschy, M. Hagen, G. J. Mayr Germany Comparison of detailed model results of MCS with radar B. White, A. Blyth, J. Marsham, P observations during CSIP K. Browning 264 5h European Conference on Severe Storms 12 - 16 October 2009 - Landshut - GERMANY AN F3 DOWNBURST IN AUSTRIA – A CASE STUDY WITH SPECIAL FOCUS ON THE IMPORTANCE OF REAL-TIME SITE SURVEYS Georg Pistotnik1, Alois Martin Holzer2, Rudolf Kaltenböck3, Simon Tschannett4 1Central Institute for Meteorology and Geodynamics, Austria, [email protected] 2European Severe Storms Laboratory e.V., Germany, [email protected] 3Austrocontrol, Aeronautical Meteorological Service, Austria, [email protected] 4Weatherpark GmbH, Meteorological Research and Services, Austria, [email protected] (Dated: 15 September 2009) I. INTRODUCTION On March 1st of 2008, the powerful late winter cyclone “Emma” caused widespread damage over Central Europe. Embedded in the synoptic-scale storm field, deep convection along the cold front resulted in a significant enhancement of gusts in some places, peaking in an unusually strong downburst in a sparsely populated area near Braunau (Austria). Only a site survey revealed the extraordinary intensity of this downburst that vividly contrasted with its sparse media coverage. This study aims to elaborate how the assessment of this case would have taken a significantly different outcome without the accomplishment of this site survey. FIG. 1: MSG RGB “airmass product” image at 08:00 UTC on st II. PRESENTATION OF RESEARCH March 1 of 2008, and detected lightning within the last hour (Schipper et al., 2008). Cyclone “Emma” formed near Newfoundland and travelled eastward over the Northern Atlantic Ocean on the last days of February 2008, where it encountered an increasingly favourable environment for intensification until it reached its minimum central pressure and its maximum strength over Southern Scandinavia on March 1st. As its cold front raced south-eastward over the Netherlands and Germany in the morning hours of this day, it was overrun by a dry intrusion, a process well-known to favour the formation of a convective line along the cold front as it creates potential instability which is ready to be released by the forced ascent of cyclonic vorticity advection (CVA). Extremely dry stratospheric air is visible by the purple colour in the Meteosat “airmass product” image at 08 UTC in Fig. 1. The arrival of this dry intrusion and the superimposed forced ascent of a strong CVA maximum caused the cold front to obtain a “split front” character (Schipper et al., 2008), with a dissolving high cloud shield and incipient cooling of the upper troposphere ahead of the FIG. 2: “INCA” temperature analysis (Haiden et al., 2009) at 10:00 st surface cold front which is hence marked by an intensifying UTC, March 1 of 2008, when the cold front has just entered convective line, showing an unusual high amount of Northern Austria. Location of Braunau is denoted by the black “x”. lightning as it moved over Germany towards the Czech Republic and Austria. Evaporative cooling caused by the The circumstances enabling the formation of this falling precipitation encountering dry environmental air extraordinary local storm can be regarded as a coincidence provoked the formation of a strong cold pool immediately of supporting factors over a wide range of scales, from the behind the surface front (Fig. 2), further increasing the synoptic scale (i.e., the presence of a strong frontal zone) via temperature and pressure gradient and thus accelerating the the mesoscale (i.e., the interaction between the dry intrusion propagation of the convective line that was accompanied by and the cold front) to small scales, whose processes severe wind gusts in many places. The series of downbursts determined the final position and strength of this downburst finally culminated in the Braunau event at 09:46 UTC. event while remaining mostly concealed even to the most alert meteorologist’s eye. The authors of this study encountered a similar scale-cascade while moving their 265 5h European Conference on Severe Storms 12 - 16 October 2009 - Landshut - GERMANY attention from the confusing and widespread synoptic-scale revealed that the damage extent in the core of this downburst storm damages via mesoscale areas of even more reached T5 and locally even T6 intensity (Hubrig, 2004), pronounced downburst signs to the remote but incredible corresponding to upper F2 and locally lower F3 intensity on marks of this “king storm” near Braunau, strikingly closing the Fujita scale (Fig. 3). Thus, even the most conservative the circle between storm synthesis and storm analysis. valuation of the involved wind speed yields maximum gusts The accomplishment of the site survey was not only of at least 200 km/h, turning this event into the strongest based on meteorological ambition and supportive downburst ever documented in Austria (Fig. 4). arrangements but also on (too much of) chances and luck: if this downburst had not hit and severely damaged the III. RESULTS AND CONCLUSIONS infrastructure of a large electricity supplier, the means and Embedded in the synoptic-scale storm field of the powerful ways to perform a thorough site survey would never have late winter cyclone “Emma”, an F3 downburst occurred near unfolded, leaving this case rather buried in oblivion than Braunau (Austria) on March 1st of 2008. Only a thorough finding its way into scientific literature. site survey revealed the nature, the whole extent and extraordinary intensity of this event that received little attention in the media as it affected a sparsely populated area and was dwarfed by superficially more spectacular damage events occurring within cities, disrupting major traffic routes and / or causing injuries and even fatalities.
Recommended publications
  • NCAR Annual Scientific Report April 1978 - March 1979 - Link Page Next PART0002
    National Center for Atmospheric Research Annual Scientific Report April 1978-March 1979 Submitted to National Science Foundation by University Corporation for Atmospheric Research July 1979 * * iii11 1 CONTENTS INTRODUCTION v ATMOSPHERIC ANALYSIS AND PREDICTION DIVISION 1 Climate Section 7 Oceanography Section 15 Large-Scale Dynamics Section 19 Mesoscale Research Section 28 ATMOSPHERIC QUALITY DIVISION 37 In-Situ Measurements and Photochemical Modeling 39 Biosphere-Atmosphere Interaction 42 Gas and Aerosol Measurements 43 Global Observations, Modeling, and Optical Techniques 45 Reactive Gases and Particles 51 Thermospheric Dynamics and Aeronomy 53 Stratospheric-Tropospheric Exchange 56 Radioactive Aerosols and Effects 58 HIGH ALTITUDE OBSERVATORY 63 Solar Variability Section 65 Solar Atmosphere and Magnetic Fields Section 72 Coronal Physics Section 78 78 Interplanetary Physics Section 83 CONVECTIVE STORMS DIVISION 89 ADVANCED STUDY PROGRAM 113 ATMOSPHERIC TECHNOLOGY DIVISION 127 Research Aviation Facility 129 Computing Facility 141 Field Observing Facility 154 Research Systems Facility 163 Global Atmospheric Measurements Program 169 National Scientific Balloon Facility 176 PUBLICATIONS 183 v INTRODUCTION The UCAR-NSF contract for the operation of NCAR calls for UCAR to submit to NSF an annual scientific report "containing a scientific description of all programs conducted by NCAR staff and NCAR visitors during the previous year." The contract stipulates that the report should "include a description of the scientific problems placed in a larger context, accomplishments, and a listing of papers published." This document is designed to respond to that contract provision, and has as its primary audience those NSF staff members responsible for monitoring UCAR's performance in the operation of a national laboratory under NSF sponsorship.
    [Show full text]
  • Section 9 Development of and Studies with Coupled Ocean-Atmosphere
    Section 9 Development of and studies with coupled ocean-atmosphere models Global warming and Mean Indian summer monsoon Sujata K. Mandke*1, A K Sahai1, Mahesh Shinde1 and Susmita Joseph1 1Climate & Global Modeling Division, Indian Institute of Tropical Meteorology, Pune 411 008, India *[email protected] The rising level in concentration of green house gases(GHGs) in the atmosphere have led to enhanced radiative heating of the earth. Global warming is evident from increase in temperature, sea level rise etc(IPCC,1990,IPCC WG1 TAR,2001). The extreme events of climate system such as floods and droughts is projected(IPCC WG1 TAR, 2001). The impact of climate change on monsoon and its variability is a major issue for Indian subcontinent where agriculture and economic growth is strongly linked to behavior of monsoon. Current versions of Atmosphere-Ocean General Circulation Models(AOGCM) provide reliable simulations of the large scale features of the present day climate but there are uncertainties on regional scale. The present study emphasis the possible impact of climate change on the daily mean summer precipitation focusing on Indian region simulated by ten AOGCMs. Daily precipitation simulated by ten AOGCMs that participated in IPCC for fourth assessment report is used in the present study. The model output from variety of experiments carried out by different modeling groups throughout the world is archived by PCMDI and made available on request to international research community on pcmdi.llnl.gov/ipcc/about_ipcc.php website. Two experiments namely 1pctto2x (1% per year CO2 increase to doubling) and 1pctto4x (1% per year CO2 increase to quadrupling) have been used to study the influence of climate change relative to control experiment.
    [Show full text]
  • Extratropical Cyclones and the Projected Decline of Winter Mediterranean Precipitation in the CMIP5 Models
    Clim Dyn DOI 10.1007/s00382-014-2426-8 Extratropical cyclones and the projected decline of winter Mediterranean precipitation in the CMIP5 models Giuseppe Zappa · Matthew K. Hawcroft · Len Shaffrey · Emily Black · David J. Brayshaw Received: 23 July 2014 / Accepted: 21 November 2014 © The Author(s) 2014. This article is published with open access at Springerlink.com Abstract The Mediterranean region has been identified Keywords Mediterranean climate · Precipitation as a climate change “hot-spot” due to a projected reduc- projections · Extratropical cyclones · CMIP5 tion in precipitation and fresh water availability which has potentially large socio-economic impacts. To increase confidence in these projections, it is important to physi- 1 Introduction cally understand how this precipitation reduction occurs. This study quantifies the impact on winter Mediterranean The Mediterranean area has been identified as a climate precipitation due to changes in extratropical cyclones in change “hot-spot” (Giorgi 2006; Diffenbaugh and Giorgi 17 CMIP5 climate models. In each model, the extratropi- 2012). Under climate change scenarios, the precipitation cal cyclones are objectively tracked and a simple approach in the Mediterranean region is projected to decline lead- is applied to identify the precipitation associated to each ing to increasing aridification and reduction in fresh water cyclone. This allows us to decompose the Mediterranean supplies (Mariotti et al. 2008; Jin et al. 2010; Collins et al. precipitation reduction into a contribution due to changes in 2013; Seager et al. 2014). This may have serious socio- the number of cyclones and a contribution due to changes economic impacts in regions such as the Middle East and in the amount of precipitation generated by each cyclone.
    [Show full text]
  • Use of the European Severe Weather Database to Verify Satellite-Based Storm Detection Or Nowcasting
    USE OF THE EUROPEAN SEVERE WEATHER DATABASE TO VERIFY SATELLITE-BASED STORM DETECTION OR NOWCASTING Nikolai Dotzek1,2, Caroline Forster1 1 Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, 82234 Wessling, Germany 2 European Severe Storms Laboratory, Münchner Str. 20, 82234 Wessling, Germany Abstract Severe thunderstorms constitute a major weather hazard in Europe, with an estimated total damage of € 5-8 billion each year. Yet a pan-European database of severe weather reports in a homogeneous data format has become available only recently: the European Severe Weather Database (ESWD). We demonstrate the large potential of ESWD applications for storm detection and forecast or now- casting/warning verification purposes. The study of five warm-season severe weather days in Europe from 2007 and 2008 revealed that up to 47% of the ESWD reports were located exactly within the polygons detected by the Cb-TRAM algorithm for three different stages of deep moist convection. The cool-season case study of extratropical cyclone “Emma” on 1 March 2008 showed that low-topped winter thunderstorms can provide a challenge for satellite storm detection and nowcasting adapted to warm-season storms with high, cold cloud tops. However, this case also demonstrated how ESWD reports alone can still be valuable to identify the hazardous regions along the cold front of the cyclone. 1. INTRODUCTION Severe thunderstorms, with their attendant strong winds, hail, flooding, and tornadoes, are common phenomena in many European countries, leading to a total damage estimate of 5 to 8 billion euros per year (source: Munich Re Group). Extreme events like an F4 tornado in France and an F3 downburst in Austria in 2008 exemplify these damage totals.
    [Show full text]
  • Extreme Weather Events in Europe: Preparing for Climate Change Adaptation
    Extreme Weather Events in Europe: preparing for climate change adaptation October 2013 ISBN (print) 978-82-7144-100-5 ISBN (electronic) 978-82-7144-101-2 In cooperation with This report can be found at www.dnva.no Produced by the Norwegian Meteorological Institute Extreme Weather Events in Europe: preparing for climate change adaptation Øystein Hov, Ulrich Cubasch, Erich Fischer, Peter Höppe, Trond Iversen, Nils Gunnar Kvamstø, Zbigniew W. Kundzewicz, Daniela Rezacova, David Rios, Filipe Duarte Santos, Bruno Schädler, Ottó Veisz, Christos Zerefos, Rasmus Benestad, John Murlis, M. Donat, Gregor C. Leckebusch, Uwe Ulbrich. Extreme Weather Events in Europe: preparing for climate change adaptation In cooperation with CONTRIBUTORS Professor Øystein Hov, Norwegian Meteorological Institute, Norway† Professor Ulrich Cubasch, Free University of Berlin, Germany* Dr Erich Fischer, Institute for Atmospheric and Climatic Science, ETH Zurich, Switzerland* Professor Peter Höppe, Geo Risks Research/Corporate Climate Centre, Munich Re, Germany* Professor Trond Iversen, Norwegian Meteorological Institute, Norway* Professor Nils Gunnar Kvamstø, Department of Geophysics, University of Bergen, Norway* Professor Zbigniew W. Kundzewicz, Polish Academy of Sciences, Warsaw, Poland* Professor Daniela Rezacova, Institute of Atmospheric Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic* Professor David Rios, Royal Academy of Sciences, Spain* Professor Filipe Duarte Santos, Lisbon University, Portugal* Dr Bruno Schädler, University of Berne, Switzerland* Professor Ottó Veisz, Agricultural Research Institute of the Hungarian Academy of Sciences, Budapest, Hungary* Professor Christos Zerefos, University of Athens, Greece* Dr Rasmus Benestad (Working Group Researcher), Norwegian Meteorological Institute, Oslo, Norway Professor John Murlis, EASAC Environment Programme Secretary Dr M. Donat, Institut für Meteorologie, Freie Universität Berlin, Germany; now at Climate Change Research Centre, University of New South Wales, Sydney, Australia Dr Gregor C.
    [Show full text]
  • Dissertation Cold Pool Processes in Different
    DISSERTATION COLD POOL PROCESSES IN DIFFERENT ENVIRONMENTS Submitted by Leah Danielle Grant Department of Atmospheric Science In partial fulfillment of the requirements For the Degree of Doctor of Philosophy Colorado State University Fort Collins, Colorado Spring 2018 Doctoral Committee: Advisor: Susan C. van den Heever David A. Randall Steven A. Rutledge Jeffrey D. Niemann Copyright by Leah Danielle Grant 2017 All Rights Reserved ABSTRACT COLD POOL PROCESSES IN DIFFERENT ENVIRONMENTS Cold pools are localized regions of dense air near Earth’s surface. They form in association with precipitating clouds in many environments ranging from moist tropical to semi- arid continental conditions, and they play important roles in weather in climate. The overarching goal of this dissertation research is to improve our process-level understanding of cold pool interactions with different components of the Earth system, focusing on two key knowledge gaps: (1) interactions with Earth’s surface in continental environments; and (2) interactions with organized convective systems in tropical oceanic environments. The primary goal of the first study conducted in this dissertation is to evaluate how surface sensible heat fluxes impact cold pool dissipation in dry continental environments via two pathways: (a) by directly heating the cold pool, and (b) by changing mixing rates between cold pool air and environmental air through altering turbulence intensity. Idealized 2D simulations of isolated cold pools are conducted with varying sensible heat flux formulations to determine the relative importance of these two mechanisms. The results demonstrate that the impact of sensible heat fluxes on mixing, i.e. mechanism (b), contributes most significantly to cold pool dissipation.
    [Show full text]
  • THE BOW ECHO and MCV EXPERIMENT Observations and Opportunities
    THE BOW ECHO AND MCV EXPERIMENT Observations and Opportunities BY CHRISTOPHER DAVIS, NOLAN ATKINS, DIANA BARTELS, LANCE BOSART, MICHAEL CONIGLIO, GEORGE BRYAN, WILLIAM COTTON, DAVID DOWELL, BRIAN JEWETT, ROBERT JOHNS,* DAVID JORGENSEN, JASON KNIEVEL, KEVIN KNUPP, WEN-CHAU LEE, GREGORY MCFARQUHAR, JAMES MOORE, RON PRZYBYLINSKI, ROBERT RAUBER, BRADLEY SMULL, ROBERT TRAPP, STANLEY TRIER, ROGER WAKIMOTO, MORRIS WEISMAN, AND CONRAD ZIEGLER The field campaign, involving multiple aircraft and ground-based instruments, documented numerous long-lived mesoscale convective systems, many producing strong surface winds and exhibiting mesoscale rotation. hile the observational study of mesoscale Kansas Preliminary Regional Experiment for convective systems (MCSs) has been active Stormscale Operational and Research Meteorology W since the 1940s (e.g., Newton 1950 and ref- (STORM)-Central (PRE-STORM) (Cunning 1986) erences within), until the Bow Echo and Mesoscale were geographically fixed by the ground-based instru- Convective Vortex Experiment (BAMEX) there were ment networks employed. The unique observing no studies designed to sample multiscale aspects of strategy of BAMEX relied on the deployment of these systems throughout the majority of their life highly mobile observing systems, both airborne and cycles. Previous field studies such as the Oklahoma- ground based, supported by the enhanced operational AFFILIATIONS: DAVIS, BRYAN, DOWELL, KNIEVEL, BARTELS, LEE, Missouri; SMULL—NSSL, and University of Washington, Seattle, TRIER, AND WEISMAN—National
    [Show full text]
  • Fp5j.2 an Airborne Dual-Doppler Back-Trajectory Study of Downdrafts in Bow-Echoes During Bamex
    FP5J.2 AN AIRBORNE DUAL-DOPPLER BACK-TRAJECTORY STUDY OF DOWNDRAFTS IN BOW-ECHOES DURING BAMEX William C. Straka III+, William R. Cotton*, and Ray McAnelly Colorado State University, Fort Collins, Colorado + Current affiliation: Space Science and Engineering Center, University of Wisconsin at Madison, Madison, WI 1. INTRODUCTION Mesoscale convective systems (MCSs) have been observed to often produce severe windstorms, which can pose a significant hazard to life and property. These windstorms often occur in much of the United States during the spring and summer months, coincidentally the same time that most MCSs occur in the mid-west. Johns and Hirt (1987) defined the long-lived, large scale convectively produced windstorms, called derechos, basing their criteria on data available from the National Climatic Data Center (NCDC) and the National Severe Storms Forecast Center (the predecessor to the Storm Prediction Center; SPC). Johns and Hirt (1987) defined derecho events to be associated with an extratropical MCS that produces a “family of downburst clusters” (Fujita and Wakimoto, 1981). Based on the criteria of Johns and Hirt (1987), the geographical distribution of the 70 Figure 1. Total number of derechos in a 2o x 2o warm season events they observed suggest that most squares during May through August 1980-1981. warm season derechos occur in a region from the Interpreted from Johns and Hirt (1987). upper Midwest to the Ohio valley and are relatively infrequent in other locations (Figure 1). It is thought line winds, they also have been associated with the that most derechos are manifestations of “bow- formation of tornados (e.
    [Show full text]
  • Climatology of Cyclogenesis Mechanisms in the Mediterranean
    MARCH 2002 TRIGO ET AL. 549 Climatology of Cyclogenesis Mechanisms in the Mediterranean ISABEL F. T RIGO* Climatic Research Unit, University of East Anglia, Norwich, United Kingdom GRANT R. BIGG School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom TREVOR D. DAVIES Climatic Research Unit, University of East Anglia, Norwich, United Kingdom (Manuscript received 2 November 2000, in ®nal form 19 July 2001) ABSTRACT A general climatology of the main mechanisms involved in Mediterranean cyclogenesis is presented. A diagnostic study of both composite means and case studies is performed to analyze processes occurring in different seasons, and in different cyclogenetic regions within the same season. It is shown that cyclones that developed over the three most active areas in winterÐthe Gulf of Genoa, the Aegean Sea, and the Black SeaÐ are essentially subsynoptic lows, triggered by the major North Atlantic synoptic systems being affected by local orography and/or low-level baroclinicity over the northern Mediterranean coast. It is also suggested that cyclones in two, or all three, of these regions often occur consecutively, linked to the same synoptic system. In spring and summer, thermally induced lows become progressively more important, despite the existence of other factors, such as the Atlas Mountains contributing to lee cyclogenesis in northern Africa, or the extension of the Asian monsoon into the eastern part of the Mediterranean. As a consequence, the behavior of Mediterranean cyclones becomes modulated by the diurnal forcing; the triggering and mature stages are mostly reached by late afternoon or early nighttime, while cyclolysis tends to occur in early morning.
    [Show full text]
  • Alpine Forest Drought Monitoring in South Tyrol: PCA Based Synergy Between Scpdsi Data and MODIS Derived NDVI and NDII7 Time Series
    remote sensing Article Alpine Forest Drought Monitoring in South Tyrol: PCA Based Synergy between scPDSI Data and MODIS Derived NDVI and NDII7 Time Series Katarzyna Ewa Lewi ´nska 1,2, Eva Ivits 3, Mathias Schardt 1,* and Marc Zebisch 2 1 Institute of Remote Sensing and Photogrammetry, Graz Technical University, Steyrergasse 30/I, Graz 8010, Austria; [email protected] 2 Institute for Applied Remote Sensing, European Academy of Bozen/Bolzano (EURAC), Viale Druso 1, Bolzano 39100, Italy; [email protected] 3 European Environment Agency (EEA), Kongens Nytorv 6, Copenhagen K 1050, Denmark; [email protected] * Correspondence: [email protected]; Tel.: +43-316-873-6330 or +43-316-876-1754 Academic Editors: Angela Lausch, Marco Heurich, Lars T. Waser and Prasad S. Thenkabail Received: 26 April 2016; Accepted: 27 July 2016; Published: 5 August 2016 Abstract: Observed alternation of global and local meteorological patterns governs increasing drought impact, which puts at risk ecological balance and biodiversity of the alpine forest. Despite considerable attention, drought impact on forest ecosystems is still not entirely understood, and comprehensive forest drought monitoring has not been implemented. In this study, we proposed to bridge this gap exploiting a time-domain synergetic use of medium resolution MODSI NDVI (Normalized Difference Vegetation Index) and NDII7 (Normalized Difference Infrared Index band 7) time series as well as on-station temperature and precipitation measures combined in the scPDSI (self-calibrated Palmer Drought Severity Index) datasets. Analysis employed the S-mode Principal Component Analysis (PCA) examined under multiple method settings and data setups. The investigation performed for South Tyrol (2001–2012) indicated prolonged meteorological drought condition between 2003 and 2007, as well as general drying tendencies.
    [Show full text]
  • Meteorological Conditions and Human Health
    INGLES COMPLETO_Maquetación 1 24/07/2013 12:32 Página 1 Carlos García-Legaz Martínez Francisco Valero Rodríguez Editors ADVERSE WEATHER IN SPAIN Under the sponsorship of 1 INGLES COMPLETO_Maquetación 1 24/07/2013 12:32 Página 2 ADVERSE WEATHER IN SPAIN Editors Carlos García-Legaz Martínez Francisco Valero Rodríguez ISBN: 978-84-96709-43-0 Printed by Service Point Published by: A. MADRID VICENTE, EDICIONES Calle Almansa, 94, 28040-Madrid (España) Phone: + 34 915336926 Fax: + 34 915530286 e mail: [email protected] Internet: www.amvediciones.com Photograph of the book cover: José A. Quirantes All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical including photocopy, recording, or any information storage and retrieval system, without permission in writing from the editors. 2 INGLES COMPLETO_Maquetación 1 24/07/2013 12:32 Página 3 Whatsoever the LORD pleased, that did he in heaven, and in earth , in the seas, and all deep places. He causeth the vapors to ascend from the ends of the earth, he maketh lightnings f or the rain, he bringeth the wind out of his treasuries.” (Psalms, 135, 6-7) In memory of Professors Francisco Morán and Joaquín Catalá, Meteorologists and Catedráticos of Atmosphere Physics in Complutense University of Madrid, our masters. Francisco Valero Carlos García-Legaz 3 INGLES COMPLETO_Maquetación 1 24/07/2013 12:32 Página 4 4 INGLES COMPLETO_Maquetación 1 24/07/2013 12:32 Página 5 ADVERSE WEATHER IN SPAIN CONTENTS PRESENTATION ....................................................................................... 7 President, AEMET FOREWORD ............................................................................................ 8 Consorcio de Compensación de Seguros PREFACE.................................................................................................
    [Show full text]
  • Tropical Cyclone Emma 26 February – 1 March 2006
    Tropical Cyclone Emma 26 February – 1 March 2006 Perth Tropical Cyclone Warning Centre Bureau of Meteorology A. Summary Emma was a monsoonal-type low reaching category 1 intensity before crossing the coast near Mardie on 28 February, then moving to the south southeast and eventually passing near Esperance late on 1 March. The main impact was rainfall, initially in the Karratha/Dampier region and then over inland areas. The heavy rain in the headwaters of the Murchison River caused the highest recorded flood along the river. More than 20 pastoral properties reported significant damage and heavy infrastructure losses combined with significant scouring of the Murchison floodplain. Floodwaters peaked at Kalbarri at about midnight on 15 March. Although the sandbar was washed away and riverside and low-lying parts of the town were flooded, a significant sandbagging exercise protected the town centre from inundation. B. Meteorological Description A low developed within an active monsoon trough in the vicinity of 12S 114E well to the north of NW Cape on 25 February. Convection remained unorganised and pulsed diurnally peaking around 0000 UTC 26 February for example. Although day-time visible images showed increasing rotation, convection remained unorganised overnight. Quickscat at 2245 UTC 26 February showed the centre further to the south southwest than the previous day possibly suggesting some re-organising of the LLCC. Convection became more sustained to the south and east but quite removed from the centre. Quickscat at 0952 UTC 27 February indicated gales well to the south and east but marginally less than 50 per cent surrounding the centre and well removed.
    [Show full text]