polymers Article Synthesis and Characterization of Renewable Polyester Coil Coatings from Biomass-Derived Isosorbide, FDCA, 1,5-Pentanediol, Succinic Acid, and 1,3-Propanediol Mónica Lomelí-Rodríguez 1,*, José Raúl Corpas-Martínez 1, Susan Willis 2, Robert Mulholland 2 and Jose Antonio Lopez-Sanchez 1,* ID 1 Stephenson Institute for Renewable Energy, Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK;
[email protected] 2 Becker Industrial Coatings Ltd, Goodlass Road, Speke, Liverpool L24 9HJ, UK;
[email protected] (S.W.);
[email protected] (R.M.) * Correspondence:
[email protected] (M.L.-R.);
[email protected] (J.A.L.-S.); Tel.: +44-(0)151-794-3535 (J.A.L.-S.) Received: 20 April 2018; Accepted: 22 May 2018; Published: 29 May 2018 Abstract: Biomass-derived polyester coatings for coil applications have been successfully developed and characterized. The coatings were constituted by carbohydrate-derived monomers, namely 2,5-furan dicarboxylic acid, isosorbide, succinic acid, 1,3-propanediol, and 1,5-pentanediol, the latter having previously been used as a plasticizer rather than a structural building unit. The effect of isosorbide on the coatings is widely studied. The inclusion of these monomers diversified the mechanical properties of the coatings, and showed an improved performance against common petrochemical derived coatings. This research study provides a range of fully bio-derived polyester coil coatings with tunable properties of industrial interest, highlighting the importance of renewable polymers towards a successful bioeconomy. Keywords: biomass; coatings; isosorbide; FDCA; polyester; biopolymer; 1-5-pentanediol 1.