Plasticizers Derived from Biomass Resources: a Short Review

Total Page:16

File Type:pdf, Size:1020Kb

Plasticizers Derived from Biomass Resources: a Short Review polymers Review Plasticizers Derived from Biomass Resources: A Short Review Puyou Jia 1,*, Haoyu Xia 2, Kehan Tang 2 and Yonghong Zhou 1,* 1 Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF); Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University; Key Lab of Biomass Energy and Materials, 16 Suojin North Road, Nanjing 210042, China 2 College of Chemical Engineering, Nanjing Tech University, 30 Pu Zhu Road, Nanjing 211800, China; [email protected] (H.X.); [email protected] (K.T.) * Correspondence: [email protected] (P.J.); [email protected] (Y.Z.); Tel.: +86-025-85482520 (P.J.); +86-025-85482777 (Y.Z.) Received: 1 November 2018; Accepted: 22 November 2018; Published: 24 November 2018 Abstract: With rising environmental concerns and depletion of petrochemical resources, biomass-based chemicals have been paid more attention. Polyvinyl chloride (PVC) plasticizers derived from biomass resources (vegetable oil, cardanol, vegetable fatty acid, glycerol and citric acid) have been widely studied to replace petroleum-based o-phthalate plasticizers. These bio-based plasticizers mainly include epoxidized plasticizer, polyester plasticizer, macromolecular plasticizer, flame retardant plasticizer, citric acid ester plasticizer, glyceryl ester plasticizer and internal plasticizer. Bio-based plasticizers with the advantages of renewability, degradability, hypotoxicity, excellent solvent resistant extraction and plasticizing performances make them potential to replace o-phthalate plasticizers partially or totally. In this review, we classify different types of bio-based plasticizers according to their chemical structure and function, and highlight recent advances in multifunctional applications of bio-based plasticizers in PVC products. This study will increase the interest of researchers in bio-based plasticizers and the development of new ideas in this field. Keywords: plasticizer; polyvinyl chloride; biomass resources; review 1. Introduction Plasticizers are among the most important additives required for the processing of polymer materials, especially polyvinyl chloride (PVC) plastics, which accounts for more than 60% of the total yield of plastic auxiliaries [1,2]. Traditional petroleum-based phthalate plasticizers are the most widely used globally. The yield and consumption of traditional phthalate plasticizers account for a large proportion of the total plasticizer production and sales, but they are gradually limited due to potential threats to human health and environment. Strict regulations on environmental protection and safety have been formulated and carried out. The development of environmentally-friendly non-toxic plasticizers and biodegradable bio-based plasticizers to replace phthalates has been a research hot spot. Non-toxic green plasticizers with high performance, oil resistance, extraction and migration resistance used in electrical insulation, food packaging, and medical and health products are constantly being developed, produced and applied. Plasticizers are functional additives, which are used to improve flexibility, plasticity, processability, and elongation of polymers, especially in PVC products [3]. When a plasticizer is added to a polymer, the intermolecular subvalent bond force is weakened, the crystallinity is lowered, the relative movement between the molecular segments is increased and the plasticity of the material is improved. Therefore, plasticizers are mainly used to decrease hardness, softening temperature, elastic modulus, and embrittlement temperature of Polymers 2018, 10, 1303; doi:10.3390/polym10121303 www.mdpi.com/journal/polymers Polymers 2018, 10, 1303 2 of 27 Polymers 2018, 10, x FOR PEER REVIEW 2 of 28 polymers,include citric while acid improving ester, phosphates, their flexibility polyesters, and halogenated elongation. Non-phthalatealkanes, and epoxy plasticizer compounds alternatives [4–7]. includeWith the citric increase acid ester,in people’s phosphates, awareness polyesters, of environmental halogenated protection, alkanes, and especially epoxy compoundsthe discovery [4– 7of]. Withpotential the increasethreats to in human people’s health awareness by phthalate of environmental plasticizers and protection, environmental especially pollution the discovery problems, of potentialthe global threats hygienic to human requirements health by for phthalate plastic plasticizersadditives are and increasing environmental. The pollution use of n problems,on‐phthalate the globalplasticizer hygienic alternatives requirements has been for gradually plastic additives introduced are increasing. [8–10]. The use of non-phthalate plasticizer alternatives has been gradually introduced [8–10]. 2. Plasticizer Derived from Biomass Resources 2. Plasticizer Derived from Biomass Resources 2.1. Biomass Based Epoxidized Plasticizer 2.1. Biomass Based Epoxidized Plasticizer Epoxidized plasticizer is a kind of environmentally-friendly plasticizer used in plastics industry, rubberEpoxidized industry, plasticizerand coatings is aand kind new of environmentally-friendlypolymer materials [11,12]. plasticizer Compared used with in other plastics plasticizers, industry, rubberthe epoxy industry, group andin the coatings epoxidized and new plasticizer polymer structure materials could [11,12 absorb]. Compared and neutralize with other the plasticizers, hydrogen thechloride epoxy released group inby the PVC epoxidized during plasticizerlight or thermal structure de couldgradation, absorb which and neutralizerestricts or the delay hydrogens the chloridecontinuous released decomposition by PVC during of PVC light, endow or thermals PVC degradation, products with which good restricts light and or delaysthermal the stability continuous and decompositionextends their service of PVC, life. endows Besides, PVC it has products been approved with good for light food and packaging thermal stability and medical and extends equipment their servicematerials life. in Besides, many cou it hasntries been and approved regions fordue food to the packaging extremely and low medical toxicity equipment of epoxidized materials plasti incizers many, countrieswhich has andmade regions its production due to the and extremely price grow low in toxicityrecent years. of epoxidized Biomass-based plasticizers, epoxidized which plasticizers has made itsmainly production include and epoxidized price grow vegetable in recent oils, years. epoxidized Biomass-based fatty acid epoxidized esters and plasticizers epoxy group mainly containing include epoxidizedcardanol derivatives vegetable.oils, Currently, epoxidized vegetable fatty acid oils esters and e andpoxidized epoxy group fatty containingacid esters cardanolhave been derivatives. used on Currently,the market vegetable [13,14]. oils and epoxidized fatty acid esters have been used on the market [13,14]. Epoxidized soybeansoybean oil oil (ESO) (ESO) is a collectionis a collection of organic of compoundsorganic compounds obtained fromobtained the epoxidation from the ofepoxidation soybean oil of thatsoybean have oil been tha widelyt have usedbeen aswidely plasticizers used as and plasticizers heat stabilizers and heat of PVC stabilizers materials. of PVC The chemicalmaterials. structure The chemical of ESO structure is shown of inESO Figure is shown1. Ferrer in Figure et al. found 1. Ferrer that et formulations al. found that based formulati on PVCons withbased different on PVC amounts with different of ESO amounts (from 30 of to 50ESO wt (from %) increased 30 to 50 compatibility wt %) increased and improvedcompatibility thermal and stabilityimproved [15 thermal]. Park etstability al. investigated [15]. Park the et al performances. investigated of the epoxy perform resinsances plasticized of epoxy with resins ESO plasticized [16]. They foundwith ESO that [16]. the They thermal found stability that the and ther glassmal transitionstability and temperature glass transition of epoxy temperature resins reduced of epoxy with resins the additionreduced with of ESO. the addition This phenomenon of ESO. This occurs phenomenon due to the occurs decreased due to density the decreased of the epoxydensity network. of the epoxy The additionnetwork. ofThe ESO addition causes theof ESO increase causes of stress the increase intensity of factor stress along intensity with thefactor flexural along strength. with the Zhao flexural et al. investigatedstrength. Zhao the et plasticizing al. investigated effect the of ESOplasticizing on polybutylene effect of ESO succinate on polybut (PBS)ylene [17]. The succinate results (PBS) show [17] that. ESOThe results efficiently show improves that ESO elongation efficiently atimprove break ofs elongation PBS. The elongationat break of atPBS. break The reaches elongation a maximum at break valuereaches when a maximum the content value of ESOwhen is the 5 wt content % of PBS, of ESO 15 times is 5 wt more % thanof PBS the, 15 elongation times more of purethan PBS.the Moreover,elongation ESOof pure enhances PBS. Moreover, the elongation ESO aten breakhances of the poly(lactic elongation acid) at break (PLA) of by p 63%.oly(lactic Xu et acid) al. studied (PLA) theby 63%. performances Xu et al. studied of PLA the plasticized performances with ESOof PLA [18 ].plasticized The results with show ESO that [18]. 9 wt The % results ESO increased show that the 9 elongationwt % ESO increase at breakd of the PLA elongation by about at 63%. break PLA of PLA blends by containingabout 63%. 6PLA wt %blends ESO showcontaining
Recommended publications
  • Blending Hydrogen Into Natural Gas Pipeline Networks: a Review of Key Issues
    Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues M. W. Melaina, O. Antonia, and M. Penev NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Technical Report NREL/TP-5600-51995 March 2013 Contract No. DE-AC36-08GO28308 Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues M. W. Melaina, O. Antonia, and M. Penev Prepared under Task No. HT12.2010 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory Technical Report 15013 Denver West Parkway NREL/TP-5600-51995 Golden, Colorado 80401 March 2013 303-275-3000 • www.nrel.gov Contract No. DE-AC36-08GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.
    [Show full text]
  • Phosphorus Oxychloride CAS No
    Product Safety Summary Phosphorus Oxychloride CAS No. 10025-87-3 This Product Safety Summary is intended to provide a general overview of the chemical substance. The information in the summary is basic information and is not intended to provide emergency response information, medical information or treatment information. The summary should not be used to provide in-depth safety and health information. In-depth safety and health information can be found in the Safety Data Sheet (SDS) for the chemical substance. Names Phosphorus oxychloride Phosphorus trichloride oxide Phosphoric trichloride POCl 3 Product Overview Solvay Novecare does not sell phosphorus oxychloride directly to consumers. Phosphorus oxychloride (POCl3) is used as a chemical intermediate to produce a variety of products which are used in several applications including manufacture of triarylphosphate esters which are used as flame retardants as well as an intermediate in the production of pharmaceutical, textile and agricultural chemicals. Phosphorus oxychloride is used in industrial applications and other processes where workplace exposures can occur. Consumer exposure does not occur as phosphorus oxychloride is not used in any commercially available product. Phosphorus oxychloride is dangerous to human health. Phosphorus oxychloride may be fatal if inhaled, highly toxic if swallowed, harmful if absorbed through skin and can cause severe burns which may result in scarring. Phosphorus oxychloride is consumed in manufacturing processes. POCl3 can make its way into the environment through unintentional releases (spills). POCl3 will not bioaccumulate but is not biodegradable. POCl3 in higher concentrations can be harmful to aquatic life due to formation of acids from the hydrolysis of POCl3. When released into the atmosphere, phosphorus oxychloride exists as vapor.
    [Show full text]
  • II. Plasticizer-Free Polyvinyl Chloride, Plasticizer-Free Copolymers of Vinyl
    This is an unofficial translation. Only the German version is binding. II. Plasticizer-free Polyvinyl Chloride, Plasticizer-free Copolymers of Vinyl Chlo- ride and Mixtures of these Polymers with other Copolymers and Chlorinated Polyolefins Containing Mainly Vinyl Chloride in the Total Mixture As of 01.01.2012 The monomers and other starting substances as well as additives used in the production of plasticizer-free polyvinyl chloride, plasticizer-free copolymers of vinyl chloride containing mainly vinyl chloride, mixtures of these polymers with other copolymers, and chlorinated polyolefins containing mainly vinyl chloride in the total mixture are subject to the requirements of the Commission Regulation (EU) No 10/2011. Otherwise, there are no objections to the use of these plastics for commodities in the sense of § 2, Para. 6, No 1 of the Food and Feed Code (Lebensmittel- und Futtermittelgesetzbuch), pro- vided they are suitable for their intended purpose and comply with the following conditions: 1. The use of monomers and other starting materials for polyethylene is subject to the stipula- tions of the Commission Regulation (EU) No 10/2011. The evaluation presented in the following refers to polymers from the following monomeric starting substances: a) Vinyl chloride b) Vinylidene chloride c) Trans-dichloroethylene d) Vinylesters of aliphatic carbonic acids C2-C18, in so far as covered by the positive list of the Commission Regulation (EU) No 10/2011 e) Esters of acrylic acid, methacrylic acid and/or maleic acid or fumaric acid with
    [Show full text]
  • Draft Scope of the Risk Evaluation for Triphenyl Phosphate CASRN 115-86-6
    EPA Document# EPA-740-D-20-010 April 2020 United States Office of Chemical Safety and Environmental Protection Agency Pollution Prevention Draft Scope of the Risk Evaluation for Triphenyl Phosphate CASRN 115-86-6 April 2020 TABLE OF CONTENTS ACKNOWLEDGEMENTS ......................................................................................................................5 ABBREVIATIONS AND ACRONYMS ..................................................................................................6 EXECUTIVE SUMMARY .......................................................................................................................8 1 INTRODUCTION ............................................................................................................................11 2 SCOPE OF THE EVALUATION ...................................................................................................11 2.1 Reasonably Available Information ..............................................................................................11 Search of Gray Literature ...................................................................................................... 12 Search of Literature from Publicly Available Databases (Peer-Reviewed Literature) .......... 13 Search of TSCA Submissions ................................................................................................ 19 2.2 Conditions of Use ........................................................................................................................19 Categories
    [Show full text]
  • OFR Staff Plan
    Staff Briefing Package Project Plan: Organohalogen Flame Retardant Chemicals Assessment July 1, 2020 CPSC Consumer Hotline and General Information: 1-800-638-CPSC (2772) CPSC's Web Site: http://www.cpsc.gov THIS DOCUMENT HAS NOT BEEN REVIEWED CLEARED FOR PUBLIC RELEASE OR ACCEPTED BY THE COMMISSION UNDER CPSA 6(b)(1) Acknowledgments The preparation, writing, and review of this report was supported by a team of staff. We acknowledge and thank team members for their significant contributions. Michael Babich, Ph.D., Directorate for Health Sciences Charles Bevington, M.P.H., Directorate for Health Sciences Xinrong Chen, Ph.D., D.A.B.T., Directorate for Health Sciences Eric Hooker, M.S., D.A.B.T., Directorate for Health Sciences Cynthia Gillham, M.S., Directorate for Economic Analysis John Gordon, Ph.D., Directorate for Health Sciences Kristina Hatlelid, Ph.D., M.P.H., Directorate for Health Sciences Barbara Little, Attorney, Office of the General Counsel Joanna Matheson, Ph.D., Directorate for Health Sciences ii THIS DOCUMENT HAS NOT BEEN REVIEWED CLEARED FOR PUBLIC RELEASE OR ACCEPTED BY THE COMMISSION UNDER CPSA 6(b)(1) Table of Contents Briefing Memo ............................................................................................................................... iv 1. Executive summary .............................................................................................................. 5 2. Introduction .........................................................................................................................
    [Show full text]
  • Phthalate Testing ‐ Frequently Asked Questions Updated February, 2009
    Phthalate Testing ‐ Frequently Asked Questions Updated February, 2009 Q. Which specific phthalates is the Consumer Products Safety Information Act (CPSIA) concerned about? A. The six phthalate plasticizers of interest are: Diisononyl phthalate (DINP), Di‐2‐ ethylhexylphthalate (DEHP, sometimes called DOP), di‐n‐octyl phthalate (DnOP), Di‐isodecyl phthalate (DIDP), butylbenzyl phthalate (BBP), and dibutyl phthalate (DBP). Q. What can Polymer Diagnostics Inc. (PDI) test? A. PDI can test raw materials, compounds and finished goods. Q. How does PDI perform the testing? A. Samples are initially extracted (or diluted), and then analyzed by Gas Chromatography‐Mass Spectrometry [GC‐MS]. Depending on the results, additional analyses may be done to verify results and insure accuracy. This helps reduce the potential for false positives. Q. What about false positives? A. Although GC‐MS can reduce the likelihood of mis‐identification, the complexity of many formulations cannot rule this out. Further refinements of the analysis conditions or use of other separation techniques helps to enhance the reliability of the results. In those cases where the interference cannot be eliminated, results will clearly state this fact. Q. What is the current standard for testing for phthalates? A. Some literature has cited ASTM 3421‐75 as applicable for this testing. This method has been discontinued by ASTM, and has not been replaced. The regulatory body responsible for the CPSIA is currently working on recommending an improved method, but this is still in the planning stage. Q. What are the current issues, if any, with the test methods? A. Any method recommended should use current analytical methodologies.
    [Show full text]
  • Diisononyl Phthalate (DINP) C26H42O4
    CAS 28553-12-0 Diisononyl Phthalate (DINP) C26H42O4 Summary of Health Effects In a study that looked at the effects on male Diisononyl phthalate (DINP) can lead to growth rats of perinatal exposure to several phthalates, of tumors in the liver, spleen and kidneys of DINP was one of three phthalates that altered animals and can affect how unborn babies sexual differentiation.4 Several animal studies develop. It may also cause cancer in humans. have demonstrated that DINP exposure increased the incidence of liver, spleen and 1 How is DINP used? kidney tumors. DINP is primarily used as a plasticizer or softener in polyvinyl chloride (PVC) products, DINP induces antiandrogenic affects in animals, and therefore can contribute to the cumulative including vinyl flooring, wire and cable risk from exposure to other antiandrogenic insulation, coated fabrics, gloves, toys, garden phthalates.5 hoses, artificial leather and footwear.1 DINP is also used in other products such as rubber, inks, pigments and paints.1 Exposure: How can a person come in contact with it? Toxicity: What are its health effects? A person can come in contact with DINP by The National Toxicology Program determined breathing in contaminated air, swallowing dust, through animal testing that DINP is a eating contaminated food, or from skin contact 6 developmental toxicant based on fetuses with consumer products. growing additional ribs at the high dose tested.2 The National Health and Nutrition Examination DINP is listed as a carcinogen on California’s Survey (NHANES) 2005-2006 results showed Proposition 65 list.3 that mono-(carboxyoctyl) phthalate, a metabolite (breakdown product) of DINP, is present in urine samples of 95.2% of the sampled U.S.
    [Show full text]
  • SDS) Is Provided for Compliance with Applicable Regulations of the Hazard Communication Standard of 2012 (HCS/HAZCOM 2012) Found in §29 CFR 1910.1200
    Safety Data Sheet Section 1 – Identification of the Mixture and of the Company Product Identification Primary Identifier(s) Used on the Label Berryman TRANSMISSION & POWER STEERING SEALER Product Synonym(s) blend “PSTS” Product Number(s) 0712 and 0755 Relevant Identified Uses and Uses Advised Against Recommended Uses automatic transmission and power steering pump seal conditioner Uses Advised Against not for use in manual transmissions Manufacturer/Supplier Details Berryman Products, Inc. 3800 E Randol Mill Rd Arlington, TX 76011 (800) 433-1704 (USA/Canada) (817) 640-2376 (international) www.BerrymanProducts.com Emergency 2424----HourHour Telephone Number(s) ––– InfoTrac, Inc. (800) 535-5053 (USA/Canada) (352) 323-3500 (international) Section 2 – Hazards Identification Classification of the Substance or Mixture (29 CFR 1910.1200) Physical Hazards Health Hazards Eye Irritant – Category 2B Specific Target Organ Toxicity - Repeated Exposure – Category 2 (blood/blood system) Environmental Hazard - Chronic – Category 1 Allocation of Label Elements Chemical Identity Berryman TRANSMISSION & POWER STEERING SEALER Pictograms Signal Word WARNING Hazard Statements H320 – Causes eye irritation. H373 – May cause damage to blood/blood system through prolonged or repeated exposure. H410 – Very toxic to aquatic life with long-lasting effects. Safety Data Sheet ––– Page 111 of 999 Berryman Products, Inc. ––– part #s 0712 and 0755 Prevention Precautionary Statements P101 – Keep out of reach of children. P102 – Read label before use. P260 – Do not breathe fumes, gas, mist, vapor, or spray. P264 – Wash thoroughly with soap and water after handling. P273 – Avoid release to the environment. Response Precautionary Statements P314 – Get medical advice/attention if you feel unwell. P391 – Collect spillage. P305/P351/P338 – IF IN EYES: Rinse cautiously with water for several minutes.
    [Show full text]
  • Investigation of Electron Beam Irradiated Acrylonitrile-Butadiene-Styrene (Abs) Under Oven Treatment
    INVESTIGATION OF ELECTRON BEAM IRRADIATED ACRYLONITRILE-BUTADIENE-STYRENE (ABS) UNDER OVEN TREATMENT JEFFREY CHIN GUO JUN A project report submitted in partial fulfilment of the requirements for the award of Bachelor of Engineering (Hons.) Chemical Engineering Faculty of Engineering and Science Universiti Tunku Abdul Rahman May 2015 ii DECLARATION I hereby declare that this project report is based on my original work except for citations and quotations which have been duly acknowledged. I also declare that it has not been previously and concurrently submitted for any other degree or award at UTAR or other institutions. Signature : Name : JEFFREY CHIN GUO JUN ID No. : 10UEB03372 Date : iii APPROVAL FOR SUBMISSION I certify that this project report entitled “INVESTIGATION OF ELECTRON BEAM IRRADIATED ACRYLONITRILE-BUTADIENE-STYRENE(ABS) UNDER OVEN TREATMENT” was prepared by JEFFREY CHIN GUO JUN has met the required standard for submission in partial fulfilment of the requirements for the award of Bachelor of Engineering (Hons.) Chemical Engineering at Universiti Tunku Abdul Rahman. Approved by, Signature : Supervisor : Prof. Ir. Dr. Tee Tiam Ting Date : iv The copyright of this report belongs to the author under the terms of the copyright Act 1987 as qualified by Intellectual Property Policy of Universiti Tunku Abdul Rahman. Due acknowledgement shall always be made of the use of any material contained in, or derived from, this report. © 2015, Jeffrey Chin Guo Jun. All right reserved. v ACKNOWLEDGEMENTS I would like to thank everyone who had contributed to the successful completion of this project. I would like to express my appreciation to my research supervisor, Prof.
    [Show full text]
  • Using an Inhibitor to Prevent Plasticizer Migration from Polyurethane Matrix to EPDM Based Substrate Rezaei-Vahidian Hadi, Farajpour Tohid, Abdollahi Mahdi
    Using an Inhibitor to Prevent Plasticizer Migration from Polyurethane Matrix to EPDM Based Substrate Rezaei-Vahidian Hadi, Farajpour Tohid, Abdollahi Mahdi Cite this article as: Rezaei-Vahidian Hadi, Farajpour Tohid, Abdollahi Mahdi. Using an Inhibitor to Prevent Plasticizer Migration from Polyurethane Matrix to EPDM Based Substrate[J]. Chinese J. Polym. Sci, 2019, 37(7): 681-686. doi: 10.1007/s10118-019-2251-y View online: https://doi.org/10.1007/s10118-019-2251-y Articles you may be interested in Antistatic PVC-graphene Composite through Plasticizer-mediated Exfoliation of Graphite Chinese J. Polym. Sci. 2018, 36(12): 1361 https://doi.org/10.1007/s10118-018-2160-5 SYNTHESIS OF POLYURETHANE MODIFIED BISMALEIMIDE (UBMI) AND POLYURETHANE-IMIDE ELASTOMER Chinese J. Polym. Sci. 2008, 26(1): 117 Synthesis and Properties of Reversible Disulfide Bond-based Self-healing Polyurethane with Triple Shape Memory Properties Chinese J. Polym. Sci. 2019, 37(11): 1119 https://doi.org/10.1007/s10118-019-2268-2 增塑剂对碱木质素/HDPE复合材料性能影响研究 The Effect of Plasticizer on the Properties of Alkali Lignin/HDPE Composites 高分子学报. 2014(2): 210 https://doi.org/10.3724/SP.J.1105.2014.13204 泊肃叶流中环形高分子的迁移行为及与线性高分子的差异 Migration of Ring Polymers in Poiseuille Flow and Comparison with Linear Polymers 高分子学报. 2019, 50(11): 1229 https://doi.org/10.11777/j.issn1000-3304.2019.19074 聚醚硅油表面迁移行为对聚苯乙烯表面极性的影响 THE IMPROVEMENT OF POLARITY OF POLYSTYRENE SURFACE BY THE SELECTIVE SURFACE MIGRATION OF POLYETHER SILICOME OIL 高分子学报. 2007(2): 165 Chinese Journal of POLYMER SCIENCE ARTICLE https://doi.org/10.1007/s10118-019-2251-y
    [Show full text]
  • Recent Attempts in the Design of Efficient PVC Plasticizers With
    materials Review Recent Attempts in the Design of Efficient PVC Plasticizers with Reduced Migration Joanna Czogała 1,2,3,* , Ewa Pankalla 2 and Roman Turczyn 1,* 1 Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland 2 Research and Innovation Department, Grupa Azoty Zakłady Azotowe K˛edzierzynS.A., Mostowa 30A, 47-220 K˛edzierzyn-Ko´zle,Poland; [email protected] 3 Joint Doctoral School, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland * Correspondence: [email protected] (J.C.); [email protected] (R.T.) Abstract: This paper reviews the current trends in replacing commonly used plasticizers in poly(vinyl chloride), PVC, formulations by new compounds with reduced migration, leading to the enhance- ment in mechanical properties and better plasticizing efficiency. Novel plasticizers have been divided into three groups depending on the replacement strategy, i.e., total replacement, partial replacement, and internal plasticizers. Chemical and physical properties of PVC formulations containing a wide range of plasticizers have been compared, allowing observance of the improvements in polymer per- formance in comparison to PVC plasticized with conventionally applied bis(2-ethylhexyl) phthalate, di-n-octyl phthalate, bis(2-ethylhexyl) terephthalate and di-n-octyl terephthalate. Among a variety of newly developed plasticizers, we have indicated those presenting excellent migration resistance and advantageous mechanical properties, as well as those derived from natural sources. A separate chapter has been dedicated to the description of a synergistic effect of a mixture of two plasticizers, primary and secondary, that benefits in migration suppression when secondary plasticizer is added to PVC blend.
    [Show full text]
  • Migration of Chemical Additives from Plastic Products a Literature Review
    s REPORT M-1906 | 2020 Migration of chemical additives from plastic products A literature review COLOPHON Executive institution Norwegian Environment Agency Project manager for the contractor Contact person in the Norwegian Environment Agency Heidi Morka Marianne van der Hagen M-no Year Pages Contract number 1906 2020 18 [Contract number] Publisher The project is funded by Norwegian Environment Agency Norwegian Environment Agency Author(s) Clare Andvik Title – Norwegian and English Migrasjon av tilsetningsstoffer fra plastprodukter: En vitenskapelig gjennomgang av litteratur Migration of chemical additives from plastic products: A literature review Summary – sammendrag Plastic polymers are often incorporated with various “additives”, which have the potential to migrate from plastic products and cause harm to both humans and the environment. This literature review gives an overview of the migration of chemical additives from plastic products used in building/construction materials, electronics, and furnishings/upholstery. Our scope was products used in the home, to reflect the possible exposure to consumers within the product lifetime. We found that within building/construction materials, the release of phthalates from plastic flooring is commonly measured, with DEHP having the highest migration rate and migration rates increasing with temperature. Within electronics, brominated flame retardants are often measured, but it is challenging to compare studies when differing measurement units are utilised. TCPP was commonly measured as emitted
    [Show full text]