Toxicity Screening of Potential Bio-Based Polar Aprotic Solvents (PAS)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Microbial Biosynthesis of Lactate Esters
University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Faculty Publications and Other Works -- Engineering -- Faculty Publications and Other Chemical and Biomolecular Engineering Works 2019 Microbial biosynthesis of lactate esters Jong-Won Lee University of Tennessee, Knoxville Cong T. Trinh University of Tennessee, Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_chembiopubs Recommended Citation Lee, Jong-Won and Trinh, Cong T., "Microbial biosynthesis of lactate esters" (2019). Faculty Publications and Other Works -- Chemical and Biomolecular Engineering. https://trace.tennessee.edu/utk_chembiopubs/103 This Article is brought to you for free and open access by the Engineering -- Faculty Publications and Other Works at Trace: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Faculty Publications and Other Works -- Chemical and Biomolecular Engineering by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Lee and Trinh Biotechnol Biofuels (2019) 12:226 https://doi.org/10.1186/s13068-019-1563-z Biotechnology for Biofuels RESEARCH Open Access Microbial biosynthesis of lactate esters Jong‑Won Lee1,2 and Cong T. Trinh1,2,3* Abstract Background: Green organic solvents such as lactate esters have broad industrial applications and favorable envi‑ ronmental profles. Thus, manufacturing and use of these biodegradable solvents from renewable feedstocks help beneft the environment. -
Dehydration of Cellulose to Levoglucosenone Using Polar Aprotic Solvents Cite This: Energy Environ
Energy & Environmental Science View Article Online PAPER View Journal | View Issue Dehydration of cellulose to levoglucosenone using polar aprotic solvents Cite this: Energy Environ. Sci., 2015, 8,1808 Fei Cao,ab Thomas J. Schwartz,a Daniel J. McClelland,a Siddarth H. Krishna,a James A. Dumesica and George W. Huber*a Herein, we report an approach to produce levoglucosenone (LGO) from cellulose in yields up to 51% under Received 2nd February 2015, mild reaction conditions (170–230 1C; 5–20 mM H2SO4) using polar, aprotic solvents such as tetrahydro- Accepted 18th May 2015 furan(THF).LGOcanbeusedtomakeawidevarietyof chemicals from biomass. The water content and DOI: 10.1039/c5ee00353a solvent used in the reaction system control the product distribution. LGO is produced from the dehydration of levoglucosan (LGA). LGA is produced from cellulose depolymerization. Increasing the water content leads www.rsc.org/ees to the production of 5-hydroxymethyl furfural (HMF), obtaining a maximum HMF yield of 30%. Creative Commons Attribution 3.0 Unported Licence. Broader context This article describes the sustainable conversion of cellulose to levoglucosenone (LGO) using mild reaction conditions in the liquid phase. LGO is an attractive, biomass-derived platform molecule that can be used for the renewable production of pharmaceuticals, commodity chemicals such as 1,6-hexanediol (HDO), and green solvents such as dihydrolevoglucosenone. The co-production of such high-value species has the potential to significantly improve the overall economic feasibility of a biorefinery. Notably, dihydrolevoglucosenone, also known as Cyrenes, is a polar, aprotic solvent with properties similar to N- methylpyrrolidone and sulfolane, both of which are traditionally obtained from fossil-based resources. -
Aldrichimica Acta
VOLUME 51, NO. 1 | 2018 ALDRICHIMICA ACTA The Spectacular Resurgence of Electrochemical Redox Reactions in Organic Synthesis Carbon–Carbon π Bonds as Conjunctive Reagents in Cross-Coupling The life science business of Merck KGaA, Darmstadt, Germany operates as MilliporeSigma in the U.S. and Canada. MakInG sTrIDes In Genome EDITInG: THe DIGITaL, CHemIcaL, anD BIoLogIcaL Dear Fellow Researchers: You may not know that MilliporeSigma can make DNA from scratch, using 100% synthetic chemical methods—no living cells and no fermentation necessary. Our DNA synthesis facilities in The Woodlands (Texas) and Haverhill (U.K.) receive thousands of DNA orders daily from scientists all over the world. A small piece of DNA, one hundred bases long, gives scientists 4100 possibilities using only the fundamental letters of our genetic code (A,C,G,T). Included within these options is the opportunity for a researcher to open a common text editor on his or her PC and design a 100-base piece of DNA. This piece of DNA could help study diseases ranging from sickle cell anemia and blindness to cystic fibrosis by using CRISPR. To get started, scientists cut this 100-base DNA text from the text editor and paste it into MilliporeSigma’s online ordering system. The corresponding DNA piece that likely has never existed before is then delivered to them in 24–48 hours. Once received, this piece of DNA is mixed with CRISPR and living cells, and, with a “blast” of electricity, these synthetic chemical pieces activate the cell to edit the genome. Learn more about our CRISPR gene editing portfolio at SigmaAldrich.com/CRISPR Sincerely yours, Udit Batra, Ph.D. -
Liquid-Phase Dehydration of Lactic Acid for the Production of Bio-Acrylic Acid Development of a Multi-Step Process
Liquid-phase dehydration of lactic acid for the production of bio-acrylic acid Development of a multi-step process Flüssigphasen-Dehydratisierung von Milchsäure zur Produktion von biobasierter Acrylsäure Entwicklung eines mehrstufigen Prozesses Der Technischen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg zur Erlangung des Grades DOKTOR-INGENIEUR vorgelegt von Matthias Kehrer, M. Sc. aus Nürnberg Als Dissertation genehmigt von der Technischen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg. Tag der mündlichen Prüfung: 17. Dezember 2018 Vorsitzende/r des Promotionsorgans: Prof. Dr.-Ing. Reinhard Lerch Gutachter/in: Prof. Dr. Peter Wasserscheid Prof. Dr. Nicolas Vogel To my family “Obstacles don’t have to stop you. If you run into a wall, don’t turn around and give up. Figure out how to climb it, go through it, or walk around it.” Michael Jordan Preface i Preface The present work was carried out in the period from May 2014 to December 2017 at the Institute of Chemical Reaction Engineering of the Friedrich-Alexander-University Er- langen-Nürnberg, headed by Prof. Dr. Peter Wasserscheid. The results presented herein where achieved within the scope of the research project “Liquid-phase dehydration of lactic acid obtained via fermentation for the production of bio-acrylic acid”, which was carried out in close collaboration with the industrial partner Procter & Gamble. At this point, I would like to dedicate personal thanks to a large number of people and their various contributions, involved in the development of this work: First and foremost, I would like to thank my supervisor, Prof. Dr. Peter Wasserscheid, for giving me the opportunity to be part of this interesting and exciting project and for the excellent mentoring during the entire period of this thesis. -
Your Reliable Partner DELIVERING SAFE and QUALITATIVE PRODUCTS for HIGH PERFORMANCE SOLUTIONS
Your reliable partner DELIVERING SAFE AND QUALITATIVE PRODUCTS FOR HIGH PERFORMANCE SOLUTIONS corbion.com/biochemicals Why Corbion? Advanced technology and R&D At Corbion, we engage in ongoing R&D efforts to improve performance and sustainability of our products and processes. Consistent high quality Corbion has mastered the production technology to make high purity, high performance lactic acid, derivatives and lactides at industrial scale. Corbion factory in The Netherlands 100 100 years of experience Corbion has 100 years of experience in sales, application development and industrial scale production. Corbion is the global market leader in lactic acid, derivatives and lactides. Your reliable Global presence With 10 production facilities and sales offices on every partner continent, we are always close by to help you with your application development. All our products are available at an industrial scale Innovation and Application Our innovation and Application centers are focused on your Safer and more friendly for our planet challenges of tomorrow. Our technical team of chemist, analytical Corbion produces high quality lactic acid and derivatives and application technologist are available to provide you with using a biochemical fermentation process by efficient customized solutions. conversion of sugars. Corbion products are regarded as safe, offering a good alternative to traditional products that Deliveries have become under increased regulatory pressure. Corbion works on continuous improvement of its delivery times and reliability. Working to improve consistency within the supply chain is making the network more responsive while streamlining operations. Prevention Corbion deploys prevention activities in our plants and throughout our supply chain in order to avoid the occurrence of incidents. -
Fermentation and Ester Taints
Fermentation and Ester Taints Anita Oberholster Introduction: Aroma Compounds • Grape‐derived –provide varietal distinction • Yeast and fermentation‐derived – Esters – Higher alcohols – Carbonyls – Volatile acids – Volatile phenols – Sulfur compounds What is and Esters? • Volatile molecule • Characteristic fruity and floral aromas • Esters are formed when an alcohol and acid react with each other • Few esters formed in grapes • Esters in wine ‐ two origins: – Enzymatic esterification during fermentation – Chemical esterification during long‐term storage Ester Formation • Esters can by formed enzymatically by both the plant and microbes • Microbes – Yeast (Non‐Saccharomyces and Saccharomyces yeast) – Lactic acid bacteria – Acetic acid bacteria • But mainly produced by yeast (through lipid and acetyl‐CoA metabolism) Ester Formation Alcohol function Keto acid‐Coenzyme A Ester Ester Classes • Two main groups – Ethyl esters – Acetate esters • Ethyl esters = EtOH + acid • Acetate esters = acetate (derivative of acetic acid) + EtOH or complex alcohol from amino acid metabolism Ester Classes • Acetate esters – Ethyl acetate (solvent‐like aroma) – Isoamyl acetate (banana aroma) – Isobutyl acetate (fruit aroma) – Phenyl ethyl acetate (roses, honey) • Ethyl esters – Ethyl hexanoate (aniseed, apple‐like) – Ethyl octanoate (sour apple aroma) Acetate Ester Formation • 2 Main factors influence acetate ester formation – Concentration of two substrates acetyl‐CoA and fusel alcohol – Activity of enzyme responsible for formation and break down reactions • Enzyme activity influenced by fermentation variables – Yeast – Composition of fermentation medium – Fermentation conditions Acetate/Ethyl Ester Formation – Fermentation composition and conditions • Total sugar content and optimal N2 amount pos. influence • Amount of unsaturated fatty acids and O2 neg. influence • Ethyl ester formation – 1 Main factor • Conc. of precursors – Enzyme activity smaller role • Higher fermentation temp formation • C and N increase small effect Saerens et al. -
Application of Hollow Fiber Supported Liquid Membrane As a Chemical Reactor for Esterification of Lactic Acid and Ethanol to Ethyl Lactate
Korean J. Chem. Eng., 33(1), 8-13 (2016) pISSN: 0256-1115 DOI: 10.1007/s11814-015-0233-5 eISSN: 1975-7220 RAPID COMMUNICATION INVITED REVIEW PAPER Application of hollow fiber supported liquid membrane as a chemical reactor for esterification of lactic acid and ethanol to ethyl lactate Thanyarutt Teerachaiyapat and Prakorn Ramakul† Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand (Received 11 August 2015 • accepted 6 November 2015) Abstract−Hollow fiber supported liquid membrane was applied as a reactor to synthesize ethyl lactate from lactic acid. Lactic acid in the feed solution was extracted by tri-n-octylamine (TOA) and stripped by ethanol with p-toluene sulfonic acid acting as the catalyst to form ethyl lactate. Central composite design (CCD) was used to determine the significant factors and their interactions. The response surface was applied for optimization. An optimized yield of 30% was predicted and its validity was evaluated by comparison with experimental results at different concentrations of lac- tic acid in the feed solution, with good agreement achieved. Keywords: Liquid Membrane, Hollow Fiber, Ethyl Lactate, Lactic Acid, CCD INTRODUCTION acid and ethanol because both can be produced in large quantities by fermentation. The esterification between lactic acid and etha- Liquid membrane processes have been promising methods for nol is an equilibrium-limited reaction. Higher yields of ethyl lac- metal ion and organic compound separation. They have received tate can be obtained by shifting the reaction towards products by considerable attention due to the advantages of combining extraction hybrid processes, such as pervaporation-aided reactor and reac- and stripping processes in one stage, as well as non-equilibrium tive distillation instead of using a large excess of reactants. -
Bio-Solvents: Synthesis, Industrial Production and Applications Novisi K
Chapter Bio-Solvents: Synthesis, Industrial Production and Applications Novisi K. Oklu, Leah C. Matsinha and Banothile C.E. Makhubela Abstract Solvents are at the heart of many research and industrial chemical processes and consumer product formulations, yet an overwhelming number are derived from fossils. This is despite societal and legislative push that more products be produced from carbon-neutral resources, so as to reduce our carbon footprint and environmental impact. Biomass is a promising renewable alternative resource for producing bio-solvents, and this review focuses on their extraction and synthesis on a laboratory and large scale. Starch, lignocellulose, plant oils, animal fats and proteins have been combined with creative synthetic pathways, novel technolo- gies and processes to afford known or new bio-derived solvents including acids, alkanes, aromatics, ionic liquids (ILs), furans, esters, ethers, liquid polymers and deep eutectic solvents (DESs)—all with unique physiochemical properties that warrant their use as solvation agents in manufacturing, pharmaceutical, cosmet- ics, chemicals, energy, food and beverage industries, etc. Selected bio-solvents, conversion technologies and processes operating at commercial and demonstration scale including (1) Solvay’s Augeo™ SL 191 renewable solvent, (2) Circa Group’s Furacell™ technology and process for making levoglucosenone (LGO) to produce dihydrolevoglucosenone (marketed as Cyrene™), (3) Sappi’s Xylex® technology and demonstration scale processes that aim to manufacture precursors for bio- solvents and (4) Anellotech’s Bio-TCat™ technology and process for producing benzene, toluene and xylenes (BTX) are highlighted. Keywords: bio-solvents, renewable resources, green chemistry, biorefinery, biomass 1. Introduction Air quality deterioration, environmental, health and safety issues have raised serious concerns over continued processing of fossil-based feedstocks in producing chemical products such as fuels and solvents. -
Dihydrolevoglucosenone (Cyrene™), a Bio-Based Solvent for Liquid-Liquid Extraction Applications Thomas Brouwer, and Boelo Schuur ACS Sustainable Chem
Subscriber access provided by UNIV TWENTE Article Dihydrolevoglucosenone (Cyrene™), a Bio-based Solvent for Liquid-Liquid Extraction Applications Thomas Brouwer, and Boelo Schuur ACS Sustainable Chem. Eng., Just Accepted Manuscript • DOI: 10.1021/ acssuschemeng.0c04159 • Publication Date (Web): 31 Aug 2020 Downloaded from pubs.acs.org on September 16, 2020 Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts. is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. -
Green Solvents….Changing the Future
Green Solvents- A sustainable option Sangeeta Srivastava Godavari Biorefineries Limited Mumbai www.somaiya.com Solvents!!!! • Playa major rolein manyareas of technology • Provide many opportunities for improvement of environmental aspects. • Represent a very large proportion of the volatile organic compounds (VOCs) released into theatmosphere. • Used in coating, cleaning, extraction, reaction, energy control, mixing etc. What are Green Solvents? • Chemicals arising from fermentation and renewable resources • Minimizetheuseand generation of hazardous substances • Theymeet thegoal to minimizeenvironmental impact • Therefore Theyare–A sustainableOption. Market of Green & Biosolvent • The market size, in terms of value--about USD 5.58 Billion in 2015 and is projected to reach USD 8.17 Billion by 2020, at a CAGR of 7.94% between 2015 and 2020. • The green and bio-solvents market, along with its applications, witnessed a moderate-to-high growth in the past few years and is likely to continue so in the in the coming years. • Bio-solvents have made rapid incursions into a variety of end-use segments such as printing inks, coatings, edible oil adhesives, food processing, and cleaning products, among others. • Regulatory mandates for the printing ink industry have set stringent guidelines for the use of solvents, thereby driving the increased use of bio-solvents in the printing ink industry. Principles of Green Chemistry Prevention Inherently safer chemistry for Atom Economy accident prevention Real-time analysis for pollution prevention Less Hazardous -
Polyethylene Terephthalate (PET) Sheet from Korea and Oman
Polyethylene Terephthalate (PET) Sheet from Korea and Oman Investigation Nos. 731-TA-1455 and 731-TA-1457 (Final) Publication 5111 September 2020 U.S. International Trade Commission Washington, DC 20436 U.S. International Trade Commission COMMISSIONERS Jason E. Kearns, Chair Randolph J. Stayin, Vice Chair David S. Johanson Rhonda K. Schmidtlein Amy A. Karpel Staff assigned Kristina Lara, Investigator Jennifer Catalano, Industry Analyst Amelia Preece, Economist Emily Kim, Accountant Mara Alexander, Statistician Jason Miller, Attorney Elizabeth Haines, Supervisory Investigator Address all communications to Secretary to the Commission United States International Trade Commission Washington, DC 20436 U.S. International Trade Commission Washington, DC 20436 www.usitc.gov Polyethylene Terephthalate (PET) Sheet from Korea and Oman Investigation Nos. 731-TA-1455 and 731-TA-1457 (Final) Publication 5111 September 2020 CONTENTS Page Determinations ............................................................................................................................. 1 Views of the Commission ............................................................................................................. 3 Introduction ................................................................................................................ I‐1 Background ............................................................................................................................. I‐1 Statutory criteria .................................................................................................................... -
Process Intensification for the Green Solvent Ethyl Lactate Production Based on Simulated Moving Bed and Pervaporation Membrane Reactors
Process Intensification for the Green Solvent Ethyl Lactate Production based on Simulated Moving Bed and Pervaporation Membrane Reactors A Dissertation Presented to the Faculdade de Engenharia da Universidade do Porto for the degree of PhD in Chemical and Biological Engineering by Carla Sofia Marques Pereira Supervised by Professor Alírio Egídio Rodrigues and Dr. Viviana Manuela Tenedório Matos da Silva Laboratory of Separation and Reaction Engineering, Associate Laboratory LSRE/LCM Department of Chemical Engineering, Faculty of Engineering, University of Porto October 2009 FEUP-LSRE/LCM - Universidade do Porto © Carla Sofia Marques Pereira, 2009 All rights reserved Acknowledgements First of all, I want to thank my supervisors, Professor Alírio Rodrigues and Dr Viviana Silva. Professor Alírio, thank you for all the friendship, constant support and for always challenging me to reach higher goals within my work. Dr. Viviana, I want to thank you for all the encouragement, motivation, constant support, for all the long discussions and great ideas that make me go further and further within my work, and, also, for being a truly and special friend. I am very grateful to Professor Simão Pinho, for the friendship and all the support in the framework of the project “POCI/EQU/61580/2004” and to Professor Madalena Dias for the support whenever needed. To all my LSRE colleagues, especially Israel Pedruzzi, Pedro Sá Gomes, Michael Zabka, João Santos, Miguel Granato, João Pedro Lopes, Alexandre Ferreira and Nuno Lourenço for the friendship, collaboration, and support whenever I needed. To my primary school teacher, Professor João Aveiro, for always believing in me and keeping me motivated along the years.