Process Intensification for the Green Solvent Ethyl Lactate Production Based on Simulated Moving Bed and Pervaporation Membrane Reactors

Total Page:16

File Type:pdf, Size:1020Kb

Process Intensification for the Green Solvent Ethyl Lactate Production Based on Simulated Moving Bed and Pervaporation Membrane Reactors Process Intensification for the Green Solvent Ethyl Lactate Production based on Simulated Moving Bed and Pervaporation Membrane Reactors A Dissertation Presented to the Faculdade de Engenharia da Universidade do Porto for the degree of PhD in Chemical and Biological Engineering by Carla Sofia Marques Pereira Supervised by Professor Alírio Egídio Rodrigues and Dr. Viviana Manuela Tenedório Matos da Silva Laboratory of Separation and Reaction Engineering, Associate Laboratory LSRE/LCM Department of Chemical Engineering, Faculty of Engineering, University of Porto October 2009 FEUP-LSRE/LCM - Universidade do Porto © Carla Sofia Marques Pereira, 2009 All rights reserved Acknowledgements First of all, I want to thank my supervisors, Professor Alírio Rodrigues and Dr Viviana Silva. Professor Alírio, thank you for all the friendship, constant support and for always challenging me to reach higher goals within my work. Dr. Viviana, I want to thank you for all the encouragement, motivation, constant support, for all the long discussions and great ideas that make me go further and further within my work, and, also, for being a truly and special friend. I am very grateful to Professor Simão Pinho, for the friendship and all the support in the framework of the project “POCI/EQU/61580/2004” and to Professor Madalena Dias for the support whenever needed. To all my LSRE colleagues, especially Israel Pedruzzi, Pedro Sá Gomes, Michael Zabka, João Santos, Miguel Granato, João Pedro Lopes, Alexandre Ferreira and Nuno Lourenço for the friendship, collaboration, and support whenever I needed. To my primary school teacher, Professor João Aveiro, for always believing in me and keeping me motivated along the years. To Fundação para a Ciência e Tecnologia, for the financial support (Research Fellowship: SFRH / BD / 23724 / 2005). To Sofia Rodrigues, Marta Abrantes, Fátima Mota, Miguel Teixeira and Nuno Garrido for all the great moments spent after work!!! Last, but not least, I would deeply like to thank my family and friends, for all giving love, support and trust, especially to my grandmother, Dulcelina, that will always stay in my heart. To my parents and sisters “Green chemistry represents the pillars that hold up our sustainable future. It is imperative to teach the value of green chemistry to tomorrow’s chemists.” Daryle Busch, President of the American Chemical Society (June 26, 2000) Resumo O principal objectivo deste trabalho foi o desenvolvimento de um novo processo eficiente para a produção do solvente verde, lactato de etilo, através da reacção de esterificação entre etanol e ácido láctico, utilizando tecnologias híbridas de reacção/separação baseadas em reactores de leito móvel simulado e processos de membranas por pervaporação. De forma a atingir a meta proposta, foram abordados os seguintes temas: Aquisição de dados fundamentais: A resina de permuta iónica, Amberlyst 15-wet, foi avaliada tanto como catalisador para a reacção de esterificação, como adsorvente selectivo para a água. Os dados cinéticos e de equilíbrio da reacção foram medidos, na gama de temperaturas 50ºC-90ºC, e usados para a determinação da constante de equilíbrio e da lei cinética da reacção como função da temperatura, baseadas em actividades descritas pelo modelo UNIQUAC. Os dados de adsorção foram também medidos, a 20ºC e a 50ºC, e ajustados a uma isotérmica de Langmuir multicomponente, tendo-se assumido uma capacidade volumétrica da monocamada igual para todas as espécies, reduzindo o número de parâmetros de ajuste de 8 para 5, para cada temperatura. Membranas comerciais hidrófilas da Pervatech foram avaliadas para a desidratação do etanol, ácido láctico e lactato de etilo, por pervaporação. As permeâncias de todas as espécies foram determinadas em função da composição e temperatura na gama 48ºC-72ºC. Intensificação de processo: Modelos matemáticos, considerando resistências internas e externas à transferência de massa e velocidade variável devido à mudança das propriedades da mistura multicomponente, foram desenvolvidos para reactores cromatográficos — reactores de leito fixo e de leito móvel simulado, SMBR — e validados pelos dados experimentais. O modelo matemático do reactor de membranas por pervaporação, PVMR, considera, adicionalmente, a permeação através da membrana, os efeitos de polarização por concentração e temperatura e operação não isotérmica. A avaliação teórica do comportamento da unidade SMBR foi realizada para analisar o efeito da configuração, da composição da alimentação e tempo de comutação nas regiões de separação/reacção e/ou no desempenho do processo nos pontos operacionais óptimos. O desempenho do PVMR foi avaliado para operação isotérmica e não isotérmica, e foram determinadas condições apropriadas para a maximização quer da conversão do ácido láctico quer da pureza do lactato de etilo. Finalmente, uma nova tecnologia foi desenvolvida e submetida a registo de patente, o reactor de membranas de leito móvel simulado, PermSMBR, o qual integra membranas selectivas dentro das colunas do SMBR. Abstract The main objective of this work was the development of a new efficient process to produce the green solvent ethyl lactate from the esterification reaction between ethanol and lactic acid by using hybrid reaction/separation technologies based on simulated moving bed reactors and pervaporation membrane processes. To accomplish this target, the following topics were addressed: Basic data acquisition: The acidic ion exchange resin Amberlyst 15-wet was evaluated as both catalyst for esterification and selective adsorbent for water. Equilibrium and kinetic data were measured in the temperature range 50-90ºC, and used to obtain the equilibrium constant and kinetic law as function of temperature, which are based on liquid activities described by the UNIQUAC model. Adsorption data was also obtained and fitted to a multi-component Langmuir isotherm assuming a constant monolayer capacity in terms of volume for all species, reducing the adjustable parameters from 8 to 5, for each temperature. Pervatech hydrophilic commercial membranes were evaluated for the dehydration of ethanol, lactic acid and ethyl lactate, by pervaporation. The permeances of all species were determined as function of composition and temperature in the range 48-72ºC. Process intensification: Mathematical models, considering external and internal mass-transfer resistances and velocity variations due to the change of multi-component mixture properties, were developed for chromatographic reactors — fixed bed and simulated moving bed reactor, SMBR — and validated by experimental data. The pervaporation membrane reactor, PVMR, model also takes into account, the permeation through the membrane, concentration and temperature polarization effects, and non-isothermal operation. The theoretical assessment of the SMBR unit behaviour was performed to analyse the effect of SMBR configuration, feed composition and switching time on the reactive/separation regions and/or on the process performance at the optimal operating points. The performance of the PVMR was evaluated for isothermal and non- isothermal operation, and suitable conditions for maximization of both lactic acid conversions and ethyl lactate purity were examined. Finally, a new technology was developed and submitted to patent registration, the simulated moving bed membrane reactor, PermSMBR, which integrates perm-selective membranes inside the SMBR columns. Zusammenfassung Ziel dieser Arbeit war es einen völlig neuartigen und effizienten Prozess für die Produktion von “Grünem Lösungsmittel” und Ethyl-Lakton, mittels der Verästerung aus Ethanol und Milchsäure über die Hybrid-Technologie, zu entwickeln. Die Reaktion/Trennung basiert auf simulierten Fliessbettreaktoren und Membranprozessen mittels Pervaporization. Um diese Zielsetzung zu erreichen, wurden folgende Themen diskutiert: Folgende wichtige Daten wurden gesammelt: Für den Ionen-Austausch wurde das Harz, Amberlyst 15-wet, genutzt. Es wurde sowohl als Katalysator für die Reaktivverästherung, wie auch als selektiver Adsorbent für Wasser ausgewertet. Die Kinetischen- und chemischen Gleichgewichtsdaten wurden zwischen 50ºC und 90ºC gemessen. Als Vorlage für die Bestimmung der chemischen Gleichgewichtskonstante wie auch der Kinetik als Funktion der Temperatur, wurde das UNIQUAC Model genutzt. Die Adsorptionsdaten wurden zwischen 20ºC und 50ºC gemessen, und entsprechend einer Langmuir-Isotherme für Multikomponenten angeglichen, wobei eine gleich grosse Volumenkapazität der Monoschicht für alle Spezies angenommen wurde. Die Anzahl der zu justierenden Parameter wurde hierbei für jede Temperatur von 8 auf 5 reduziert. Kommerzielle hydrophile Membranen der Firma Pervatech wurden für die Dehydratisierung von Ethanol, Milchsäure und Ethyllakton mittels Permeation ausgewertet. Die Permeation aller Spezies wurde als Funktion der Zusammensetzung und Temperatur, zwischen 48ºC und 72ºC ermittelt. Intensivierung des Prozesses: Es wurden mathematische Modelle für chromatographische Reaktoren entwickelt (Modelierte Festbett- und Fliessbettreaktoren SMBR) und experimentell ausgewärtet, unter Berücksichtigung des internen und externen Massenaustausches, sowie der variablen Geschwindigkeiten. Es herrschen unterschiedlichen Vermischungseigenschaften der Multikomponenten. Das mathematische Modell der Pervaporationsmembrane (PVMR) berücksichtigt gleichfalls die folgenden Effekte: Polarization aufgrund von Temperatur- und Konzentrationsgradienten sowie nicht-isotherme Reaktionsführung. Das theoretische Verhalten
Recommended publications
  • Microbial Biosynthesis of Lactate Esters
    University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Faculty Publications and Other Works -- Engineering -- Faculty Publications and Other Chemical and Biomolecular Engineering Works 2019 Microbial biosynthesis of lactate esters Jong-Won Lee University of Tennessee, Knoxville Cong T. Trinh University of Tennessee, Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_chembiopubs Recommended Citation Lee, Jong-Won and Trinh, Cong T., "Microbial biosynthesis of lactate esters" (2019). Faculty Publications and Other Works -- Chemical and Biomolecular Engineering. https://trace.tennessee.edu/utk_chembiopubs/103 This Article is brought to you for free and open access by the Engineering -- Faculty Publications and Other Works at Trace: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Faculty Publications and Other Works -- Chemical and Biomolecular Engineering by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Lee and Trinh Biotechnol Biofuels (2019) 12:226 https://doi.org/10.1186/s13068-019-1563-z Biotechnology for Biofuels RESEARCH Open Access Microbial biosynthesis of lactate esters Jong‑Won Lee1,2 and Cong T. Trinh1,2,3* Abstract Background: Green organic solvents such as lactate esters have broad industrial applications and favorable envi‑ ronmental profles. Thus, manufacturing and use of these biodegradable solvents from renewable feedstocks help beneft the environment.
    [Show full text]
  • Liquid-Phase Dehydration of Lactic Acid for the Production of Bio-Acrylic Acid Development of a Multi-Step Process
    Liquid-phase dehydration of lactic acid for the production of bio-acrylic acid Development of a multi-step process Flüssigphasen-Dehydratisierung von Milchsäure zur Produktion von biobasierter Acrylsäure Entwicklung eines mehrstufigen Prozesses Der Technischen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg zur Erlangung des Grades DOKTOR-INGENIEUR vorgelegt von Matthias Kehrer, M. Sc. aus Nürnberg Als Dissertation genehmigt von der Technischen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg. Tag der mündlichen Prüfung: 17. Dezember 2018 Vorsitzende/r des Promotionsorgans: Prof. Dr.-Ing. Reinhard Lerch Gutachter/in: Prof. Dr. Peter Wasserscheid Prof. Dr. Nicolas Vogel To my family “Obstacles don’t have to stop you. If you run into a wall, don’t turn around and give up. Figure out how to climb it, go through it, or walk around it.” Michael Jordan Preface i Preface The present work was carried out in the period from May 2014 to December 2017 at the Institute of Chemical Reaction Engineering of the Friedrich-Alexander-University Er- langen-Nürnberg, headed by Prof. Dr. Peter Wasserscheid. The results presented herein where achieved within the scope of the research project “Liquid-phase dehydration of lactic acid obtained via fermentation for the production of bio-acrylic acid”, which was carried out in close collaboration with the industrial partner Procter & Gamble. At this point, I would like to dedicate personal thanks to a large number of people and their various contributions, involved in the development of this work: First and foremost, I would like to thank my supervisor, Prof. Dr. Peter Wasserscheid, for giving me the opportunity to be part of this interesting and exciting project and for the excellent mentoring during the entire period of this thesis.
    [Show full text]
  • Your Reliable Partner DELIVERING SAFE and QUALITATIVE PRODUCTS for HIGH PERFORMANCE SOLUTIONS
    Your reliable partner DELIVERING SAFE AND QUALITATIVE PRODUCTS FOR HIGH PERFORMANCE SOLUTIONS corbion.com/biochemicals Why Corbion? Advanced technology and R&D At Corbion, we engage in ongoing R&D efforts to improve performance and sustainability of our products and processes. Consistent high quality Corbion has mastered the production technology to make high purity, high performance lactic acid, derivatives and lactides at industrial scale. Corbion factory in The Netherlands 100 100 years of experience Corbion has 100 years of experience in sales, application development and industrial scale production. Corbion is the global market leader in lactic acid, derivatives and lactides. Your reliable Global presence With 10 production facilities and sales offices on every partner continent, we are always close by to help you with your application development. All our products are available at an industrial scale Innovation and Application Our innovation and Application centers are focused on your Safer and more friendly for our planet challenges of tomorrow. Our technical team of chemist, analytical Corbion produces high quality lactic acid and derivatives and application technologist are available to provide you with using a biochemical fermentation process by efficient customized solutions. conversion of sugars. Corbion products are regarded as safe, offering a good alternative to traditional products that Deliveries have become under increased regulatory pressure. Corbion works on continuous improvement of its delivery times and reliability. Working to improve consistency within the supply chain is making the network more responsive while streamlining operations. Prevention Corbion deploys prevention activities in our plants and throughout our supply chain in order to avoid the occurrence of incidents.
    [Show full text]
  • Fermentation and Ester Taints
    Fermentation and Ester Taints Anita Oberholster Introduction: Aroma Compounds • Grape‐derived –provide varietal distinction • Yeast and fermentation‐derived – Esters – Higher alcohols – Carbonyls – Volatile acids – Volatile phenols – Sulfur compounds What is and Esters? • Volatile molecule • Characteristic fruity and floral aromas • Esters are formed when an alcohol and acid react with each other • Few esters formed in grapes • Esters in wine ‐ two origins: – Enzymatic esterification during fermentation – Chemical esterification during long‐term storage Ester Formation • Esters can by formed enzymatically by both the plant and microbes • Microbes – Yeast (Non‐Saccharomyces and Saccharomyces yeast) – Lactic acid bacteria – Acetic acid bacteria • But mainly produced by yeast (through lipid and acetyl‐CoA metabolism) Ester Formation Alcohol function Keto acid‐Coenzyme A Ester Ester Classes • Two main groups – Ethyl esters – Acetate esters • Ethyl esters = EtOH + acid • Acetate esters = acetate (derivative of acetic acid) + EtOH or complex alcohol from amino acid metabolism Ester Classes • Acetate esters – Ethyl acetate (solvent‐like aroma) – Isoamyl acetate (banana aroma) – Isobutyl acetate (fruit aroma) – Phenyl ethyl acetate (roses, honey) • Ethyl esters – Ethyl hexanoate (aniseed, apple‐like) – Ethyl octanoate (sour apple aroma) Acetate Ester Formation • 2 Main factors influence acetate ester formation – Concentration of two substrates acetyl‐CoA and fusel alcohol – Activity of enzyme responsible for formation and break down reactions • Enzyme activity influenced by fermentation variables – Yeast – Composition of fermentation medium – Fermentation conditions Acetate/Ethyl Ester Formation – Fermentation composition and conditions • Total sugar content and optimal N2 amount pos. influence • Amount of unsaturated fatty acids and O2 neg. influence • Ethyl ester formation – 1 Main factor • Conc. of precursors – Enzyme activity smaller role • Higher fermentation temp formation • C and N increase small effect Saerens et al.
    [Show full text]
  • Application of Hollow Fiber Supported Liquid Membrane As a Chemical Reactor for Esterification of Lactic Acid and Ethanol to Ethyl Lactate
    Korean J. Chem. Eng., 33(1), 8-13 (2016) pISSN: 0256-1115 DOI: 10.1007/s11814-015-0233-5 eISSN: 1975-7220 RAPID COMMUNICATION INVITED REVIEW PAPER Application of hollow fiber supported liquid membrane as a chemical reactor for esterification of lactic acid and ethanol to ethyl lactate Thanyarutt Teerachaiyapat and Prakorn Ramakul† Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand (Received 11 August 2015 • accepted 6 November 2015) Abstract−Hollow fiber supported liquid membrane was applied as a reactor to synthesize ethyl lactate from lactic acid. Lactic acid in the feed solution was extracted by tri-n-octylamine (TOA) and stripped by ethanol with p-toluene sulfonic acid acting as the catalyst to form ethyl lactate. Central composite design (CCD) was used to determine the significant factors and their interactions. The response surface was applied for optimization. An optimized yield of 30% was predicted and its validity was evaluated by comparison with experimental results at different concentrations of lac- tic acid in the feed solution, with good agreement achieved. Keywords: Liquid Membrane, Hollow Fiber, Ethyl Lactate, Lactic Acid, CCD INTRODUCTION acid and ethanol because both can be produced in large quantities by fermentation. The esterification between lactic acid and etha- Liquid membrane processes have been promising methods for nol is an equilibrium-limited reaction. Higher yields of ethyl lac- metal ion and organic compound separation. They have received tate can be obtained by shifting the reaction towards products by considerable attention due to the advantages of combining extraction hybrid processes, such as pervaporation-aided reactor and reac- and stripping processes in one stage, as well as non-equilibrium tive distillation instead of using a large excess of reactants.
    [Show full text]
  • Green Solvents….Changing the Future
    Green Solvents- A sustainable option Sangeeta Srivastava Godavari Biorefineries Limited Mumbai www.somaiya.com Solvents!!!! • Playa major rolein manyareas of technology • Provide many opportunities for improvement of environmental aspects. • Represent a very large proportion of the volatile organic compounds (VOCs) released into theatmosphere. • Used in coating, cleaning, extraction, reaction, energy control, mixing etc. What are Green Solvents? • Chemicals arising from fermentation and renewable resources • Minimizetheuseand generation of hazardous substances • Theymeet thegoal to minimizeenvironmental impact • Therefore Theyare–A sustainableOption. Market of Green & Biosolvent • The market size, in terms of value--about USD 5.58 Billion in 2015 and is projected to reach USD 8.17 Billion by 2020, at a CAGR of 7.94% between 2015 and 2020. • The green and bio-solvents market, along with its applications, witnessed a moderate-to-high growth in the past few years and is likely to continue so in the in the coming years. • Bio-solvents have made rapid incursions into a variety of end-use segments such as printing inks, coatings, edible oil adhesives, food processing, and cleaning products, among others. • Regulatory mandates for the printing ink industry have set stringent guidelines for the use of solvents, thereby driving the increased use of bio-solvents in the printing ink industry. Principles of Green Chemistry Prevention Inherently safer chemistry for Atom Economy accident prevention Real-time analysis for pollution prevention Less Hazardous
    [Show full text]
  • Sustainable and Safer Solvent Alternatives
    Green Sustainable and safer up! solvent alternatives The life science business of Merck KGaA, Darmstadt, Germany operates as MilliporeSigma in the U.S. and Canada. Green Bio-based and synthetic- based sustainable and safer up! solvent alternatives The products we create help our customers improve people’s lives every day. But we realize that everything we make also has an environmental impact. That’s why we are committed to continually enhancing the sustainability of our products, and adopting environmentally friendly chemical processes. What’s more, we strive to make your daily work with solvents safer by offering less toxic alternatives. Our advances include bio-based solvents that avoid the use of non-renewable resources, as well as safer substitutes for commonly used solvents that pose health or environmental concerns. While these products are more ecological, they maintain the trusted quality and reliability of the Supelco® brand. It’s sustainable and safer chemistry – perfected for your intended use. Learn more about our greener solvents: SigmaAldrich.com/ greener-solvents Bio-Based Solvents One of the sustainable initiatives we actively pursue is the change from solvents based on synthetic chemicals to those from renewable raw materials. Whenever possible, we favor chemical products which preserve functional efficacy while reducing toxicity and environmental impact. Since their supply risk is independent of petrochemical production, bio-based solvents are also reliably available. Furthermore, production processes are safer for the environment than with fossil-based solvents. Bio-Based Ethanol Instead of synthetic ethanol, we use Product description Qty/Pk Cat. No. bioethanol produced from grain or sugar Bio-Based Ethanol cane.
    [Show full text]
  • Lactic Acid from Fermentation Broth: Process Modeling) อาจารย์ที่ปรึกษา : รองศาสตราจารย์.ดร.อภิชาติ บุญทาวัน, 106 หน้า
    PRODUCTION OF HIGH PURITY OF D-(-)-LACTIC ACID FROM FERMENTATION BROTH: PROCESS MODELING Trang Khanh Mai A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Biotechnology Suranaree University of Technology Academic Year 2017 การผลติ กรดดแี ลคต กิ ความบริสุทธ์ิสูง จากน ้าหมัก: การจ าลองกระบวนการ นางสาวทรัง คัน ใหม่ วทิ ยานิพนธ์นีเ้ ป็ นส่วนหนึ่งของการศึกษาตามหลกั สูตรปริญญาวทิ ยาศาสตรมหาบัณฑิต สาขาวิชาเทคโนโลยีชีวภาพ มหาวทิ ยาลัยเทคโนโลยสี ุรนารี ปีการศึกษา 2560 I ใหม ่ คนั ทรัง : การผลิตกรดดีแลคติกความบริสุทธ์ิสูงจากน้า หมกั : การจาลองกระบวนการ (PRODUCTION OF HIGH PURITY D-(-)-LACTIC ACID FROM FERMENTATION BROTH: PROCESS MODELING) อาจารย์ที่ปรึกษา : รองศาสตราจารย์.ดร.อภิชาติ บุญทาวัน, 106 หน้า. กรดดีแลคติกเป็นสารเคมีที่มีความสาคัญ สามารถนา มาใช้ในอุตสาหกรรมยาอุตสาหกรรม เครื่องส าอาง อุตสาหกรรมอาหาร รวมถึงการใช้ในการผลิตพอลิเมอร์ย่อยสลายทางชีวภาพ เช่นเดียวกบั พอลิเมอร์ที่ผลิตโดยปิ โตรเคมีทว่ั ไป กรดดีแลคติคส่วนใหญ่สามารถผลิตได้โดย กระบวนการหมกั จากแหล่งอาหารชีวภาพ อยา่ งไรก็ตามกรดแลคติกที่ไดจ้ ากการหมกั จะตอ้ งผา่ น ข้นั ตอนการทา บริสุทธ์ิ เนื่องจากหลงั จากกระบวนการหมกั จะมีความบริสุทธ์ิของผลิตภณั ฑ์ต่า ใน การศึกษาน้ีมีการใช้เทคนิคการทา บริสุทธ์ิโดยใช้เมมเบรนชนิดนาโนฟิลเตรชัน และเทคนิค เพอร์แวปพอเรชนั ร่วมกบั ปฏิกิริยาเอสเทอริฟิเคชนั ในการทา บริสุทธ์ิกรดดีแลคติกจากน้า หมกั ท้งั น้ี มีการใช้เมมเบรนนาโนฟิลเตรชันที่มีลักษณะแบบเกลียว ซึ่งเป็นเทคนิคที่ใช้ส าหรับการปรับสภาพ น้า หมกั ที่ช่วยในการกา จดั โปรตีนและสารสีตา่ ง ๆ โดยทาให้ มีความบริสุทธ์ิของกรดดีแลคติกสูงข้ึน (93.4 เปอร์เซ็นต์) จากน้า
    [Show full text]
  • 9630 Ethyl Lactate
    9630 Ethyl Lactate MG Chemicals UK Limited Version No: A-1.01 Issue Date: 11/06/2019 Safety Data Sheet (Conforms to Regulation (EU) No 2015/830) Revision Date: 18/03/2020 L.REACH.GBR.EN SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING 1.1. Product Identifier Product name 9630 Synonyms SDS Code: 9630-Liquid; 9630-945ML, 9630-3.78L Other means of identification Ethyl Lactate 1.2. Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses solvent Uses advised against Not Applicable 1.3. Details of the supplier of the safety data sheet Registered company name MG Chemicals UK Limited MG Chemicals (Head office) Heame House, 23 Bilston Street, Sedgely Dudley DY3 1JA United Address 9347 - 193 Street Surrey V4N 4E7 British Columbia Canada Kingdom Telephone +(44) 1663 362888 +(1) 800-201-8822 Fax Not Available +(1) 800-708-9888 Website Not Available www.mgchemicals.com Email [email protected] [email protected] 1.4. Emergency telephone number Association / Organisation Verisk 3E (Access code: 335388) Emergency telephone numbers +(44) 20 35147487 Other emergency telephone +(0) 800 680 0425 numbers SECTION 2 HAZARDS IDENTIFICATION 2.1. Classification of the substance or mixture Classification according to H226 - Flammable Liquid Category 3, H318 - Serious Eye Damage Category 1, H335 - Specific target organ toxicity - single exposure Category 3 regulation (EC) No 1272/2008 (respiratory tract irritation) [CLP] [1] Legend: 1. Classified by Chemwatch; 2. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI 2.2. Label elements Hazard pictogram(s) SIGNAL WORD DANGER Hazard statement(s) H226 Flammable liquid and vapour.
    [Show full text]
  • Hazard Summary Identification Reason for Citation How to Determine If You Are Being Exposed Workplace Exposure Limits Ways of Re
    Common Name: ETHYL LACTATE CAS Number: 97-64-3 RTK Substance number: 0893 DOT Number: UN 1192 Date: March 1999 ----------------------------------------------------------------------- -------------------------------------------------------------------------- HAZARD SUMMARY WORKPLACE EXPOSURE LIMITS * Ethyl Lactate can affect you when breathed in and may No occupational exposure limits have been established for be absorbed through the skin. Ethyl Lactate. This does not mean that this substance is not * Prolonged contact can irritate the skin and eyes. harmful. Safe work practices should always be followed. * Breathing Ethyl Lactate may cause dizziness, lightheadedness, and passing out. * It should be recognized that Ethyl Lactate may be absorbed through your skin, thereby increasing your IDENTIFICATION exposure. Ethyl Lactate is a colorless liquid with a mild odor. It is used as a solvent for dyes, lacquers, paints, enamels, nitrocellulose, WAYS OF REDUCING EXPOSURE cellulose ethers, and resins, in the manufacture of safety glass * Where possible, enclose operations and use local exhaust and stencil paper, and as an additive for food and cosmetics. ventilation at the site of chemical release. If local exhaust ventilation or enclosure is not used, respirators should be REASON FOR CITATION worn. * Ethyl Lactate is on the Hazardous Substance List because * Wear protective work clothing. it is cited by DOT and NFPA. * Wash thoroughly immediately after exposure to Ethyl * Definitions are provided on page 5. Lactate and at the end of the workshift. * Post hazard and warning information in the work area. In HOW TO DETERMINE IF YOU ARE BEING addition, as part of an ongoing education and training EXPOSED effort, communicate all information on the health and The New Jersey Right to Know Act requires most employers safety hazards of Ethyl Lactate to potentially exposed to label chemicals in the workplace and requires public workers.
    [Show full text]
  • Ethyl Lactate Synthesis Using A15 Resin As Catalyst/Adsorbent: Kinetic and Adsorption Studies
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Biblioteca Digital do IPB Ethyl Lactate Synthesis using A15 resin as Catalyst/Adsorbent: Kinetic and Adsorption Studies Carla S.M. Pereira 1, Simão P. Pinho 2, Viviana M.T.M. Silva 1, and Alírio E. Rodrigues 1 1 Laboratory of Separation and Reaction Engineering (LSRE), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal. Email: [email protected] 2 Laboratory of Separation and Reaction Engineering (LSRE), Departamento de Tecnologia Quí mica e Bioló gica, Instituto Polité cnico de Braganc a,̧ Campus de Santa Apoló nia, 5301- 857 Braganc a,̧ Portugal. ABSTRACT – The heterogeneous catalysis of lactic acid (88 wt. %) esterification with ethanol in presence of Amberlyst 15-wet was studied. A simplified Langmuir-Hinshelwood kinetic model was used to predict the experimental data. The effect of the catalyst loading, initial molar ratio between ethanol and lactic acid and reaction temperature on lactic acid conversion as function of time was studied. Binary adsorption experiments were performed in the fixed bed in absence of reaction at 298.15 K. The experimental breakthroughs obtained were used to determine the multicomponent adsorption equilibrium isotherm of Langmuir type. The results obtained will be very useful to apply for the design and optimization of industrial hybrid reactive separation process using Amberlyst 15-wet as catalyst/adsorbent. KEYWORDS: Ethyl lactate, kinetics, esterification, adsorption, Amberlyst 15, Langmuir isotherm. 1. INTRODUCTION separate from the reaction mixture the heterogeneous catalyst can be used repeatedly Petroleum (“black gold”) has been revealed like over a prolonged period without any difficulty in one of the biggest economics and politics handling and storage.
    [Show full text]
  • Malolactic Fermentation- Importance of Wine Lactic Acid Bacteria in Winemaking
    LALLEMAND MALOLACTIC FERMENTATION- IMPORTANCE OF In an effort to compile the latest usable OF WINE LACTIC ACID BACTERIA IN WINEMAKING – IMPORTANCE MALOLACTIC FERMENTATION WINE LACTIC ACID BACTERIA information regarding malolactic fermen- tation, Lallemand published Malolactic IN WINEMAKING Fermentation in Wine - Understanding the Science and the Practice in 2005. This addition is an update to that publi- cation with new and relevant information. We intend it to be a compendium of both scientific and applied information of practical use to winemakers from all geo- graphic areas and wine growing regions. It is the desire and intention of the authors to supply the industry with information winemaking professionals can use in the pursuit and furtherance of their art. 2015 For the most recent information, log onto www.lallemandwine.com ISBN 978-2-9815255-0-5 ISBN 978-2-9815255-0-5 9 782981 525505 9 782981 525505 CouvImposéeBible June 1, 2015 8:29 AM 200p 0,46 Production coordinator: Claude Racine Copy editing: Judith Brown and Grant Hamilton Designer: François Messier Printing: Groupe Quadriscan Certain research published or cited in this publication was funded in whole or in part by Lallemand Inc. © 2015 Lallemand Inc. All rights reserved. No part of this book may be reproduced in any form or by any means whatsoever, whether electronic, mechanical, photocopying or record- ing, or otherwise, without the prior written permission of Lallemand Inc. Legal deposit Bibliothèque et Archives nationales du Québec 2015 Library and Archives Canada 2015 ISBN 978-2-9815255-0-5 DISCLAIMER: Lallemand has compiled the information contained herein and, to the best of its knowledge, the information is true and accurate.
    [Show full text]