Dihydrolevoglucosenone (Cyrene™), a Bio-Based Solvent for Liquid-Liquid Extraction Applications Thomas Brouwer, and Boelo Schuur ACS Sustainable Chem

Total Page:16

File Type:pdf, Size:1020Kb

Dihydrolevoglucosenone (Cyrene™), a Bio-Based Solvent for Liquid-Liquid Extraction Applications Thomas Brouwer, and Boelo Schuur ACS Sustainable Chem Subscriber access provided by UNIV TWENTE Article Dihydrolevoglucosenone (Cyrene™), a Bio-based Solvent for Liquid-Liquid Extraction Applications Thomas Brouwer, and Boelo Schuur ACS Sustainable Chem. Eng., Just Accepted Manuscript • DOI: 10.1021/ acssuschemeng.0c04159 • Publication Date (Web): 31 Aug 2020 Downloaded from pubs.acs.org on September 16, 2020 Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts. is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties. Page 1 of 42 ACS Sustainable Chemistry & Engineering 1 2 3 4 5 6 7 Dihydrolevoglucosenone (Cyrene™), a Bio-based 8 9 10 11 Solvent for Liquid-Liquid Extraction Applications 12 13 14 15 16 a a,* 17 Thomas Brouwer and Boelo Schuur 18 19 20 21 aSustainable Process Technology group, Process and Catalysis Engineering cluster, 22 23 24 25 Faculty of Science and Technology, University of Twente, Dienerlolaan 5, Meander 26 27 28 building, 7522 NB, Enschede, The Netherlands 29 30 31 32 *corresponding author: Meander building 221, 7522NB, Enschede, The Netherlands, 33 34 35 36 e: [email protected] , p: +31 53 489 2891 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 1 ACS Paragon Plus Environment ACS Sustainable Chemistry & Engineering Page 2 of 42 1 2 3 4 Abstract 5 6 7 Dihydrolevoglycosenone, commercially known as Cyrene™, is a versatile bio-based 8 9 10 11 solvent reported for various applications including being a medium of chemical 12 13 14 reactions and membrane manufacture. In this work, application of Cyrene™ in liquid- 15 16 17 18 liquid extractions has been investigated. Four ternary systems have been assessed at 19 20 21 298.15K, 323.15K and 348.15K, keeping CyreneTM and methylcyclohexane constant 22 23 24 25 and changing the third compound to toluene, cyclohexanol, cyclohexanone and 26 27 28 cyclopentyl methyl ether. Studying these selected ternary systems, yielded an 29 30 31 indication of applicability of Cyrene™ in related industrial separation processes such 32 33 34 35 as aromatic/aliphatic separations, and in separations of oxygenates in the cyclohexane 36 37 38 oxidation process. Key factors are biphasic system formation, distribution coefficients 39 40 41 42 and selectivity. All ternary systems showed type I liquid-liquid phase behavior with a 43 44 45 selective extraction of ternary components from methylcyclohexane by Cyrene™. The 46 47 48 49 highest selectivity at 298.15K was found for cyclohexanol with 61.4±4.33, followed by 50 51 52 cyclohexanone with 44.1±8.63, while toluene and cyclopentyl methyl ether had a 53 54 55 56 selectivity of respectively 12.0±0.89 and 6.4±0.08. Although CyreneTM is applicable in 57 58 59 all four ternary systems, the miscibility gap is narrow for the oxygenated species, 60 2 ACS Paragon Plus Environment Page 3 of 42 ACS Sustainable Chemistry & Engineering 1 2 3 4 indicating a limited operation window for liquid-liquid extraction which will be more 5 6 7 severe at higher temperatures. Overall, the studies showed that there are certainly 8 9 10 11 application windows for Cyrene™. In the case of oxygenate extraction, a process with 12 13 14 Cyrene™ appears energy-saving because the energy duty appears to be lower than 15 16 17 18 when using water, the best alternative solvent, which is a low boiling solvent for this 19 20 21 purpose. 22 23 24 25 TM 26 KEYWORDS: Dihydrolevoglucosenone, Cyrene , Bio-based Solvent, Liquid-Liquid 27 28 29 30 Equilibrium, Liquid-Liquid Extraction 31 32 33 34 Introduction 35 36 37 Insights in the liquid-liquid extraction (LLX) applicability of dihydrolevoglycosenone, 38 39 40 41 or Cyrene™, was obtained by performing LLX in four different ternary systems. 42 43 44 CyreneTM, a bio-based polar solvent, attracted recent attention as being versatile for 45 46 47 1-7 48 various applications, e.g. as a medium to perform chemical reactions and to prepare 49 50 51 membranes by phase inversion8, though no mention for LLX applications has been 52 53 54 55 found as of yet. 56 57 58 59 60 3 ACS Paragon Plus Environment ACS Sustainable Chemistry & Engineering Page 4 of 42 1 2 3 TM 1, 8 4 Cyrene can be an alternative aprotic dipolar solvent , solvents of this class are 5 6 7 typically used in a range of molecular separations, from aromatic/aliphatic separation9- 8 9 10 11 12 11 to carboxylic acid separation from water. Industrially important members of the 12 13 14 solvent class of aprotic dipolar solvents include N-methylpyrrolidone (NMP) and N,N- 15 16 17 18 dimethylformamide (DMF), which both are considered toxic solvents and subject to 19 20 21 restrictive legislation. 13-15 CyreneTM is reported to have a much lower toxicity16-17, and 22 23 24 25 additionally since it is a biobased product, it offers chances for the chemical industry 26 27 28 to reduce the consumption of fossil oil by replacing their toxic fossil oil-based solvents 29 30 31 for a much more benign biobased alternative.18 In a recent communication, the Circa 32 33 34 35 Group announced a production capacity of CyreneTM of 1 kton per annum, which 36 37 38 signifies the mass production of this new biobased solvent.19 Although, bulk prices may 39 40 41 42 not be publically available, Krishna et al. state that the bulk price of CyreneTM may be 43 44 45 approximately to be 2 €/kg 20 which is comparable with traditional solvents. 46 47 48 49 Two key classes of molecular separation processes using solvents include extractive 50 51 52 distillation (ED) and LLX. In another article21, we showed the potential of Cyrene™ as 53 54 55 56 entrainer in ED of aromatic/aliphatic mixtures and paraffin/olefin mixtures. Similarly, 57 58 59 next to the already proven entrainer function in extractive distillations, Cyrene™ may 60 4 ACS Paragon Plus Environment Page 5 of 42 ACS Sustainable Chemistry & Engineering 1 2 3 4 be useful for LLX as well. In order to investigate the applicability of Cyrene™ in LLX 5 6 7 processes, we assessed the liquid-liquid equilibrium (LLE) behavior of several ternary 8 9 10 11 systems formed with Cyrene™. The investigated systems include (1) 12 13 14 methylcyclohexane (MCH) and toluene (TOL), (2) MCH and cyclohexanol (CHOH), (3) 15 16 17 18 MCH and cyclohexanone (CHO) and (4) MCH and cyclopentyl methyl ether (CPME). 19 20 21 The molecular structures of all species used in this study are displayed in figure 1. 22 23 24 OH O O 25 O 26 27 28 29 30 O 31 O 32 33 34 35 methylcylohexan toluene Cyclohexanol cyclohexanone Cyclopenthyl Dihydrolevoglucose- 36 e methyl ether none 37 (MCH) (TOL) (CHOH) (CHO) (CPME) (CyreneTM) 38 39 40 Figure 1. Structures of the molecules used in this study. 41 42 43 44 These ternary mixtures have specifically been chosen to firstly represent 45 46 47 aromatics/aliphatics separations. These separations using LLX has been subject of 48 49 50 51 study for a variety of model compounds, including benzene, toluene, xylenes, 52 53 54 (methyl)cyclohexane and n-alkanes.22-27 The model systems vary as the related 55 56 57 58 industrial mixture is complex.28 The results in this study on liquid-liquid equilibria with 59 60 5 ACS Paragon Plus Environment ACS Sustainable Chemistry & Engineering Page 6 of 42 1 2 3 TM 4 Cyrene , MCH and TOL will be compared to the elaborate work done in the past 5 6 7 concerning molecular solvents22-24, ionic liquids (ILs)25, 29-30 and deep eutectic solvents 8 9 10 31-33 11 (DESs). 12 13 14 The separation of alcohols and ketones from aliphatics was chosen because the 15 16 17 18 compounds possess either an alcohol or a ketone functionality, and they are relevant 19 20 21 industrial chemicals, for example in the industrial oxidation process of cyclohexane to 22 23 24 34-35 25 CHO and CHOH . Kim et al. and Pei et al. investigated similar systems with CHO 26 27 28 and CHOH, though used cyclohexane as hydrocarbon and studied dimethyl sulfoxide 29 30 31 (DMSO) and water as a solvent.36-37 32 33 34 35 The last ternary mixture with MCH and CPME was chosen for the CPME ether 36 37 38 functionality.
Recommended publications
  • Dehydration of Cellulose to Levoglucosenone Using Polar Aprotic Solvents Cite This: Energy Environ
    Energy & Environmental Science View Article Online PAPER View Journal | View Issue Dehydration of cellulose to levoglucosenone using polar aprotic solvents Cite this: Energy Environ. Sci., 2015, 8,1808 Fei Cao,ab Thomas J. Schwartz,a Daniel J. McClelland,a Siddarth H. Krishna,a James A. Dumesica and George W. Huber*a Herein, we report an approach to produce levoglucosenone (LGO) from cellulose in yields up to 51% under Received 2nd February 2015, mild reaction conditions (170–230 1C; 5–20 mM H2SO4) using polar, aprotic solvents such as tetrahydro- Accepted 18th May 2015 furan(THF).LGOcanbeusedtomakeawidevarietyof chemicals from biomass. The water content and DOI: 10.1039/c5ee00353a solvent used in the reaction system control the product distribution. LGO is produced from the dehydration of levoglucosan (LGA). LGA is produced from cellulose depolymerization. Increasing the water content leads www.rsc.org/ees to the production of 5-hydroxymethyl furfural (HMF), obtaining a maximum HMF yield of 30%. Creative Commons Attribution 3.0 Unported Licence. Broader context This article describes the sustainable conversion of cellulose to levoglucosenone (LGO) using mild reaction conditions in the liquid phase. LGO is an attractive, biomass-derived platform molecule that can be used for the renewable production of pharmaceuticals, commodity chemicals such as 1,6-hexanediol (HDO), and green solvents such as dihydrolevoglucosenone. The co-production of such high-value species has the potential to significantly improve the overall economic feasibility of a biorefinery. Notably, dihydrolevoglucosenone, also known as Cyrenes, is a polar, aprotic solvent with properties similar to N- methylpyrrolidone and sulfolane, both of which are traditionally obtained from fossil-based resources.
    [Show full text]
  • Glossary Terms
    Glossary Terms € 1584 5W6 5501 a 7181, 12203 5’UTR 8126 a-g Transformation 6938 6Q1 5500 r 7181 6W1 5501 b 7181 a 12202 b-b Transformation 6938 A 12202 d 7181 AAV 10815 Z 1584 Abandoned mines 6646 c 5499 Abiotic factor 148 f 5499 Abiotic 10139, 11375 f,b 5499 Abiotic stress 1, 10732 f,i, 5499 Ablation 2761 m 5499 ABR 1145 th 5499 Abscisic acid 9145 th,Carnot 5499 Absolute humidity 893 th,Otto 5499 Absorbed dose 3022, 4905, 8387, 8448, 8559, 11026 v 5499 Absorber 2349 Ф 12203 Absorber tube 9562 g 5499 Absorption, a(l) 8952 gb 5499 Absorption coefficient 309 abs lmax 5174 Absorption 309, 4774, 10139, 12293 em lmax 5174 Absorptivity or absorptance (a) 9449 μ1, First molecular weight moment 4617 Abstract community 3278 o 12203 Abuse 6098 ’ 5500 AC motor 11523 F 5174 AC 9432 Fem 5174 ACC 6449, 6951 r 12203 Acceleration method 9851 ra,i 5500 Acceptable limit 3515 s 12203 Access time 1854 t 5500 Accessible ecosystem 10796 y 12203 Accident 3515 1Q2 5500 Acclimation 3253, 7229 1W2 5501 Acclimatization 10732 2W3 5501 Accretion 2761 3 Phase boundary 8328 Accumulation 2761 3D Pose estimation 10590 Acetosyringone 2583 3Dpol 8126 Acid deposition 167 3W4 5501 Acid drainage 6665 3’UTR 8126 Acid neutralizing capacity (ANC) 167 4W5 5501 Acid (rock or mine) drainage 6646 12316 Glossary Terms Acidity constant 11912 Adverse effect 3620 Acidophile 6646 Adverse health effect 206 Acoustic power level (LW) 12275 AEM 372 ACPE 8123 AER 1426, 8112 Acquired immunodeficiency syndrome (AIDS) 4997, Aerobic 10139 11129 Aerodynamic diameter 167, 206 ACS 4957 Aerodynamic
    [Show full text]
  • Aldrichimica Acta
    VOLUME 51, NO. 1 | 2018 ALDRICHIMICA ACTA The Spectacular Resurgence of Electrochemical Redox Reactions in Organic Synthesis Carbon–Carbon π Bonds as Conjunctive Reagents in Cross-Coupling The life science business of Merck KGaA, Darmstadt, Germany operates as MilliporeSigma in the U.S. and Canada. MakInG sTrIDes In Genome EDITInG: THe DIGITaL, CHemIcaL, anD BIoLogIcaL Dear Fellow Researchers: You may not know that MilliporeSigma can make DNA from scratch, using 100% synthetic chemical methods—no living cells and no fermentation necessary. Our DNA synthesis facilities in The Woodlands (Texas) and Haverhill (U.K.) receive thousands of DNA orders daily from scientists all over the world. A small piece of DNA, one hundred bases long, gives scientists 4100 possibilities using only the fundamental letters of our genetic code (A,C,G,T). Included within these options is the opportunity for a researcher to open a common text editor on his or her PC and design a 100-base piece of DNA. This piece of DNA could help study diseases ranging from sickle cell anemia and blindness to cystic fibrosis by using CRISPR. To get started, scientists cut this 100-base DNA text from the text editor and paste it into MilliporeSigma’s online ordering system. The corresponding DNA piece that likely has never existed before is then delivered to them in 24–48 hours. Once received, this piece of DNA is mixed with CRISPR and living cells, and, with a “blast” of electricity, these synthetic chemical pieces activate the cell to edit the genome. Learn more about our CRISPR gene editing portfolio at SigmaAldrich.com/CRISPR Sincerely yours, Udit Batra, Ph.D.
    [Show full text]
  • Membrane Phase Miscibility Gaps and Surface Constraints
    SurfaceMembrane constraints phase miscibility and membrane gaps and phase surface miscibility constraints gaps W.A. Hamilton,1 L. Porcar1,2 and G.S. Smith3,1 1 Neutron Scattering Center, Oak Ridge National Laboratory 2 NIST Center for Neutron Research 3 LANSCE, Los Alamos National Laboratory Research supported by the US Department of Energy, Division of Materials Science 2nd American Conference on Neutron Scattering, College Park MD 6-10 June 2004 Self-assembled surfactant membrane phase: L3 “sponge” phase δ ~ 20-30Å bilayer membrane surfactant molecule d ~ 100 –1000 Å 3 “oily-salt” QuartzA surface very fluid aqueous phase over? wide dilution Potentially useful as a mixing stage in (membrane) protein crystallization for structural characterization and as template phaseOur for simply high porosityconstraining structures proximate (as surface per aerogels ... ) What does an isotropic bulk phase do in an anisotropic situation? Same in all directions - manifestly isotropic - so ... A nearby answer in the phase diagram … Generic membrane phase diagram region … A competition between curvature, topology and entropy e r Sponge - L u 3 t a v r ratio, salt d u I+L3 +… 3 hexanol c / c i s L3 n CPCl i r t or L3 + Lα biphasic - miscibility gap n cosurfactant i no single phase solution to competition here g n i s Lα Lamellar - L a α e AOT/brine r c Surfactant/ T ~1% ~50 % n i volume fraction φ dα Stacked lamellar phase would fit nicely against a constraining surface ... Near surface constraint contributes to F Expect local effect on phase transition and miscibility gap (Lα+L3 coexistence) Typical L3 and Lα SANS at highish volume fraction e.g.
    [Show full text]
  • Miscibility in Solids
    Name _________________________ Date ____________ Regents Chemistry Miscibility In Solids I. Introduction: Two substances in the same phases are miscible if they may be completely mixed (in liquids a meniscus would not appear). Substances are said to be immiscible if the will not mix and remain two distinct phases. A. Intro Activity: 1. Add 10 mL of olive oil to 10 mL of water. a) Please record any observations: ___________________________________________________ ___________________________________________________ b) Based upon your observations, indicate if the liquids are miscible or immiscible. Support your answer. ________________________________________________________ ________________________________________________________ 2. Now add 10 mL of grain alcohol to 10 mL of water. a) Please record any observations: ___________________________________________________ ___________________________________________________ b) Based upon your observations, indicate if the liquids are miscible or immiscible. Support your answer. ________________________________________________________ ________________________________________________________ Support for Cornell Center for Materials Research is provided through NSF Grant DMR-0079992 Copyright 2004 CCMR Educational Programs. All rights reserved. II. Observation Of Perthite A. Perthite Observation: With the hand specimens and hand lenses provided, list as many observations possible in the space below. _________________________________________________________ _________________________________________________________
    [Show full text]
  • Bio-Solvents: Synthesis, Industrial Production and Applications Novisi K
    Chapter Bio-Solvents: Synthesis, Industrial Production and Applications Novisi K. Oklu, Leah C. Matsinha and Banothile C.E. Makhubela Abstract Solvents are at the heart of many research and industrial chemical processes and consumer product formulations, yet an overwhelming number are derived from fossils. This is despite societal and legislative push that more products be produced from carbon-neutral resources, so as to reduce our carbon footprint and environmental impact. Biomass is a promising renewable alternative resource for producing bio-solvents, and this review focuses on their extraction and synthesis on a laboratory and large scale. Starch, lignocellulose, plant oils, animal fats and proteins have been combined with creative synthetic pathways, novel technolo- gies and processes to afford known or new bio-derived solvents including acids, alkanes, aromatics, ionic liquids (ILs), furans, esters, ethers, liquid polymers and deep eutectic solvents (DESs)—all with unique physiochemical properties that warrant their use as solvation agents in manufacturing, pharmaceutical, cosmet- ics, chemicals, energy, food and beverage industries, etc. Selected bio-solvents, conversion technologies and processes operating at commercial and demonstration scale including (1) Solvay’s Augeo™ SL 191 renewable solvent, (2) Circa Group’s Furacell™ technology and process for making levoglucosenone (LGO) to produce dihydrolevoglucosenone (marketed as Cyrene™), (3) Sappi’s Xylex® technology and demonstration scale processes that aim to manufacture precursors for bio- solvents and (4) Anellotech’s Bio-TCat™ technology and process for producing benzene, toluene and xylenes (BTX) are highlighted. Keywords: bio-solvents, renewable resources, green chemistry, biorefinery, biomass 1. Introduction Air quality deterioration, environmental, health and safety issues have raised serious concerns over continued processing of fossil-based feedstocks in producing chemical products such as fuels and solvents.
    [Show full text]
  • Contact Melting and the Structure of Binary Eutectic Near the Eutectic Point
    Contact melting and the structure of binary eutectic near the eutectic point Bystrenko O.V. 1,2 and Kartuzov V.V. 1 1 Frantsevich Institute for material sсience problems, Kiev, Ukraine, 2 Bogolyubov Institute for theoretical physics, Kiev, Ukraine Abstract. Computer simulations of contact melting and associated interfacial phenomena in binary eutectic systems were performed on the basis of the standard phase-field model with miscibility gap in solid state. It is shown that the model predicts the existence of equilibrium three-phase (solid-liquid-solid) states above the eutectic temperature, which suggest the explanation of the phenomenon of phase separation in liquid eutectic observed in experiments. The results of simulations provide the interpretation for the phenomena of contact melting and formation of diffusion zone observed in the experiments with binary metal-silicon systems. Key words: phase field, eutectic, diffusion zone, phase separation 1. Introduction. Phenomenon of contact (eutectic) melting (CM) is rather common for multicomponent systems and has important industrial implications [1], which motivate its experimental and theoretical studies. The aim of this work is a theoretical study of the properties of CM in binary eutectic systems and the interpretation of the results of recent experiments particularly focused on the investigation of the interfacial phenomena associated with CM [2, 3]. In these experiments, the binary systems consisting of metal Au, Al, Ag, and Cu particles (of 5 10-6 m size) placed on amorphous or crystalline
    [Show full text]
  • Temperature-Dependent Phase Behaviour of Tetrahydrofuran–Water
    UC Riverside 2018 Publications Title Temperature-dependent phase behaviour of tetrahydrofuran-water alters solubilization of xylan to improve co-production of furfurals from lignocellulosic biomass Permalink https://escholarship.org/uc/item/6m38c36c Journal Green Chemistry, 20(7) ISSN 1463-9262 1463-9270 Authors Smith, Micholas Dean Cai, Charles M Cheng, Xiaolin et al. Publication Date 2018 DOI 10.1039/C7GC03608F Peer reviewed eScholarship.org Powered by the California Digital Library University of California Green Chemistry View Article Online PAPER View Journal | View Issue Temperature-dependent phase behaviour of tetrahydrofuran–water alters solubilization of Cite this: Green Chem., 2018, 20, 1612 xylan to improve co-production of furfurals from lignocellulosic biomass† Micholas Dean Smith, a,b Charles M. Cai, c,d Xiaolin Cheng,a Loukas Petridisa,b and Jeremy C. Smith*a,b Xylan is an important polysaccharide found in the hemicellulose fraction of lignocellulosic biomass that can be hydrolysed to xylose and further dehydrated to the furfural, an important renewable platform fuel precursor. Here, pairing molecular simulation and experimental evidence, we reveal how the unique temperature-dependent phase behaviour of water–tetrahydrofuran (THF) co-solvent can delay xylan solubilization to synergistically improve catalytic co-processing of biomass to furfural and 5-HMF. Our results indicate, based on polymer correlations between polymer conformational behaviour and solvent quality, that both co-solvent and aqueous environments serve as ‘good’ solvents for xylan. Interestingly, the simulations also revealed that unlike other cell-wall components (i.e., lignin and cellulose), the make-up of the solvation shell of xylan in THF–water is dependent on the temperature-phase behaviour.
    [Show full text]
  • An Effective Algorithm to Identify the Miscibility Gap in a Binary Substitutional Solution Phase
    J. Min. Metall. Sect. B-Metall., 56 (2) B (2020) 183 - 191 Journal of Mining and Metallurgy, Section B: Metallurgy An effectIve AlgOrIthM tO IdentIfy the MIScIBIlIty gAp In A BInAry SuBStItutIOnAl SOlutIOn phASe t. fua, y. du b,*, Z.-S. Zheng a,*, y.-B. peng c, B. Jin b, y.-l. liu b, c.-f. du a, S.-h. liu b, c.-y. Shi b, J. Wang b a* School of Mathematics and Statistics, Central South University, Changsha, Hunan, China b State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, China c College of Metallurgy and Materials Engineering, Hunan University of Technology, Zhuzhou, Hunan, China (Received 16 September 2019; accepted 18 May 2020) Abstract In the literature, no detailed description is reported about how to detect if a miscibility gap exists in terms of interaction parameters analytically. In this work, a method to determine the likelihood of the presence of a miscibility gap in a binary substitutional solution phase is proposed in terms of interaction parameters. The range of the last interaction parameter along with the former parameters is analyzed for a set of self-consistent parameters associated with the miscibility gap in assessment process. Furthermore, we deduce the first and second derivatives of Gibbs energy with respect to composition for a phase described with a sublattice model in a binary system. The Al-Zn and Al-In phase diagrams are computed by using a home-made code to verify the efficiency of these techniques. The method to detect the miscibility gap in terms of interaction parameters can be generalized to sublattice models.
    [Show full text]
  • Phase Diagrams of Ternary -Conjugated Polymer Solutions For
    polymers Article Phase Diagrams of Ternary π-Conjugated Polymer Solutions for Organic Photovoltaics Jung Yong Kim School of Chemical Engineering and Materials Science and Engineering, Jimma Institute of Technology, Jimma University, Post Office Box 378 Jimma, Ethiopia; [email protected] Abstract: Phase diagrams of ternary conjugated polymer solutions were constructed based on Flory-Huggins lattice theory with a constant interaction parameter. For this purpose, the poly(3- hexylthiophene-2,5-diyl) (P3HT) solution as a model system was investigated as a function of temperature, molecular weight (or chain length), solvent species, processing additives, and electron- accepting small molecules. Then, other high-performance conjugated polymers such as PTB7 and PffBT4T-2OD were also studied in the same vein of demixing processes. Herein, the liquid-liquid phase transition is processed through the nucleation and growth of the metastable phase or the spontaneous spinodal decomposition of the unstable phase. Resultantly, the versatile binodal, spinodal, tie line, and critical point were calculated depending on the Flory-Huggins interaction parameter as well as the relative molar volume of each component. These findings may pave the way to rationally understand the phase behavior of solvent-polymer-fullerene (or nonfullerene) systems at the interface of organic photovoltaics and molecular thermodynamics. Keywords: conjugated polymer; phase diagram; ternary; polymer solutions; polymer blends; Flory- Huggins theory; polymer solar cells; organic photovoltaics; organic electronics Citation: Kim, J.Y. Phase Diagrams of Ternary π-Conjugated Polymer 1. Introduction Solutions for Organic Photovoltaics. Polymers 2021, 13, 983. https:// Since Flory-Huggins lattice theory was conceived in 1942, it has been widely used be- doi.org/10.3390/polym13060983 cause of its capability of capturing the phase behavior of polymer solutions and blends [1–3].
    [Show full text]
  • Inside the Miscibility Gap Nanostructuring and Phase Transformations in Hard Nitride Coatings
    Linköping Studies in Science and Technology Dissertation No. 1472 Inside The Miscibility Gap Nanostructuring and Phase Transformations in Hard Nitride Coatings Lars Johnson Thin Film Physics Division Department of Physics, Chemistry, and Biology (IFM) Linköping University SE-581 83 Linköping, Sweden Linköping 2012 © Lars Johnson Except for papers 1-3 © Elsevier B.V., used with permission. ISBN 978-91-7519-809-5 ISSN 0345-7524 Typeset using LATEX Printed by LiU-Tryck, Linköping 2012 II ABSTRACT This thesis is concerned with self-organization phenomena in hard and wear resistant transition-metal nitride coatings, both during growth and during post-deposition thermal annealing. The uniting physical principle in the studied systems is the immiscibility of their constituent parts, which leads, under certain conditions, to structural variations on the nanoscale. The study of such structures is challenging, and during this work atom probe to- mography (apt) was developed as a viable tool for their study. Ti0.33Al0.67N was observed to undergo spinodal decomposition upon annealing to 900 °C, by the use of apt in combination with electron microscopy. The addition of C to TiSiN was found to promote and refine the feather-like microstructure common in the system, with an ensuing decrease in thermal stability. An age-hardening of 36 % was measured in arc evaporated Zr0.44Al0.56N1.20, which was a nanocomposite of cubic, hexagonal, and amorphous phases. Magnetron sputtering of Zr0.64Al0.36N at 900 °C resulted in a self-organized and highly ordered growth of a two-dimensional two-phase labyrinthine structure of cubic ZrN and wurtzite AlN.
    [Show full text]
  • Gas-Liquid-Solid Condensation of Gravitationally Confined Polystyrene Particles Near a Charged Wall at Intermediate Screening Lengths
    Int. J. Microgravity Sci. Appl. 32 (2) 2015, 320207 DOI :10.15011/ijmsa.32.320207 IIIII The Kikuchi-Kossel Experiment - Colloidal Crystals under Microgravity IIIII (Original Paper) Gas-Liquid-Solid Condensation of Gravitationally Confined Polystyrene Particles near a Charged Wall at Intermediate Screening Lengths Masamichi ISHIKAWA 1, Shun ITO 2, Saki MIYOSHI 3 and Junko HABASAKI 4 Abstract Charged polystyrene particles, which were initially sedimented uniformly on a glass wall, spontaneously transformed into two- dimensional gas, liquid, and solid phases in aqueous solvents. Their relative stabilities could be determined by a common phase diagram consisting of gas-liquid and liquid-solid coexistence lines under the conditions of a large particle radius (a >> κ1) and intermediate screening length (a=1.5 μm and 10 nm<κ1<300 nm), where a is the particle radius and κ is the Debye-Hückel parameter. The gas-liquid miscibility gap which had a critical point was very stable over a wide range of salt concentrations. The radial distribution functions of colloidal particles in the liquid phase showed remarkable oscillatory damping and both short-range (~particle diameter σ) and long-range (>10σ) decay lengths were found. The latter was attributed to the charge density wave (CDW) due to alternating layers of oppositely charged colloids and counterions along the radial coordinate. Because the charged glass wall had a similar surface charge density and sign as the particles, the repulsive levitation at the wall against gravity assisted the thermal rearrangement during phase separation. Further evaluation is promising for investigating the complicated physics of particle-wall interactions. Keyword(s): Polystyrene, Charged colloid, Colloidal phase transition, Sedimentation.
    [Show full text]